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Purpose: Idiopathic normal pressure hydrocephalus (iNPH) is known as a treatable form
of dementia. Network analysis is emerging as a useful method to study neurological
disorder diseases. No study has examined changes of structural brain networks of iNPH
patients. We aimed to investigate alterations in the gray matter (GM) structural network
of iNPH patients compared with normal elderly volunteers.

Materials and Methods: Structural networks were reconstructed using covariance
between regional GM volumes extracted from three-dimensional T1-weighted images
of 29 possible iNPH patients and 30 demographically similar normal-control (NC)
participants and compared with each other.

Results: Global network modularity was significantly larger in the iNPH network
(P < 0.05). Global network measures were not significantly different between the
two networks (P > 0.05). Regional network analysis demonstrated eight nodes with
significantly decreased betweenness located in the bilateral frontal, right temporal, right
insula and right posterior cingulate regions, whereas only the left anterior cingulate was
detected with significantly larger betweenness. The hubs of the iNPH network were
mostly located in temporal areas and the limbic lobe, those of the NC network were
mainly located in frontal areas.

Conclusions: Network analysis was a promising method to study iNPH. Increased
network modularity of the iNPH group was detected here, and modularity analysis should
be paid much attention to explore the biomarker to select shunting-responsive patients.

Keywords: normal pressure hydrocephalus, structural networks, gray matter, network modularity, magnetic
resonance imaging

INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a chronic communicating hydrocephalus
with a characteristic triad of gait disturbance, dementia and incontinence. First described by Hakim
and Adams in 1965 (Adams et al., 1965), it is known as a treatable form of dementia as symptoms
could relieve somewhat after extrathecal cerebrospinal fluid (CSF) shunting. The diagnosis of iNPH
is made on the basis of clinical symptoms, brain imaging revealing ventricular enlargement and data
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from other invasive methods such as lumbar puncture and
external lumbar drainage according to the International iNPH
Guidelines (Relkin et al., 2005). A number of neuroimaging
methods have been used to explore the structural and functional
changes of iNPH patients, and to search for predictive
biomarkers for the outcome of shunting (Børgesen and Gjerris,
1982; Tarnaris et al., 2009; Lenfeldt et al., 2011). However, little
is known about the pathogenesis and there is still lack of effective
methods to select potential responsive patients.

In recent years, the graph theory was used to examine brain
structural or functional network organization. The human brain
is a complex and interacting network with nontrivial topological
properties (Sporns et al., 2004; Eguíluz et al., 2005; Stam et al.,
2007). The characterization of the underlying architectures of
such a network is an important issue in neuroscience (He
et al., 2007). Many chronic brain disorders with cognitive,
emotional, perceptual, and motor symptoms are associated with
abnormalities in the brain network organization (Bullmore and
Sporns, 2012). Previous studies have demonstrated changes
in neuronal connectivity between different brain regions in
several diseases associated with cognitive impairment, such as
Alzheimer’s disease (Stam et al., 2007) and multiple sclerosis
(He et al., 2009). This method provides a new insight into
the mechanisms of neuropsychiatric disorders and helps us
to find new imaging biomarkers to diagnose and monitor
neurological diseases. Knowing that structural network provides
the anatomical frame within which functional interactions took
place and shapes the functional network. Indeed, alterations in
default mode network connectivity of iNPH patients have been
detected by using resting-state functional MRI (Khoo et al.,
2016). Hence, a hypothesis was that abnormalities exist in the
brain structural network of iNPH patients.

The present study aimed to use covariance between regional
gray matter (GM) volumes on the basis of structural MRI data to
construct a putative structural network of iNPH patients’ group.
We then compare the structure network of the iNPH group
with a normal-control (NC) group to investigate if there are any
abnormalities in regional or global network measures.

MATERIALS AND METHODS

Subjects
Between October 2013 and September 2016, 33 patients (age:
65.5 ± 9 years; range: 56–82 years) fulfilled the diagnosis of
probable iNPH according to the International iNPH Guidelines
(Relkin et al., 2005). They presented with dilated ventricles
on brain images with an Evans’ Index being larger than 0.3,
and had at least two of the triad of symptoms, namely gait
disturbance, dementia, or urinary incontinence. The median
intracranial pressure of the iNPH group was 110.0 mmH2O
(range: 88–150 mmH2O; interquartile range: 21.5 mmH2O).

A total of 33 age- and gender-matched volunteers (the
normal control or NC group; age: 62.6 ± 9.1 years; range:
54–81 years) were recruited and received MRI scanning
that was the same as that performed for the iNPH group.
All the control subjects were selected from a database
that included healthy adults who attended screening in the

hospital from January 2015 to June 2016. None of them had
any evidence of focal brain lesions on routine MR images
except for age-related brain atrophy and hyperintensities on
T2-weighted images, and presented with a normal physical
and neurological profile with no history of psychiatric
disorders.

Fifteen iNPH patients and 20 controls were included in our
earlier work that dealt with the changes of CSF flow though
aqueduct (Yin et al., 2017). In contrast in this manuscript, we
report the changes of the structural network. Eligible subjects
were fully informed about the study and signed a consent
form. This study was carried out in accordance with the
recommendations of ethics committee of Huashan Hospital with

TABLE 1 | List of anatomical descriptions of node used in the network.

Number of nodes Anatomical description
(Left/Right)

1/2 Precentral
3/4 Superior frontal gyrus, dorsolateral
5/6 Superior frontal gyrus, orbital part
7/8 Middle frontal

9/10 Middle frontal gyrus, orbital part
11/12 Inferior frontal, opercular part
13/14 Inferior frontal gyrus, triangular part
15/16 Inferior frontal gyrus, orbital part
17/18 Rolandic operculum
19/20 Supplementary motor area
21/22 Olfactory cortex
23/24 Superior frontal gyrus, medial
25/26 Superior frontal gyrus, medial orbital
27/28 Gyrus rectus
29/30 Insula
31/32 Anterior cingulum
33/34 Middle cingulum
35/36 Posterior cingulum
37/38 Hippocampus
39/40 Parahippocampal gyrus
41/42 Amygdala
43/44 Calcarine
45/46 Cuneus
47/48 Lingual gyrus
49/50 Superior occipital
51/52 Middle occipital
53/54 Inferior occipital
55/56 Fusiform
57/58 Postcentral
59/60 Superior parietal
61/62 Inferior parietal
63/64 Supramarginal
65/66 Angular
67/68 Precuneus
69/70 Paracentral lobule
71/72 Caudate
73/74 Lenticular nucleus, putamen
75/76 Lenticular nucleus, pallidum
77/78 Thalamus
79/80 Heschl gyrus
81/82 Superior temporal gyrus
83/84 Temporal pole: superior temporal gyrus
85/86 Middle temporal gyrus
87/88 Temporal pole: middle temporal gyrus
89/90 Inferior temporal gyrus

Odd number represents the anatomical region located in the left cerebral
hemisphere, and the even number represents that in the right hemisphere.
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written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the ethics committee of
Huashan Hospital of Fudan University.

MRI Data Acquisition
All the subjects underwent MR scanning in a 3 Tesla MR
unit (Magnetom Verio System; Siemens, Erlangen, Germany).
The sagittal three-dimensional T1-weighted images were
obtained using the magnetization-prepared rapid acquisition
gradient-echo (MPRAGE) sequence, which covered the whole
head. The sequence parameters were as follows: repetition time,
2,300 ms; echo time, 2.98 ms; flip angle, 9◦; slice thickness,
1 mm; field of view, 256 × 256 mm; matrix, 256 × 256; pixel
size, 1 × 1 mm.

Preprocessing of MRI Data
Image preprocessing was performed using the VBM8 toolbox
implemented within Statistical Parametric Mapping 8 (SPM8;
Wellcome Department of Cognitive Neurology, London,
United Kingdom). All MRI data were checked for artifacts

and movement and aligned with the anterior commissure-
posterior commissure (AC-PC) line manually. The images were
segmented into GM, white matter (WM) and CSF segments.
The GM images were nonlinearly normalized into standard
Montreal Neurological Institute (MNI) space using an age-
and gender-adjusted GM study-specific customized template
created by the Template-O-Matic (TOM8) toolbox (Wilke
et al., 2008). The images were then modulated to ensure that
relative volumes of GM were preserved following the spatial
normalization procedure. Sample homogeneity was checked
to identify any outliers in the study population. Data of four
participants in the iNPH group and three in the NC group
were excluded from the analysis because of a covariance
below 2 standard deviation (SD) and visual confirmation of
a motion artifact. Total intracranial volume was calculated
as the sum of GW, WM and CSF volumes obtained in the
segmentation step.

Network Node Definition
A total of 90 cortical and subcortical regions of interest
(ROIs; Table 1), excluding the cerebellum, were generated from

FIGURE 1 | Association matrices and adjacency matrices. Association matrices for the normal-control (NC) group (A) and idiopathic normal pressure hydrocephalus
(iNPH) group (B). The color-bar shows the strength of the connections. Binary adjacency matrices for the NC group (C) and the iNPH group (D), with red indicating
the presence of connection and blue the absence of one. These matrices were calculated from maps thresholded at the minimum network density (0.16) in which
the networks of both the groups are not fragmented and paths exist between every pair of nodes. Correlations below this threshold and diagonal elements of the
matrices are set to zero. The numbers 1–90 on the x- and y-axes correspond to the gray matter (GM) regions of interest (ROIs) used in the study.
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the Automated Anatomical Labeling (AAL) atlas using the
Wake Forest University (WFU) PickAtlas Toolbox (Tzourio-
Mazoyer et al., 2002). The ROIs were identical to those used
in a previous graph analysis study by Fan et al. (2011). The
ROIs were resliced to the same dimension as the tissue-
segmented images obtained in the preprocessing step. Then
the ROIs were used to mask the individual-modulated and
normalized GM images and the average volume of each
ROI was extracted using the REX toolbox1. A multivariable
linear regression analysis was conducted at every ROI to
control for the effects of age and total brain volume,
with the residuals measuring the corrected GM volume for
each subject and ROI (Bernhardt et al., 2011; Fan et al.,
2011).

Construction of Structural Covariance
Networks
The corrected GM volumes for all 90 ROIs were used to compute
a structural correlation network for both the NC and NPH
groups, which were 90 × 90 association matrices, R, with each
entry rij defined as the Pearson correlation coefficient between
the corrected GM volumes of ROI i and j, across subjects
(Figures 1A,B). For each association matrix, a binary adjacency
matrix, A, was derived in which aij was considered one if
rij was greater than a specific threshold and zero otherwise.
The diagonal elements of the constructed association matrix
were also set to zero (Figures 1C,D). The resultant adjacency
matrix represented a binary undirected graph, G, in which
regions i and j were connected if gij was unity. Because of
methodological challenges in analyzing and comparing weighted
networks (Rubinov and Sporns, 2010, 2011; van Wijk et al.,
2010), a graph was constructed with N = 90 nodes (anatomical
GM ROIs), with a network degree of E equal to number of
edges (links) and a network density (cost) of D = E/[N ×

(N − 1)/2], representing the fraction of present connections to
all possible connections. Thresholding the association matrices
of different groups at an absolute threshold may yield networks
with a different number of nodes and degrees (van Wijk et al.,
2010). We thresholded the constructed association matrices at
a range of network densities in 0.02 steps (Dmin: 0.10:0.50) and
compared the network topologies across that range (Hosseini
et al., 2012).

Network Analyses
Global Network Analysis
We calculated the small-world measures of a network originally
proposed by Watts and Strogatz (1998), namely the clustering
coefficient (C) and characteristic path length (L). The C of
a node is a measure of the number of edges between its
nearest neighbors. The C of a network is the average of C
across nodes and indexes network segregation. The L of a
network is the average shortest path length between all pairs
of nodes in the network and is the most commonly used
measure of network integration (Rubinov and Sporns, 2010).
These measures were compared to the corresponding mean

1https://web.mit.edu/swg/software.htm

values of a null random graph with the same number of
nodes, total edges, and degree distribution as the network
of interest (Maslov and Sneppen, 2002). Then we obtained

FIGURE 2 | Changes in global network measures as a function of network
density. Normalized clustering (A), normalized path length (B) and small-world
index (C) of networks for the iNPH and NC groups. Networks from both the
groups follow a small-world organization, with a normalized clustering of
greater than 1 and a normalized path length close to 1. The small-world index
is bigger than 1 on both networks across all the range of network density.
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the small-world index of the network as [C/Cnull]/[L/Lnull]
where, Cnull and Lnull are the mean clustering coefficient
and the characteristic path length of the null random
network (Bassett and Bullmore, 2006). Benchmark random
networks generated for functional graphs include topology
randomization and correlation matrix randomization (Zalesky
et al., 2012).

Modularity is ameasure of network segregation that compares
the number of connections within modules to the number of
connections between modules across the network (Newman,
2006). The whole-brain modularity metric is computed as the
sum of the modularity values for each module (Bullmore and
Sporns, 2012).

Regional Network Analyses
Nodal characteristics, betweenness and degree were quantified
and normalized by means of the network, and then compared
between the two groups. Nodal betweenness is defined as
the fraction of all the shortest paths in the network that
pass through a given node and is used to detect important
connections. Nodes that bridge disparate parts of the network
have a high betweenness (Rubinov and Sporns, 2010). Node
degree is defined as the number of connections that a node
has with the rest of the network and is considered a measure
of the interaction of a node with the network (Hosseini et al.,
2013).

Network hubs are crucial components for efficient
communication in a network. Hubs not only are considered to
be important regulators of information flow, but also play a key
role in network resilience to insult (Bullmore and Sporns, 2009).
We considered a node as a hub if its betweenness centrality was
at least 2 SD higher than mean network centrality (Hosseini
et al., 2012).

Statistics
To test the statistical significance of the between-group
differences in network topology and regional network measures,
a nonparametric permutation test with 1,000 repetitions was
used (He et al., 2008). In each repetition, the calculated residual
volumes of each participant were randomly reassigned to
one of the two groups so that each randomized group had
the same number of subjects as the original groups. Then,
an association matrix was obtained for each randomized
group. The binary adjacency matrices were estimated by
thresholding the association matrices at a range of network
densities. The network measures were calculated for all
the networks at each density. The differences in network
measures between the randomized groups were then calculated,
resulting in a permutation distribution of differences under
the null hypothesis. The actual between-group difference
in network measures was then placed in the corresponding
permutation distribution and a two-tailed P-value was
calculated on the basis of its percentile position (Bernhardt
et al., 2011). The nonparametric permutation test inherently
accounts for multiple comparisons (P < 0.05; Nichols and
Hayasaka, 2003). We used area under the curve (AUC;
Bernhardt et al., 2011) and functional data analyses (FDA;

FIGURE 3 | Between-group differences in global network measures as a
function of network density. The 95% confidence intervals (dashed lines) and
between-group differences (plus markers) in normalized clustering (A),
normalized path length (B) and small-world index (C) for the analysis of iNPH
and NC group networks. Differences falling outside the confidence intervals
indicate the densities at which the difference between the groups is significant.
Positive values indicate densities at which values for iNPH are greater than for
NC and negative values indicate the opposite. Relative to the NC network, the
normalized clustering, normalized path length and small-world index of the
iNPH network were all larger across the entire range of densities.
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Hosseini et al., 2012) on global network measures to ensure
that differences between the iNPH and NC groups were not
driven by differing correlation strengths in regional GM
volumes, and further to make the analysis less sensitive to
thresholding.

The Graph Analysis Toolbox2 (Hosseini et al., 2012) was used
to quantify network measures and compare structural networks.
Brain Net Viewer3 was used for visualizing graphs.

RESULTS

Within-Group Global Network Measures
The minimum network density below which the network was
fragmented was 0.16. Global network measures at a range of
network densities are shown in Figure 2. The networks of both
the groups followed a small-world organization across a wide
range of densities. Both the networks had a path length higher
than random networks (Figure 2B), while having a clustering
coefficient that was much higher than that in random networks
(Figure 2A). This pattern results in a small-world index of

2https://redcap.stanford.edu/surveys/?s=WTSR8K
3https://www.nitrc.org/projects/bnv/

higher than one across the range of network densities examined
(Figure 2C).

Between-Group Global Network Analysis
Compared with the NC group, the iNPH network showed
significantly larger normalized clustering at densities ranging
from 0.36 to 0.50 (P > 0.05; Figure 3A). The iNPH network
showed a trend toward larger normalized path length across
the whole range of densities, but none of the differences
was significant (P > 0.05; Figure 3B). This pattern led to a
significantly larger small-world index for the iNPH network than
the NC network only at densities of 0.48 and 0.5 (Figure 3C). The
FDA results showed that the iNPH network had nonsignificant
larger normalized clustering (P = 0.14), larger normalized path
length (P = 0.13) and small-world index (P = 0.31). The AUC
analysis results were consistent with the FDA results; AUC of
the iNPH network for the normalized clustering, path length
and small-world index were all larger but had no significant
difference (P = 0.48, 0.12 and 0.96, respectively).

Global network modularity was significantly larger in the
iNPH network compared with the NC network at all densities
ranging from 0.28 to 0.5, except for 0.3 (Figure 4). The FDA and
AUC analyses also revealed a significantly larger modularity in
the iNPH network (both P < 0.05).

FIGURE 4 | Between-group differences in modularity as a function of network density. Star markers show the difference in modularity between the iNPH and NC
networks. Markers falling outside the confidence intervals (dashed lines) with densities ranging from 0.28 to 0.50 (black arrow), excluding 0.30, indicate where the
difference in modularity between iNPH and NC network was significant.
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FIGURE 5 | Differences in regional node betweenness for the NC and iNPH networks. Star markers show differences in node betweenness for the iNPH and NC
networks. Dashed lines show the 95% confidence intervals. The marker of ROI of number 31 (black arrow) is above the confidence interval, indicating that left
anterior cingulum in the iNPH network has a larger betweenness than in the NC network. The markers for ROI of numbers 5, 10, 16, 21, 30, 36, 84 and 88 (black
arrowhead) fall below the confidence interval, indicating that these nodes in the iNPH network have a smaller betweenness than in the NC network.

Regional Network Analyses
The iNPH network showed significantly smaller betweenness
than the NC network in eight nodes including ROI 5 (P = 0.01),
10 (P = 0.04), 16 (P = 0.02), 21 (P = 0.02), 30 (P = 0.03), 36
(P = 0.02), 84 (P = 0.04), 88 (P = 0.02), which located in the
bilateral frontal, right temporal, right insula, and right posterior
cingulate regions. Only one region in the left anterior cingulate
(ROI 31, P = 0.03) showed significantly larger betweenness in the
iNPH network (Figure 5).

The hub analysis revealed 15 hubs in the NC network and
17 hubs in the iNPH network (Figure 6). There were three
hubs present in both the networks: the orbital part of the left
middle frontal gyrus, and left and right insula. Apart from these
hubs, the 14 hubs unique to the iNPH network were primarily
located in temporal areas (5 hubs), limbic lobe (3 hubs), frontal
areas (3 hubs), fusiform gyrus (2 hubs) and left amygdala.
The 12 hubs unique to the NC network were primarily in
frontal areas (8 hubs), limbic lobe (2 hubs) and temporal areas
(2 hubs).

DISCUSSION

Earlier work indicated that the altered CSF flow dynamic
may be the reason for ventriculomegaly present in the iNPH
patients, and speculated that the real root may lie in brain
parenchyma (Yin et al., 2017). Most of the previous studies
were dedicated to finding one or more anatomical regions
responsible for the occurrence of the disease, such as the
morphological changes of ventricles, fissures, WM, or GM
(Halperin et al., 2015). But none of these abnormal areas, singly
or in combination, could explain the typical triad symptoms of
iNPH patients, let alone the reason why the symptoms could
be released after ventricle shunting. In fact, the distribution
of changes detected in the brain of iNPH patients, whether
using voxel-based morphometry or the diffusion MR method,
was diffuse (Tarnaris et al., 2009). Therefore, taking the brain
as whole integrity such as a network and exploring how these
changes influence the network may be a more promising
direction.
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FIGURE 6 | Network hubs for the iNPH and NC groups. All the hubs of the
iNPH network (A) and the NC network (B) were overlaid on the International
Consortium for Brain Mapping (ICBM) 152 brain template. The volume of the
spheres represents the degree of the corresponding brain region.

The morphology of the human cerebral cortex has evolved to
an optimal neural architecture that supports both modularized
and distributed information processing by maximizing the
efficiency of information propagation and minimizing wiring
costs (Achard and Bullmore, 2007). There are strong correlations
in GM morphological features such as volume, density and
thickness between various anatomically or functionally linked
areas of the human brain (Lerch et al., 2006). A small-world
architecture indicates that a network has a combination of
both short path length and high clustering (Bullmore and
Sporns, 2012). The present study examined the small-world
characteristics of GM volume correlation networks of iNPH
patients and control subjects. In both the groups, networks
had cohesive neighborhoods and short path lengths between
regions. Although the iNPH network showed a numerically
higher clustering coefficient, short path length and small-
world index, the between-group differences were not statistically

significant. To the best of our knowledge, this is the first
study to investigate the small-worldness of brain networks
in iNPH patients. In contrast, Alzheimer’s disease, a more
common disease involving cognitive impairment, had received
much attention with regard to changes in topological patterns
of large-scale cortical networks (He et al., 2009). He et al.
(2008) reported a similar, but more significant, difference in
small-world characteristics for the patient group compared with
controls and proposed that the altered patterns of cortical
morphology may relate to the cognitive impairment. The
changes in small-world characteristics which we observed in the
iNPH patients compared with controls, by contrast, were less
obvious.

A more obvious difference was detected in modularity
between the iNPH network and the NC network. Modularity
is a metric to quantify the extent of a module’s segregation
from the rest of the network (Newman and Girvan, 2004).
Functionally specialized brain regions with high clustering
are termed module (Bullmore and Sporns, 2012). Modular
brain network organization is thought to support both the
specialized functions through communication within modules
and globally integrated functions through communication
between network modules. It should be noted that the triad
symptoms accompanying iNPH consist of both behavioral and
cognitive dysfunctions. There may be at least two abnormal
modules or an abnormality in the integration of modules that
is responsible for the symptoms exhibited. Furthermore, iNPH
is a treatable form of dementia; and modularity was reported as
a biomarker that index the potential for adaptive reorganization
with intervention (Baniqued et al., 2018). It has been suggested
that brain network modularity could be a valuable biomarker
that informs the implementation of cognitive interventions.
Higher network modularity may represent an optimal brain
organization for improving cognitive functioning with training
in older adults and traumatic brain injury patients (Arnemann
et al., 2015).

We detected fewer hubs in the frontal cortex in the
iNPH network than in the NC network. Nodes with high
degree typically suggest highly interactive regions that likely
participate in numerous functional interactions. The abnormal
modularity may be attributed to cortical lesions or subcortical
axonal damage (Gratton et al., 2012). Cortical dysfunction
in related regions may reflect abnormalities in underlying
WM pathways (Catani and Stuss, 2012; Zhou, 2017). Lenfeldt
et al. (2011) reported lesions in anterior frontal WM using
diffusion tensor imaging (DTI), and suggested that these were
related to the motor symptoms of iNPH. Moreover, on the
basis of voxel-wise analysis of DTI, various patterns of WM
changes were detected in regions bordering GM, such as corpus
callosum, periventricular WM, the internal capsule and so on
(Hattori et al., 2012). This may explain why several nodes
of the iNPH network showed significantly decreased node
betweenness, whereas only one node increased its betweenness,
as well as the changes of modularity. Thus, we hypothesized that
modularity changes may be the cause of iNPH, and modularity
analysis was a potential biomarker to select shunting responsive
patients.
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There were two limitations to this study. First, it was not
possible to correlate the network measures of each subject with
their individual symptom severity score using this method. In
the future, a longitudinal evaluation of a group of patients
could be conducted to examine such correlations. Second, due
to the low incidence of iNPH, the number of patients was not
sufficient to divide into shunting-responsive and nonresponsive
groups. However, this preliminary study detected abnormalities
in structural networks in iNPH. Brain network analysis was
a promising method to study neurological disorder diseases.
Meanwhile, this reversible dementia was the ideal disease model
to study cognition of humans. A network connectivity study
using DTI or BOLD-MRI could be a promising approach
to clarify the pathological mechanisms underlying iNPH.
Furthermore, it may be fruitful to employ network modularity
analysis to predict the outcome of shunt treatment in iNPH
patients.
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