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Abstract

The second messenger, cyclic diguanylate (c-di-GMP), regulates diverse cellular processes in bacteria. C-di-GMP is produced
by diguanylate cyclases (DGCs), degraded by phosphodiesterases (PDEs), and receptors couple c-di-GMP production to
cellular responses. In many bacteria, including Vibrio cholerae, multiple DGCs and PDEs contribute to c-di-GMP signaling,
and it is currently unclear whether the compartmentalization of c-di-GMP signaling components is required to mediate c-di-
GMP signal transduction. In this study we show that the transcriptional regulator, VpsT, requires c-di-GMP binding for
subcellular localization and activity. Only the additive deletion of five DGCs markedly decreases the localization of VpsT,
while single deletions of each DGC do not impact VpsT localization. Moreover, mutations in residues required for c-di-GMP
binding, c-di-GMP-stabilized dimerization and DNA binding of VpsT abrogate wild type localization and activity. VpsT does
not co-localize or interact with DGCs suggesting that c-di-GMP from these DGCs diffuses to VpsT, supporting a model in
which c-di-GMP acts at a distance. Furthermore, VpsT localization in a heterologous host, Escherichia coli, requires a
catalytically active DGC and is enhanced by the presence of VpsT-target sequences. Our data show that c-di-GMP signaling
can be executed through an additive cellular c-di-GMP level from multiple DGCs affecting the localization and activity of a c-
di-GMP receptor and furthers our understanding of the mechanisms of second messenger signaling.
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Introduction

Second messengers are small diffusible signaling molecules that

are produced or degraded in response to external stimuli and relay

information to a receptor to elicit a specific cellular response [1].

The cyclic nucleotide cyclic diguanylate (c-di-GMP) is a bacterial

second messenger that controls the transition between a free living

and biofilm lifestyle [2,3]. C-di-GMP is produced by diguanylate

cyclases (DGCs), containing GGDEF domains, and degraded by

phosphodiesterases (PDEs), containing EAL or HD-GYP domains.

Cellular c-di-GMP is sensed by receptors that interact with

downstream targets to affect cellular functions. C-di-GMP

signaling often involves numerous GGDEF, EAL or HD-GYP

domain containing proteins and receptors [4], and previous

reports suggest that the compartmentalization of c-di-GMP

signaling components could facilitate the activation of specific

cellular processes [3,5,6]. However, it is currently unclear whether

compartmentalization is required to mediate c-di-GMP signal

transduction in bacteria.

Recent advances in the identification of c-di-GMP receptors

have helped define the mechanisms by which c-di-GMP mediates

downstream processes. These receptors include riboswitches [7]

and proteins that contain various binding domains. PilZ domains

are known to bind c-di-GMP and proteins harboring these

domains modulate cellular processes such as motility through

protein-protein interactions with the flagellar motor complex [8–

10]. Proteins containing degenerate GGDEF or EAL domains,

which have lost their enzymatic activity, are also known to be c-di-

GMP receptor proteins. In Pseudomonas fluorescens, LapD binds c-di-

GMP through a degenerate EAL domain and modulates the cell

surface association of an adhesin through direct interactions with a

periplasmic protease [11–13]. The degenerate GGDEF domain

containing protein CdgG was shown to regulate biofilm formation

in Vibrio cholerae [14]. C-di-GMP can also regulate gene expression

by binding transcriptional regulators such as the Crp homolog Clp

[15] or FleQ [16]. Although the identities of many c-di-GMP

receptor proteins are known, the mechanisms of c-di-GMP-

mediated signal transduction and gene regulation are not fully

understood.

In V. cholerae, the bacterial pathogen that causes the disease

cholera, c-di-GMP regulates biofilm formation, motility and

virulence [17–19]. The V. cholerae genome contains 31 genes

encoding proteins with GGDEF domains, 11 genes encoding

proteins with EAL domains, 10 genes encoding proteins with both

GGDEF and EAL domains and 9 genes encoding proteins with

HD-GYP domains [14,20]. Recently, we characterized VpsT,

which is a key c-di-GMP receptor known to regulate biofilm

formation in V. cholerae [21]. Biofilm formation in V. cholerae

requires the biosynthesis of Vibrio polysaccharide (VPS) [22,23],

and VpsT activates vps expression through direct binding of the
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vpsL promoter [21,24]. VpsT is a novel member of the FixJ, LuxR

and CsgD family of transcriptional regulators that contains a c-di-

GMP binding motif and a 6th alpha helix at its N-terminal receiver

domain that stabilizes homodimerization [21]. These features

make VpsT unique compared to other response regulators and c-

di-GMP binding proteins.

In this study, we report that VpsT requires c-di-GMP binding

and subcellular localization to regulate gene expression. The wild-

type VpsT localization pattern is dependent on c-di-GMP binding,

c-di-GMP-stabilized dimerization, and the VpsT DNA binding

domain. We also show that VpsT does not co-localize or interact

with DGCs. Instead, multiple DGCs contribute additively to a

cellular c-di-GMP concentration, which affects the localization

and activity of the c-di-GMP receptor protein, VpsT.

Results/Discussion

VpsT Is Subcellularly Localized and Multiple DGCs
Contribute Additively to VpsT Localization

We hypothesized that the c-di-GMP receptor protein, VpsT, is

subcellularly localized, and this localization facilitates c-di-GMP

signal transduction. To determine whether VpsT is subcellularly

localized, we constructed an N-terminal tagged green fluorescent

protein (GFP)-VpsT fusion. Expression of gfp-vpsT recovered vpsL

expression in a DvpsT strain (Figure 1A). vpsL is the first gene in the

vps-II operon and VpsT directly binds to the upstream regulatory

region of this gene [21,22]. Expression of vpsL was similar between

strains expressing gfp-vpsT or vpsT alone indicating that our fusion

protein is functional. When observed by fluorescence microscopy,

GFP-VpsT formed a pattern of localization within the cell

(Figure 1B), while a strain expressing GFP exhibited homogenous

fluorescence throughout the cytoplasm. We confirmed that this

localization was not due to different cellular protein concentra-

tions, as levels of GFP-VpsT were similar to levels of GFP alone

(Figure S1). A census of more than 150 cells per treatment showed

that cells expressing GFP-VpsT contained more spots per cell

when compared to cells expressing GFP alone when quantified

using MicrobeTracker software (Figure 1C) [25]. GFP-VpsT

localization also exhibited a higher ratio of maximum to average

fluorescence intensity across the length of individual cells when

compared to cells expressing GFP alone (Figure S1). These results

indicate that GFP-VpsT is subcellularly localized.

The striking number of GGDEF, EAL and HD-GYP domain

containing proteins present in many bacteria is thought to

generate flexibility in signal transduction, allowing multiple

sensory inputs to be fed through a single diffusible signaling

molecule [4]. Since VpsT is a c-di-GMP binding protein and is

subcellularly localized, we wondered whether specific DGCs or

PDEs are important for this localization pattern. We therefore

measured expression of the vpsL promoter in wild-type V. cholerae

and 52 strains containing in-frame deletions of each gene in the V.

cholerae genome encoding proteins with GGDEF, EAL or GGDEF

and EAL domains. Of the strains examined, 5 DGC deletion

strains showed a 2-fold or greater decrease in expression of vpsL

(Figure 1D and S2), namely the previously characterized genes

encoding DGCs cdgA (VCA0074), cdgH (VC1067), cdgK (VC1104)

and cdgL (VC2285) [14,26,27], and a predicted DGC, VC1376,

which we name here, cdgM. Furthermore, c-di-GMP levels

decreased between 86% and 54% in each single DGC deletion

strain when compared to wild type (Figure 1E). These results show

that multiple DGCs are involved in vps regulation and thus

identified likely candidate DGCs important for VpsT localization.

We then observed VpsT localization in strains lacking each of

the 5 DGCs important for vpsL expression. VpsT localization was

not markedly altered in any strain containing a single DGC

deletion (Figure S1). We then reasoned that VpsT localization may

not be dependent on a single DGC, but instead, multiple DGCs

contribute additively to VpsT localization. Therefore, we created a

strain where all 5 DGCs are deleted in combination, designated

D5DGC. D5DGC exhibited a lower vpsL expression than any

single DGC mutant strain (Figure 1D). Moreover, c-di-GMP levels

were significantly decreased (17%) in the D5DGC strain compared

to wild type (Figure 1E). In the D5DGC strain, GFP-VpsT

localization was reduced and the number of spots per cell and ratio

of maximum to average fluorescence intensity were markedly

lower compared to wild type expressing the same fluorescent

fusion protein (Figure 1B, 1C and S1). This change in GFP-VpsT

localization was not due to different cellular protein concentra-

tions, as GFP-VpsT levels were similar to levels of GFP alone in

the D5DGC strain (Figure S1). These results indicate that no single

DGC is sufficient to cause VpsT mis-localization, and instead,

multiple DGCs additively impact the GFP-VpsT localization

pattern. The number of spots per cell in the D5DGC strain was

not completely diminished, and we speculate that a low level of c-

di-GMP is still present in the cell due to remaining DGCs, which

facilitate VpsT localization. Alternatively, a range of VpsT target

promoters that differ in their affinities for the active regulator

could cause this localization pattern. Above observations of VpsT

localization and activity suggest that VpsT function is dependent

on reaching a critical cellular c-di-GMP threshold. Thus we

wondered whether a single DGC could rescue vpsL expression in

the D5DGC strain. When cdgA was expressed on a plasmid in the

D5DGC mutant, vpsL expression was recovered in the D5DGC

strain when compared to the D5DGC mutant harboring the

vector alone (Figure S3). These results suggest that one DGC can

rescue a cellular level of c-di-GMP for the activation of vpsL

expression in the D5DGC strain.

In our survey of DGC and PDE mutants, we also observed

multiple PDEs to be negative regulators of vps expression (Figure

S2), consistent with previous work [26,28–30]. However, strains

Author Summary

C-di-GMP is a ubiquitous intracellular signaling molecule in
bacteria and controls diverse cellular processes including
biofilm formation, motility and virulence. The genomes of
many bacteria often contain numerous genes encoding
proteins predicted to produce and degrade c-di-GMP.
However, it is currently unclear how a bacterial cell
orchestrates multiple c-di-GMP signaling proteins to elicit
a specific cellular response. The microbial pathogen, Vibrio
cholerae, contains a multitude of c-di-GMP proteins and c-
di-GMP signaling is likely important for the bacterium to
cause the deadly diarrheal disease called cholera. In the
present study, we define the requirements for c-di-GMP
signal transduction in V. cholerae. We identify specific c-di-
GMP proteins that additively stimulate the subcellular
localization and activity of the c-di-GMP binding protein
and transcriptional regulator, VpsT. We further show that
c-di-GMP signaling does not require the interaction of c-di-
GMP signaling components. However, a common cellular
level of c-di-GMP contributes to VpsT localization and
activity. This is the first account of the subcellular
localization of a transcriptional regulator modulated by
c-di-GMP binding. Furthermore, this study establishes that
c-di-GMP signal transduction can act at a distance through
a common cellular level of c-di-GMP and defines how an
intracellular second messenger can regulate cellular
processes in bacteria.

A Mechanism of c-di-GMP Signaling in V. cholerae
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harboring deletions of three of these genes encoding PDEs, mbaA,

rocS and cdgC individually or in combination, exhibited no

significant alteration in GFP-VpsT localization pattern (Figure

S4). Therefore, an upper c-di-GMP concentration limit may exist,

after which, further VpsT localization is not observable. Alterna-

tively, the experimental system might be saturated, and no further

localization can be observed.

VpsT as a response regulator is not unique in its capacity to

subcellularly localize in response to specific stimuli or modifica-

tion. CsgD from Salmonella enterica was shown to form foci

associated with the membrane in a subpopulation of cells in

response to cell aging [31]. WspR from Pseudomonas aeruginosa was

shown to localize to foci in response to phosphorylation [32].

OmpR from Escherichia coli subcellularly localizes in response to the

presence and activity of its cognate histidine kinase, EnvZ [33].

Whereas typical response regulators, such as OmpR, are activated

by a single major cognate histidine kinase [34], VpsT localization

and activity is modulated in response to c-di-GMP produced by

multiple DGCs. These results are consistent in the context of

second messenger signaling, where multiple independent inputs

can be fed through a single diffusible signaling molecule to elicit a

specific cellular response [1].

VpsT, CdgA and CdgH Do Not Form a Complex
It is proposed that the subcellular compartmentalization of c-di-

GMP signaling components might allow c-di-GMP to act locally

on specific cellular processes such as motility or biofilm formation

[5,35]. C-di-GMP signaling proteins could exert their effects by

participating in complexes that include signal producers (DGC),

removers (PDE), receptors, and/or targets [3,6]. To determine if

co-localization occurs between DGCs activating VpsT and the c-

di-GMP receptor, VpsT, we analyzed their subcellular localiza-

tion. We chose CdgA and CdgH, two DGCs that affect vps

expression (Figure 1D) and have demonstrated DGC activity

(Shikuma and Yildiz, unpublished data) [14]. To observe the

subcellular localization of CdgA and CdgH we constructed C-

terminal tagged CdgA-GFP and CdgH-GFP fusions. Both cdgA-gfp

and cdgH-gfp were able to complement in-frame deletions of cdgA

and cdgH, respectively (Figure S5), indicating that our fusion

proteins are functional. When observed by fluorescence micros-

copy, CdgA-GFP and CdgH-GFP both appeared to localize to the

Figure 1. VpsT Localization is Dependent on Multiple Digua-
nylate Cyclases. (A) The expression of a chromosomal vpsL promoter-
lacZ fusion was measured in wild type (Wt) or DvpsT strains containing
pBAD vector alone, or pBAD containing vpsT or gfp-vpsT using b-
galactosidase assays. One representative experiment of three biological
replicates is shown. Error bars indicate standard deviations of eight
technical replicates. (B) Representative epifluorescence micrographs are
shown of the subcellular localization of GFP or GFP-VpsT fusion protein
in wild-type or D5DGC V. cholerae strains. Marker is 2 mm. (C) Single-cell
quantification of subcellular fluorescence localization. The number of
spots per cell is shown as a histogram for wild type or D5DGC strains
expressing GFP or GFP-VpsT. Data are acquired from at least 3
independent experiments and quantification was performed on at least
150 cells per treatment. (D) Expression of the vpsL promoter fused to a
lux reporter operon in wild-type V. cholerae (Wt) or strains containing
single in-frame deletions of the genes encoding DGCs cdgA, cdgH, cdgK,
cdgL, cdgM or a strain containing in-frame deletions all 5 DGCs (D5DGC).
Expression is reported in luminescence counts min21 ml21/OD600 nm.
One representative experiment of three biological replicates is shown.
Error bars indicate standard deviations of four technical replicates. (E)
Percent c-di-GMP levels of single in-frame deletion DGC mutants or the
D5DGC strain compared to wild type V. cholerae using high-
performance liquid chromatography-tandem mass spectrometry. Error
bars indicate standard deviations of three biological replicates.
doi:10.1371/journal.ppat.1002719.g001
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cell membrane (Figure 2A). Consistent with these results, both

CdgA and CdgH are predicted to contain 2 and 1 transmembrane

domains, respectively [36].

To corroborate these results, we performed cellular fraction-

ation and western blot analysis to identify the subcellular location

of VpsT, CdgA and CdgH. We therefore created strains

containing an N-terminal HA tagged vpsT, a C-terminal HA

tagged cdgA or a C-terminal HA tagged cdgH in their native

chromosomal loci. Strains containing each fusion protein exhib-

ited similar vpsL expression when compared to wild type (Figure

S5). Both CdgA-HA and CdgH-HA localized to the total

membrane fraction, as predicted (Figure 2B). In contrast, HA-

VpsT localized mostly to the cytoplasmic fraction, but a lower

level also consistently appeared in the total membrane fraction. To

determine whether VpsT localization is dependent on the

presence of specific DGCs or c-di-GMP levels, we performed a

cellular fractionation of wild-type and D5DGC strains and probed

for HA-VpsT levels. HA-VpsT localization was not different

between wild-type and D5DGC strains (Figure S6), suggesting that

the 5 DGCs or c-di-GMP levels are not important for the

localization of VpsT to specific cellular fractions.

Although VpsT resides mainly in a different subcellular region

of the cell when compared to CdgA or CdgH, it is possible that

transient interactions between these proteins contribute to

specificity in c-di-GMP signaling. To address whether VpsT can

interact with CdgA or CdgH directly, we performed a bacterial

two-hybrid analysis using a system suited to identify protein-

protein interactions, even under the condition where one or both

proteins are membrane bound [37]. Using bacterial two-hybrid

vectors, VpsT, CdgA and CdgH were fused to the T18 or T25

complementary fragments of Bordetella pertussis adenylate cyclase

(CyaA). Interaction between co-expressed proteins of interest in E.

coli reconstitute a functional CyaA, leading to cAMP production

[38]. As expected, a signal indicative of interaction of VpsT with

itself was observed by colorimetric blue production on LB agar

containing bromo-chloro-indolyl-galactopyranoside (X-gal), as

well as quantitatively using b-galactosidase assays (Figure 2C

and S7). Interaction of CdgA with itself and CdgH with itself was

also observed (Figure 2C and S7). These results were expected as

DGCs from other bacteria were shown previously to catalyze c-di-

GMP production as dimers [39,40]. Interestingly, E. coli contain-

ing CdgA and CdgH on complementary plasmids exhibited

increased b-galactosidase production, suggesting that these DGCs

might interact, however the physiological relevance of this

observation is unclear at this point. Importantly, strains expressing

both VpsT and CdgA or VpsT and CdgH did not exhibit

increased cAMP production, even when the reciprocal exchange

of fusion domains was performed (Figure 2C and S7). These

results suggest that VpsT does not interact directly with CdgA or

CdgH.

VpsT Requires c-di-GMP Binding for Subcellular
Localization and Activity

We next wondered whether VpsT localization is dependent on

specific domains and/or interfaces important for VpsT function.

Mutations in residues required for c-di-GMP binding (VpsTR134A)

or c-di-GMP-stabilized dimerization (VpsTI141E) were unable to

complement a DvpsT mutation (Figure 3A), consistent with our

previous findings [21]. When observed by fluorescence microsco-

py, both GFP-VpsTR134A and GFP-VpsTI141E mutants exhibited a

homogenous fluorescence throughout the cytoplasm, possessed

almost no spots per cell, and showed a significantly lower

maximum to average fluorescence intensity ratio when compared

to strains expressing a wild-type GFP-VpsT fusion (Figure 3B, 3C

Figure 2. VpsT Does Not Interact with CdgA or CdgH Directly.
(A) Representative epifluorescence micrographs of wild-type V. cholerae
expressing GFP-VpsT, CdgA-GFP or CdgH-GFP fusion proteins. Marker is
2 mm. (B) Subcellular fractionation of V. cholerae strains containing vpsT,
cdgA or cdgH tagged with an HA epitope in their native chromosomal
loci. Western immunoblot was performed on cellular fractions
representing whole cell (WC), cytoplasmic (C) and total membrane
(M) fractions. HA-tagged proteins were detected using a polyclonal
anti-HA antibody. gfp was constitutively expressed from a chromosomal
locus. GFP was detected using monoclonal anti-GFP antibody and is
used as a cytoplasmic fraction control. OmpU was detected using a
polyclonal anti-OmpU antibody and is used as a total membrane
fraction control. One representative experiment of three biological
replicates is shown. (C) Bacterial two-hybrid analysis of VpsT, CdgA and
CdgH. Reconstitution of CyaA, indicative of protein-protein interaction,
was detected by b-galactosidase activity on LB plates containing
ampicillin (100 mg/ml), kanamycin (50 mg/ml), IPTG (500 mM) and X-gal
(40 mg/ml). Plates were incubated at 30uC for 48 h.
doi:10.1371/journal.ppat.1002719.g002
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and S8). VpsT contains a C-terminal helix-turn-helix (HTH) DNA

binding domain and H193 of VpsT aligned with other histidine

residues in the LuxR/FixJ superfamily shown previously to be

required for DNA binding (Figure S8) [41,42]. A strain harboring

GFP-VpsTH193A was unable to induce vps expression (Figure 3A)

and appeared to localize to foci that were more dispersed

throughout the cell when compared to wild type GFP-VpsT

(Figure 3B). The number of spots per cell and the ratio of

maximum to average fluorescence intensity of the GFP-

VpsTH193A expressing strain were decreased compared to wild-

type GFP-VpsT (Figure 3C and S8). Therefore, VpsT localization,

albeit different than that of the wild-type localization pattern, can

still occur in the absence of DNA binding. The subcellular

localization patterns were not due to differential protein levels, as

cellular concentrations of wild-type GFP-VpsT were similar to

GFP-VpsT with R134A, I141E or H193A point mutations (Figure

S8). Taken together, our results indicate that the wild-type VpsT

localization pattern is dependent on c-di-GMP binding and DNA

binding. These results suggest that VpsT forms oligomers on DNA

binding sites distributed on the V. cholerae chromosomes and the

localization pattern is due to binding of VpsT to its target

sequences on the genome.

VpsT Localization in a Heterologous Host Depends on
Cellular c-di-GMP Levels

To determine whether there are other factors responsible for

VpsT localization in V. cholerae, we expressed GFP-VpsT in E. coli.

GFP-VpsT was surprisingly homogenous throughout the cyto-

plasm when expressed in E. coli in contrast to the same construct

expressed in V. cholerae (data not shown), suggesting that the

localization of VpsT requires cellular components or a cellular

environment provided by the V. cholerae cell. We then hypothesized

that the localization of VpsT might either require increased levels

of c-di-GMP or specifically require a DGC important for biofilm

formation in V. cholerae. A compatible plasmid that expresses cdgA

from an IPTG inducible promoter was therefore introduced into

E. coli containing GFP-VpsT. Strains expressing CdgA showed a

marked decrease in motility when compared to strains containing

vector alone (Figure 4C), indicating that CdgA is functional as a

DGC in E. coli. When observed by fluorescence microscopy, GFP-

VpsT formed foci in the presence of CdgA in E. coli (Figure 4A).

This strain exhibited an increase in the number of spots per cell

and a significantly increased ratio of maximum to average

fluorescence intensity compared to a strain with GFP-VpsT and

an empty compatible plasmid (Figure 4A, 4B and S9). To

determine whether VpsT localization is dependent on the catalytic

activity of CdgA, we also expressed CdgA containing a point

mutation converting the conserved GGDEF motif to GADEF

(cdgAG287A) in cells also expressing GFP or GFP-VpsT. Expression

of CdgAG287A in E. coli was not able to recover VpsT localization,

in contrast to wild type CdgA (Figure 4A, 4B and S9).

Furthermore, the motility zone diameter of a strain expressing

CdgAG287A was similar to that of a strain with vector alone

(Figure 4C). As expected, strains expressing GFP alone with the

same compatible plasmids showed no localization pattern

(Figure 4A, 4B and S9). These results suggest that the catalytic

activity of CdgA as a DGC is required for VpsT localization.

Figure 3. The Subcellular Localization of VpsT is Dependent on
c-di-GMP Binding and DNA Binding Residues. (A) The expression
of a chromosomal vpsL promoter-lacZ fusion was measured in wild type
(Wt) or DvpsT strains containing pBAD vector alone, or pBAD containing
gfp fused to wild type and mutated versions of vpsT using b-
galactosidase assays. A R134A mutation disrupts c-di-GMP binding
and an I141E mutation abolishes c-di-GMP-dependent dimerization.
H193A lies in the DNA binding domain of VpsT. (B) Subcellular
localization of GFP, GFP-VpsT or GFP-VpsT containing the indicated
point mutations, expressed in V. cholerae DvpsT. Representative
epifluorescence micrographs are shown. Marker is 2 mm. (C) Single-
cell quantification of subcellular fluorescence localization. The number

of spots per cell is shown as a histogram for DvpsT strains expressing
GFP, GFP-VpsT or GFP-VpsT containing the indicated point mutations.
Data are acquired from at least 3 independent experiments and
quantification was performed on at least 150 cells per treatment.
doi:10.1371/journal.ppat.1002719.g003
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We show above that the wild-type VpsT localization in V.

cholerae is dependent on an intact DNA binding domain. To test

whether VpsT requires DNA binding in E. coli, we expressed GFP-

VpsT with a plasmid harboring the vpsL promoter (vpsLp).

However, this strain did not exhibit a VpsT localization pattern

(Figure 4A, 4B and S9). To determine whether VpsT requires both

CdgA and a native DNA binding region, we expressed GFP-VpsT

in cells containing a plasmid with both cdgA and the vpsL promoter.

In this strain, GFP-VpsT appeared to form a more discrete

pattern, exhibited an increased number of spots per cell, and a

higher maximum to average intensity ratio when compared to

GFP-VpsT cells co-expressing only CdgA (Figure 4A, 4B and S9).

E. coli co-expressing GFP alone with the same compatible plasmids

showed no localization pattern (Figure 4A, 4B and S9). To further

determine whether GFP-VpsT activity requires c-di-GMP in E.

coli, we quantified the expression of vpsL in the presence and

absence of CdgA. Only E. coli co-expressing GFP-VpsT and CdgA

activated vpsL expression while a strain expressing only GFP-VpsT

Figure 4. VpsT Localization in a Heterologous Host Depends on c-di-GMP. (A) Representative epifluorescence micrographs of E. coli strains
expressing GFP or GFP-VpsT and containing a pKNT25 compatible plasmid or pKNT25 harboring cdgA, cdgAG287A, vpsL promoter (vpsLp), cdgA and
vpsLp or adrA from S. typhimurium. Marker is 2 mm. (B) Single-cell quantification of subcellular fluorescence localization. The number of spots per cell
is shown as a histogram for E. coli strains containing the indicated plasmids. Data are acquired from at least 3 independent experiments and
quantification was performed on at least 150 cells per treatment. (C) Representative motility phenotypes of E. coli expressing the indicated plasmids
grown on soft agar plates containing kanamycin and 10 mM IPTG at 37uC for 12 h.
doi:10.1371/journal.ppat.1002719.g004
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did not show vpsL activation (Figure 5). These results suggest that

VpsT localization is enhanced by DNA binding and requires

elevated c-di-GMP levels to activate gene expression.

We then wondered whether CdgA, as a V. cholerae DGC, is

required for VpsT localization or if a heterologous DGC could

induce VpsT to localize. We therefore expressed adrA, a previously

characterized gene encoding a DGC from Salmonella typhimurium

[43], in strains also containing GFP or GFP-VpsT. Strains

expressing AdrA showed a marked decrease in motility (Figure 4C),

indicating that AdrA is functional in E. coli. In E. coli, AdrA caused

GFP-VpsT to localize to foci, similar to foci induced by CdgA

(Figure 4A, 4B and S9). As expected, co-expression of GFP and

AdrA showed no localization. These results indicate that VpsT

localization depends on the cellular level of c-di-GMP, and not on

the presence of a specific V. cholerae DGC. Altogether, our results

suggest that a direct interaction is not required for c-di-GMP

signal transduction between DGCs and c-di-GMP receptors.

Recently, the subcellular localization of other c-di-GMP

receptors was found to be dependent on c-di-GMP binding. C-

di-GMP controls the subcellular localization of the PilZ domain

containing c-di-GMP receptor YcgR in E. coli, where interaction

of a YcgR-c-di-GMP complex with the flagellar motor leads to

decreased motility and counter-clockwise rotational bias [8–10].

Moreover, multiple DGCs were shown to contribute additively to

these motility phenotypes [8]. In Caulobacter crescentus, c-di-GMP

binding to a conserved I-site of PopA mediates the sequestration of

this protein to the cell pole, where PopA facilitates cell cycle

progression [44]. No single deletion of a GGDEF or EAL domain

containing protein was sufficient to alter PopA localization [44].

However, the combined activity of two DGCs, PleD and DgcB,

was shown to alter cell cycle dynamics [45]. The subcellular

localization of YcgR and PopA appears to be modulated by the

additive activity of multiple DGCs in combination, similar to our

findings with VpsT.

This study is the first account of the subcellular localization of a

c-di-GMP binding transcriptional regulator. Results presented

here suggest that adequate levels of c-di-GMP contributed by

multiple DGCs modulate VpsT activity and not a physical

interaction or compartmentalization of c-di-GMP signaling

components (Figure 6). This study identifies the requirements for

signal transduction, localization and activity of a c-di-GMP

receptor protein and furthers our understanding of the mecha-

nisms of second messenger signaling.

Materials and Methods

Bacterial Strains, Plasmids and Culture Conditions
The bacterial strains and plasmids used in this study are listed in

Table S1. In-frame deletion, chromosomal fusion and point

mutation strains were generated according to previously published

protocols [46]. All V. cholerae and E. coli strains were grown

aerobically, at 30uC and 37uC, respectively, unless otherwise

noted. Growth medium consisted of LB media (1% Tryptone,

0.5% Yeast Extract, 1% NaCl), pH 7.5. LB-agar and soft agar

plates contained 1.5% and 0.3% (wt/vol) granulated agar (Difco),

respectively. Concentrations of antibiotics used, where appropri-

ate, were as follows: ampicillin (100 mg/ml), rifampicin (100 mg/

ml), chloramphenicol (E. coli 20 mg/ml, V. cholerae 5 mg/ml),

kanamycin (50 mg/ml) and gentamicin (30 mg/ml).

Recombinant DNA Techniques
All strains were verified by PCR. Plasmid sequences were

verified by DNA sequencing by Sequetech Corporation (Mountain

View, CA). Primers used in the present study were purchased from

Bioneer Corporation (Alameda, CA) and sequences are available

upon request.

Fluorescence Microscopy and Quantification
V. cholerae cells harboring the indicated plasmid were grown

overnight (15 to 17 h) aerobically in LB medium supplemented

with ampicillin. Cells were then diluted 1:1000 in fresh LB

medium and grown aerobically for 2 h, at which point arabinose

was added at a final concentration of 0.05% and cells were

Figure 5. Co-expression of VpsT and CdgA Activates vpsL
Expression in E. coli. Expression of the vpsL promoter fused to a lux
reporter operon in E. coli expressing GFP or GFP-VpsT and harboring
pKNT vector alone or pKNT containing cdgA. Expression is reported in
luminescence counts min21 ml21/OD600 nm. One representative exper-
iment of three biological replicates is shown. Error bars indicate
standard deviations of four technical replicates.
doi:10.1371/journal.ppat.1002719.g005

Figure 6. Model of c-di-GMP Signal Transduction in V. cholerae.
Cellular c-di-GMP levels modulate VpsT oligomerization and subcellular
localization. The additive effect of 5 membrane-bound DGCs regulates
cellular c-di-GMP levels modulating VpsT oligomerization state,
localization and DNA binding. Cytoplasmic membrane (CM).
doi:10.1371/journal.ppat.1002719.g006
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harvested at exponential phase 2 h later (optical density at 600 nm

(OD600 nm) of 0.2 to 0.4). E. coli cells containing the indicated

plasmid were grown overnight in LB medium containing 2%

glucose, kanamycin and ampicillin. Cells were then diluted 1:50 in

fresh LB medium containing 0.1% arabinose and 100 mM IPTG

and cells were harvested 3 h later. Cell culture was spotted onto

1% agarose pads prepared with phosphate-buffered saline (PBS),

pH 7.4. Images were acquired using a Zeiss Axiovert 200

microscope equipped with a 636 Plan-Apochromat objective

(numerical aperture, 1.4), and were recorded with a Cool-Snap

HQ2 camera (Photometrics). Images were minimally processed

using Adobe Photoshop 11.0 and ImageJNIH software. Microbe-

Tracker [25] was employed, using the alg4ecoli parameter to

identify cell outlines, the spotFinderZ tool to determine the

number of spots per cell and the intprofile tool to determine the

maximum and average fluorescence intensities of single cells. Data

were acquired from at least 3 independent experiments and

quantification was performed on at least 150 cells per treatment.

All statistics were calculated using Graphpad Prism 4.

Cellular Fractionation and Immunoblot
Overnight cultures were diluted 1:200, grown to an OD600 nm of

0.3 to 0.4, and diluted again 1:200. Cells were harvested at an

OD600 nm of 0.3 to 0.4 by centrifugation (10,0006 g) and

fractionation was carried out as described previously [47]. Protein

levels were quantified using a bicinchoninic acid (BCA) kit

(Thermo Fisher Scientific Inc.) and normalized between fractions.

Proteins were separated on a 12% SDS-polyacrylamide gel and

electroblotted onto a nitrocellulose membrane with a Mini Trans-

Blot Cell (Bio-Rad) as described previously [47]. Rabbit polyclonal

antiserum against V. cholerae OmpU (provided by K. Klose) was

used at a dilution of 1:100,000. Mouse monoclonal antibody

against GFP (Santa Cruz Biotechnology) and rabbit polyclonal

antibody against the HA epitope (Santa Cruz Biotechnology) were

used according to the manufacturer’s instructions. Horseradish

peroxidase-conjugated goat anti-rabbit secondary antibody (Santa

Cruz Biotechnology) or goat anti-mouse secondary antibody

(Santa Cruz Biotechnology) was used according to the manufac-

turer’s instructions. Immunoblot analyses were conducted with at

least three biological replicates.

b-galactosidase Assays
b-galactosidase assays were performed and Miller units calcu-

lated as described previously [48]. The assays were repeated with

three biological replicates and six technical replicates.

Luminescence Assays
V. cholerae or E. coli cells harboring the indicated plasmid were

grown overnight (15 to 17 h) aerobically in LB medium

supplemented with the appropriate antibiotics. Cells were then

diluted 1:1000 in fresh LB medium and harvested at exponential

phase at an OD600 nm of 0.3 to 0.4. E. coli were grown in the

presence of 0.1% arabinose and 100 mM IPTG for protein

expression. Luminescence was measured using a Victor3 Multi-

label Counter (PerkinElmer) and Lux expression is reported as

counts min21 ml21/OD600 nm. Assays were repeated with at least

three biological replicates and four technical replicates.

Quantification of Cellular c-di-GMP Levels
Cellular c-di-GMP levels were measured in the indicated strains

grown to exponential phase in LB medium. Protein concentration

was determined using a BCA kit according to the manufacturer’s

instructions. C-di-GMP extraction, analysis by high-performance

liquid chromatography-tandem mass spectrometry (HPLC-MS/

MS) and c-di-GMP standard curve generation were carried out as

described previously [26]. C-di-GMP quantification was per-

formed with at least three biological replicates.

Bacterial Two-hybrid Assay
Bacterial two-hybrid assays were performed as described

previously [38]. Translational fusions were created with proteins

of interest and T18 or T25 fragments of B. pertussis adenylate

cyclase (CyaA). All constructs were confirmed by DNA sequenc-

ing. Plasmids pKT25-zip and pUT18C-zip, each containing

translational fusions to the leucine zipper of GCN4, were used

as positive controls. Production of cAMP by reconstituted CyaA

was observed in the E. coli strain BTH101, lacking a native cyaA

gene. Protein-protein interactions were observed by growing cells

for 48 to 72 h at 30uC on LB agar containing ampicillin (100 mg/

ml), kanamycin (50 mg/ml), X-gal (40 mg/ml) and IPTG (10 to

500 mM), or quantified by performing b-galactosidase assays with

cells grown overnight at 30uC in LB medium containing ampicillin

(100 mg/ml), kanamycin (50 mg/ml) and IPTG (10 mM).

Accession Numbers
GenBank accession numbers are as follows: VpsT,

NP_233336.1; VpsL, NP_230581.1; CdgA, NP_232475.1; CdgH,

NP_230712.1; CdgK, NP_230749.1; CdgL, NP_231916.1;

CdgM, NP_231020.1; MbaA, NP_230352.1; RocS,

NP_230302.1; CdgC, NP_233171.1.

Supporting Information

Figure S1 Localization of GFP-VpsT in strains lackingc
genes encoding DGCs important for vps expression.
Localization of GFP-VpsT in wild-type V. cholerae (Wt), strains with

in-frame deletions of the genes encoding DGCs cdgA, cdgH, cdgK,

cdgL, cdgM or a strain where all 5 DGCs are deleted in

combination (D5DGC). Wild type expressing GFP is included as

a fluorescence localization control. (A) Representative epifluores-

cence micrographs of the indicated strains are shown. Marker is

2 mm. (B) The number of spots per cell is shown as a histogram for

the strains indicated. Data are acquired from at least 3

independent experiments and quantification was performed on

at least 150 cells per treatment. (C) The ratio of maximum to

average fluorescence intensity across the length of individual cells

is shown as box plots for the indicated strains. Upper quartile,

median and lower quartiles are indicated by top, middle and

bottom lines of boxes, respectively, largest and smallest observa-

tions are indicated by lines above and below boxes, circles are

outliers. Data are acquired from at least 3 independent

experiments and quantification was performed on at least 150

cells per treatment. *, p,0.0001 using a student’s t-test. (D)

Protein levels of GFP-VpsT relative to GFP alone in wild type and

D5DGC. Strains were grown in the same conditions as those used

for fluorescent subcellular localization as described in the materials

and methods. Equal amounts of protein from each sample were

separated on a SDS-polyacrylamide gel, electroblotted onto a

nitrocellulose membrane and detected using a monoclonal

antibody against GFP (Santa Cruz Biotechnology) and an HRP-

conjugated secondary antibody. Band intensities were quantified

using ImageQuant software (Molecular Dynamics). Data indicate

the average of at least three biological replicates and error bars

indicate standard error.

(TIF)

Figure S2 Census of vps expression in strains with
deletions in each gene encoding a GGDEF and/or EAL
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domain containing protein in V. cholerae. Expression of

vpsL in 52 strains containing in-frame deletions of each gene in V.

cholerae genome encoding proteins containing GGDEF (A), EAL

(B) or GGDEF and EAL (C) domains. Expression of vpsL was

quantified using a vpsLp-lux operon transcriptional fusion on a

plasmid in wild-type V. cholerae (Wt) or strains containing in-frame

deletions of each gene indicated. Cells were grown to exponential

phase (OD600 nm of 0.3 to 0.4) in LB media containing

chloramphenicol (5 mg/ml). Expression is reported in lumines-

cence counts min21 ml21/OD600 nm. Error bars indicate standard

deviations of four technical replicates. One representative

experiment is shown of at least three biological replicates.

(TIF)

Figure S3 A single DGC can rescue vpsL expression in
the D5DGC strain. Expression of a chromosomal vpsL

promoter-lacZ fusion was measured in wild type (Wt) or D5DGC

V. cholerae strains containing pBAD vector alone, or pBAD

containing cdgA using b-galactosidase assays. One representative

experiment of three biological replicates is shown. Error bars

indicate standard deviations of eight technical replicates.

(TIF)

Figure S4 Localization of GFP-VpsT in strains lacking
genes encoding PDEs important for vps expression.
Localization of GFP-VpsT in wild-type V. cholerae (Wt), in-frame

deletion strains of the genes encoding PDEs cdgC, mbaA, rocS, or a

strain where all 3 PDEs are deleted in combination (D3PDE). Wild

type expressing GFP is included as a fluorescence localization

control. (A) Representative epifluorescence micrographs are

shown. Marker is 2 mm. (B) The number of spots per cell is

shown as a histogram for the strains indicated. Data are acquired

from at least 3 independent experiments and quantification was

performed on at least 150 cells per treatment. (C) The ratio of

maximum to average fluorescence intensity across the length of

individual cells is shown as box plots for the indicated strains. Data

are acquired from at least 3 independent experiments and

quantification was performed on at least 150 cells per treatment.

(TIF)

Figure S5 Complementation with GFP-fusion or HA-
epitope tagged proteins. Relative expression, compared to

wild type (Wt), of a chromosomal vpsL promoter fusion to lacZ in

(A) wild type carrying pBAD vector or DcdgA strains carrying

pBAD vector or pBAD containing a cdgA-gfp fusion, or (B) wild

type carrying pBAD vector or DcdgH strains carrying pBAD vector

or pBAD containing a cdgH-gfp fusion. Cells were grown to

exponential phase (OD600 nm of 0.3 to 0.4) in LB broth containing

ampicillin (100 mg/ml) and arabinose (0.01 to 0.05%). Error bars

indicate standard deviation of at least 6 technical replicates. The

results shown are one representative experiment of three biological

replicates. Expression of a vpsL promoter fusion to a lux operon in

(C) wild type, DvpsT or chromosomal HA-vpsT strains, (D) wild

type, DcdgA or chromosomal cdgA-HA strains or (E) wild type,

DcdgH or chromosomal cdgH-HA strains. Error bars indicate

standard deviation of at least 4 technical replicates. The results

shown are one representative experiment of three biological

replicates.

(TIF)

Figure S6 The cellular localization of VpsT is not
altered in the D5DGC Strain. Subcellular fractionation of V.

cholerae wild type (Wt) or D5DGC strains containing vpsT tagged

with an HA epitope in the native vpsT locus. Western immunoblot

was performed on cellular fractions representing whole cell (WC),

cytoplasmic (C) and total membrane (M) fractions. HA-VpsT was

detected using a polyclonal anti-HA antibody. gfp was constitu-

tively expressed from a chromosomal locus. GFP was detected

using monoclonal anti-GFP antibody and is used as a cytoplasmic

fraction control. OmpU was detected using a polyclonal anti-

OmpU antibody and is used as a total membrane fraction control.

One representative experiment of three biological replicates is

shown.

(TIF)

Figure S7 VpsT does not interact directly with CdgA or
CdgH. vpsT was cloned into vectors pUT18C or pKT25 creating

plasmids expressing full length VpsT, tagged at its N-terminus with

T18 or T25 fragments of B. pertussis adenylate cyclase (cyaA). cdgA

or cdgH was cloned into vectors pUT18 or pKNT25, creating

proteins tagged at their C-termini with T18 or T25. Empty vectors

or those containing fusion proteins were co-transformed into E. coli

strain BTH101. Quantification of bacterial two-hybrid interac-

tions was performed by b-galactosidase assays on cells containing

the indicated plasmids grown overnight at 30uC in LB broth

containing ampicillin (100 mg/ml), kanamycin (50 mg/ml) and

IPTG (10 mM). pKT25-zip and pUT18C-zip contain genes

encoding the GCN4 leucine zipper as a positive protein-protein

interaction control.

(TIF)

Figure S8 Localization of GFP-VpsT point mutants. (A)

Single-cell quantification of GFP-VpsT subcellular localization.

The ratio of maximum to average fluorescence intensity across the

length of individual cells is shown as box plots for DvpsT strains

expressing GFP, GFP-VpsT or GFP-VpsT containing the

indicated point mutations. Data are acquired from at least 3

independent experiments and quantification was performed on at

least 150 cells per treatment. *, p,0.0001 using a student’s t-test.

(B) Protein levels of wild type and mutant GFP-VpsT fusion

proteins relative to GFP alone. Strains were grown in the same

conditions as those used for fluorescent subcellular localization as

described in the materials and methods. Equal amounts of protein

from each sample were separated on a SDS-polyacrylamide gel,

electroblotted onto a nitrocellulose membrane and detected using

a monoclonal antibody against GFP (Santa Cruz Biotechnology)

and an HRP-conjugated secondary antibody. Band intensities

were quantified using ImageQuant software (Molecular Dynam-

ics). Data indicate the average of at least three biological replicates

and error bars indicate standard error. (C) VpsT helix-turn-helix

sequence alignment. Sequence alignment, using ClustalW, of the

VpsT helix-turn-helix region with other members of the LuxR/

FixJ superfamily of transcription factors. Protein sequences used to

generate the alignment are as follows: Vibrio cholerae O1 El Tor

N16961 VpsT (NP_233336), Vibrio fischeri MJ11 LuxR

(YP_002158591), Escherichia coli O157:H7 NarL (NP_287469),

Sinorhizobium meliloti 1021 FixJ (NP_435915), Bacillus subtilis subsp.

subtilis str. 168 DegU (NP_391429). Numbers to the left of each

protein name correspond to the starting amino acid number of

each protein. Arrow indicates residue H193 of VpsT.

(TIF)

Figure S9 Subcellular localization of VpsT expressed in
E. coli. The ratio of maximum to average fluorescence intensity

across the length of individual cells is shown as box plots for strains

expressing GFP (open box) or GFP-VpsT (shaded box) and

containing pKNT25 or pKNT25 harboring cdgA, cdgAG287A, the

vpsL promoter (vpsLp), cdgA and vpsLp or adrA. Data are acquired

from at least 3 independent experiments and quantification was

performed on at least 150 cells per treatment. *, p,0.0001 using a

student’s t-test.

(TIF)
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