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abstract

PURPOSE Methods for depth normalization have been assessed primarily with simulated data or cell-
line–mixture data. There is a pressing need for benchmark data enabling a more realistic and objective as-
sessment, especially in the context of small RNA sequencing.

METHODSWe collected a unique pair of microRNA sequencing data sets for the same set of tumor samples; one
data set was collected with and the other without uniform handling and balanced design. The former provided
a benchmark for evaluating evidence of differential expression and the latter served as a test bed for nor-
malization. Next, we developed a data perturbation algorithm to simulate additional data set pairs. Last, we
assembled a set of computational tools to visualize and quantify the assessment.

RESULTSWe validated the quality of the benchmark data and showed the need for normalization of the test data.
For illustration, we applied the data and tools to assess the performance of 9 existing normalization methods.
Among them, trimmed mean of M-values was a better scaling method, whereas the median and the upper
quartiles were consistently the worst performers; one variation of remove unwanted variation had the best
chance of capturing true positives but at the cost of increased false positives. In general, these methods were, at
best, moderately helpful when the level of differential expression was extensive and asymmetric.

CONCLUSIONOur study (1) provides themuch-needed benchmark data and computational tools for assessing depth
normalization, (2) shows the dependence of normalization performance on the underlying pattern of differential
expression, and (3) calls for continued research efforts to develop more effective normalization methods.
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INTRODUCTION

Several analytic methods have been proposed for
normalizing sequencing depth. Earlier methods were
based mostly on the scaling strategy, which calcu-
lates a scaling factor (eg, the total number of counts)
for each sample to adjust the data.1-3 Later, more-
involved methods based on regression (eg, with
regard to selected principal components of all or
some markers) were proposed on the basis of em-
pirical observations that depth does not influence
sequencing data in a simple overall shifting manner
and concerns that it can be complicated by other
nonspecific sources of handling variations.4-6 Many of
these methods were developed in the context of
differential expression analysis, and their perfor-
mance has been assessed mostly using para-
metrically simulated data and/or cell-line–mixture
data that may not realistically reflect the distributional
characteristics of sequencing data.1,2,4

We set out to develop the data and analytics to
enable a more realistic and objective assessment of

depth normalization methods, focusing on a class of
small RNAs called microRNAs (miRNAs). MiRNAs
are 18 to 22 nucleotides long, which minimizes the
potential bias in abundance estimation due to gene
length variation, as seen in RNAs.7,8 They play an
important regulatory role in gene expression in the
cell and are closely linked to cell apoptosis and
carcinogenesis.9,10

Toward this end, we designed and collected
a unique pair of data sets for the same set of tumor
samples at Memorial Sloan Kettering Cancer Center
(MSKCC). The first data set was collected using (1)
uniform handling to minimize data artifacts and (2)
balanced sample-to-library assignment (via block-
ing and randomization) to avoid confounding for any
residual artifacts with the sample groups under
comparison. For the same set of samples, a second
data set was collected without using such careful
study design, resulting in obscuring depth variations.
Evidence of differential expression was assessed in the
first data set, serving as the benchmark; normalization
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methods were tested in the second, followed by differential
expression assessment and benchmark comparison.
Throughout the rest of this article, we refer to the first data
set as the benchmark data set and the second as the test
data set. For extra quality assurance, we added for the
benchmark data set two pooled samples shared across all
libraries and 10 prevalidated calibrators added at fixed
concentrations.

In addition to the empirical data, we devised a data per-
turbation strategy to generate additional data set pairs
under various differential expression scenarios. Further-
more, we put together a set of graphical tools and numeric
metrics for visualizing and quantifying the impact of depth
normalization on differential expression detection. Here, we
report the data and tools and illustrate their use on nine
normalization methods that are relatively commonly used in
the literature.1,2

METHODS

Tumor Sample Preparation and microRNA Sequencing

Myxofibrosarcoma (MXF) and pleomorphic malignant fi-
brous histiocytoma (PMFH) are the two most common and
aggressive subtypes of genetically complex soft tissue
sarcoma.11-13 Their tumor samples are typically large
enough for RNA extraction with sufficient quantity and
quality for sequencing. In this study, we used 27 MXF
samples and 27 PMFH samples, which were all from newly
diagnosed, previously untreated, primary tumors collected
at MSKCC between 2000 and 2012. Sample preparation
and extraction were performed in the Singer laboratory at
MSKCC. Library preparation and sequencing were done in
the Tuschl laboratory at Rockefeller University. Detailed
description of these steps was previously reported.14,15

Design and Analysis of the Benchmark Data

Study design. With barcode multiplexing, we used three
libraries to sequence the 54 individual tumor samples
and two pooled samples (one from pooling the 27 MXF
samples and the other from pooling the 27 PMFH
samples); each library included nine MXF samples, nine

PMFH samples, the pooled MXF sample, and the pooled
PMFH sample. We carefully planned our study for gen-
erating this benchmark data set so the library preparation
and read capture were each processed by a single ex-
perienced technician in one run. In addition, samples of
each tumor type were randomly assigned to the three
libraries and the 20 barcodes. To further ensure data
quality, we included 10 calibrators with fixed input
concentrations for each sample to use as negative
controls for differential expression.14

Quality assessment analysis. We assessed the agreement
of the three sequencing runs for each pooled sample,
as well as the agreement between group means based
on individual samples and those based on pooled sam-
ples, using scatter plots and concordance correlation
coefficients.16

Differential expression analysis. We assessed the evidence
against the null hypothesis of equivalent expression in MXF
versus PMFH using the benchmark data for the 54 tumor
samples. We used voom (as implemented in the limma
package in R; R Foundation, https://www.r-project.org/
about.html) as the primary method for differential ex-
pression analysis, with the results reported in this article;
and edgeR as a secondary method with the results reported
in the Data Supplement.17-19 Additional description of the
choice of these methods is provided in the Appendix.

Design and Analysis of the Test Data

Study design. miRNAs for the same 54 tumors used for the
benchmark data were resequenced using neither uniform
handling nor balanced library assignment. In this second
study, these samples were sequenced in the order of
sample collection and processed in multiple runs. Care was
taken to ensure consistent sample handling and RNAs
used for sequencing runs of the same sample were derived
from the same cryomold.

Depth normalization. We examined nine normalization
methods, including six scaling-based methods and three
regression-based methods (six, if counting the variations for
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two of the methods). The former included total count (TC),2

upper quartile (UQ),1 median,2 trimmed mean of M values
(TMM),17 DESeq,3 and PoissonSeq.20 The latter included
quantile normalization (QN) with and without removing low-
count miRNAs,21 surrogate variable analysis (SVA),6 and
remove unwanted variation (RUV), with three variations: RUVg,
RUVr, and RUVs.5 Detailed description of these methods is
provided in the Appendix.

Differential expression analysis. The test data were
assessed for differential expression, before and after nor-
malization, using voom as the primary method and edgeR
as the secondary method in the same manner as the
benchmark data.

Computational Tools for Evaluating Depth Normalization

We assembled several useful graphical tools and numeric
measures to evaluate the impact of a normalization method
on the overall distribution of the test data and on the dif-
ferential expression status and significance ranking of
miRNAs, as well as to explore the relationship among
different normalization methods.

Relative log expression plot. The relative log expression
plot examines the impact of normalization on the overall
data distribution.22 More specifically, it adjusts the log2
count data for each sample by subtracting its median and
displays the deviations as a box plot. In our implementation,
we sorted the box plots for the samples within each group
by the upper quartiles of their deviations determined in the
benchmark data.

Concordance at the top plot. The concordance at the top
(CAT) plot compares the ranking of significant miRNAs on
the basis of the test-data P values with the benchmark.6

More specifically, it uses indices 1 to K as the x-axis, and
the percentage of agreement in the miRNAs ranked among
the top K between the two data sets as the y-axis. The plot
can be done for multiple normalization methods at a time,
with each method plotted in a different color.

Venn diagram. The P values from differential expression
analysis were used to derive a marker set at a given sig-
nificance level: markers with P values smaller than the
significance level were declared differentially expressed,
and those having larger P values were declared non-
differentially expressed. Differential expression statuses
were compared between the two data sets graphically via
the Venn diagram.

False-negative rate and false-discovery rate. The compar-
ison of differential expression statuses between the two data
sets was summarized numerically using a false-negative rate
(FNR) and a false-discovery rate (FDR), at the risk of abusing
the terminology. They were compared between different
normalization methods, using the scatter plot.

Dendrogram showing the clustering of normalization methods.
To assess similarity between normalization methods, their
test-data P values (on the −log10 scale) were subjected to

hierarchical clustering using the Euclidean distance and
the Ward linkage. Clustering results were displayed using
the dendrogram.

Data Perturbation to Simulate Additional Data Set Pairs

Overall strategy. We examined the normalization methods
in additional data sets simulated under a range of differ-
ential expression scenarios. More specifically, the sample-
type labels were permuted to reach a specific proportion of
differential expression and a specific magnitude of median
group-mean difference (for log2 count) in the benchmark
data set, and the same permutation of group labels was
then applied to the test data. The goal was to generate data
sets with various proportions of differentially expressed
markers (eg, 2%, 10%, 20%) and magnitudes of mean
difference among differentially expressed markers. This
strategy allowed us to maintain the between-miRNA cor-
relation structure in each data set and not make any
parametric assumptions regarding the distributions of se-
quencing count and depth variation.

Perturbation steps. Data were simulated with a combi-
nation of hierarchical clustering and random shuffling,
with stratification by library (ie, an equal number of
samples in each group was allocated to each library), in
the following three steps: (1) the benchmark data of the
54 samples were clustered using K-means clustering to
two clusters (via the pam() function in the cluster library)
and labeled as groups 1 and 2; (2) nine seed samples
were randomly selected from each group, with three
samples from each sequencing library; (3) the remaining
36 samples were then randomly and equally allocated to
the two groups. For each permutation of the 54 samples,
differential expression between the two groups was
assessed with regard to the proportion of differential
expression and the magnitude in terms of the median of
marker-specific group-mean differences.

Simulation scenarios. Four scenarios of differential ex-
pression were examined. The first three scenarios each had
100 data sets randomly selected, and the last scenario had
39 data sets.

(1) Limited and symmetric: 2% (1.75%-2.25%, to be more
precise) differential expression with group mean dif-
ference approximately 0 (ranging from −0.5 to 0.5);

(2) Limited and asymmetric: 2% differential expression
with group mean difference approximately 3 (2-4);

(3) Moderate and asymmetric: 10% (8%-12%) differential
expression with group mean difference approximately
3; and

(4) Extensive and asymmetric: 20% (15%-25%) differential
expression with group mean difference approximately 3.

Analysis of simulated data. Each pair of the simulated data
sets was analyzed and compared in the same manner as
the empirical data. The results, in terms of FNR and FDR,
for each simulation scenario were displayed aggregately as
box plots.

Statistical Assessment of Sequencing Depth Normalization
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RESULTS

Quality Assessment of the Benchmark Data

There was excellent agreement between the replicates
for each pooled sample (concordance correlation co-
efficient: 0.97 to 0.99; Appendix Fig A1). In addition,
group means estimated by the 54 tumors highly agreed
with those estimated by the triplicates (concordance
correlation coefficient: 0.99), indicating the consistency
of the averaged sequencing data and the data of the
pooled samples (Fig 1A and 1B). Furthermore, all 10
calibrators showed equivalent expression between the 2
sample groups (mean difference, −0.03 to 0.09; P-value

range, 0.11 to 0.96; Fig 1C). These observations collectively
confirmed the quality of the benchmark data.

Differential Expression Analysis of the Benchmark Data

Figure 2A shows an overview of the count distribution for
the benchmark data on the log2 scale. Among the 1,033
miRNAs in the data, 59 (6%) were differentially
expressed at a P-value cut off of .01 (Fig 2B). By chance
alone, there could only be 10 miRNAs with P , .01. The
average count of these 59 miRNAs ranged from a few to
several hundreds of thousands, with the mean differences
between MXF and PMFH ranging from 1.4- to 8-fold (Ap-
pendix FigA2A-A2C).
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FIG 1. (A) Scatter plot of group means (for log2 counts) estimated with individual myxofibrosarcoma (MXF) tumors
versus group means estimated with the three technical replicates for the pooled MXF sample. Each data point
represents an miRNA. (B) Scatter plot of group means (for log2 counts) estimated with individual pleomorphic
malignant fibrous histiocytoma (PMFH) tumors versus group means estimated with the three technical replicates for
the pooled PMFH sample. Each data point represents an miRNA. (C) Box plot for the 10 calibrators by sample type in
the benchmark data.
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Differential Expression Analysis of the Test Data

As shown in Fig 3A, the test data possessedmore systematic
variations than the benchmark data. Without normalization,
70 miRNAs (7%) were identified as differentially expressed

(Fig 3B). Twenty-nine of these 70 miRNAs were claimed to
be differentially expressed by the benchmark data, resulting
in an FNR of 30 of 59 (51%) and an FDR of 41 of 70 (59%;
Fig 3C). Appendix Figure A3A and A3B compares the
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FIG 2. (A) Box plot of the benchmark data with one box per sample. The boxes were sorted by sequencing libraries and colored by sample type. (B) Volcano
plot for the differential expression analysis using voom for the benchmark data. MXF, myxofibrosarcoma; PMFH, pleomorphic malignant fibrous histiocytoma.
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FIG 4. Relative log expression (RLE) plots
for benchmark data, test data, and test data
after normalization with various methods.
Samples were ordered by their residuals’
upper quartiles in the benchmark data. RUV,
remove unwanted variation; SVA, surrogate
variable analysis.
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estimated group means in the test data with those in the
benchmark data.

Evaluation of Depth Normalization Using the

Empirical Data

The effects of normalization on the overall distribution of
the test data are shown in Figure 4 and Appendix Figure
A4. Figure 5A presents the impact of normalization on
significance detection in terms of FNR and FDR. With
scaling-based normalization, the number of differentially
expressed miRNAs decreased to 49 for TC (FNR: 59%;
FDR: 51%); 51 for UQ (FNR: 69%; FDR: 65%); 54 for
median (FNR: 73%; FDR: 70%); 51 for TMM (FNR: 69%;
FDR: 65%); 52 for DEseq (FNR: 63%; FDR: 58%); and 39
for PoissonSeq (FNR: 63%; FDR: 44%). With regression-
based normalization, the number of differentially expressed
miRNAs decreased to 40 for SVA (FNR: 64%; FDR: 48%);
51 for QN (FNR: 66%; FDR: 61%); 38 for QN with filtering
(FNR: 68%; FDR: 50%); 22 for RUVs (FNR: 78%; FDR:
41%); and 12 for RUVg (FNR: 88%; FDR: 42%). The
number of differentially expressedmiRNAs increased to 129
(FNR: 39%; FDR: 72%) when using RUVr. Hence, in the
analysis of our data, normalization methods such as TC,
PoissonSeq, SVA, RUVs, and RUVg decreased the FDR at
the price of increased numbers of missed positives; RUVr
decreased the number of missed positives at the price of
increased FDRs; other methods increased both. All in all,
normalization did not seem to effectively improve the results
of significance detection in these data.

We then evaluated how faithfully miRNAs were ranked on
the basis of the significance level using CAT plots. Among
scaling-based normalization methods, TMM and Pois-
sonSeq outperformed no normalization up to the top 70
ranked miRNAs, with approximately 50% of the top-ranked
miRNAs the same as the benchmark; TC outperformed no
normalization for the top two miRNAs and then from ap-
proximately the top 20 to the top 70 miRNAs; DESeq was
comparable to no normalization throughout the range
we examined (ie, up to the top 100 miRNAs); median and
UQ were consistently the worst performers (Fig 5B).
Among regression-based normalization methods, SVA
outperformed no normalization from approximately the top
15 to the top 70 ranked miRNAs, with approximately 40% to
50% agreement to the benchmark; QN was comparable to
no normalization among the top 50 ranked miRNAs; RUVg
and RUVr consistently performed worse than no normali-
zation (Fig 5C).

We additionally compared normalization methods by
clustering their P values. The comparison showed sepa-
ration of scaling methods from regression-based methods
and separation of median and UQ from the other scaling
methods (Fig 5D).

We repeated our evaluation using edgeR as the method for
differential expression analysis and observed similar results
(Appendix Fig A5A-A5D).

Evaluation of Depth Normalization Using Simulated Data

Results from the simulation study are shown in Figure 6.
When differential expression in the data was low (2%)
and symmetric, most methods did not seem to help
decrease the FNR or FDR; QN with filtering tended to
decrease the FDR and, at the same time, increase the
FNR, whereas RUVr tended to decrease the FNR and
increase the FDR, similar to how they behaved in the
empirical data.

When differential expression was low (2%) and asym-
metric, TMM, TC, and PoissonSeq occasionally decreased
the FDR, yet frequently increased FNR; again, QN with
filtering tended to decrease the FDR and increase the FNR,
whereas RUVr tended to decrease the FNR and increase
the FDR; the other methods decreased neither the FNR nor
the FDR.

When differential expression in the data was moderate (ie,
10% and 20%) and asymmetric, test data with no nor-
malization were often associated with a reasonable FDR
and FNR, due to the strong level of biologic signal; TMM
occasionally decreased the FDR yet frequently increased
the FNR, whereas the other scaling normalization methods
consistently increased both the FDR and the FNR; RUVr
tended to decrease the FNR but not the FDR.

Taken together, the performance of normalization
methods depended on the specific pattern of differential
expression and, in general, only brought limited benefits;
TMM tended to outperform the other scaling methods,
and RUVr tended to outperform the other regression-
based methods; the median and UQ methods were
consistently the worst performers among the methods
examined in our study.

DISCUSSION

In absence of a predetermined standard for comparison,
authors of a new normalization method have the freedom to
select evaluation procedures that favor their method and
subsequently claim superiority over other methods. This
self-assessment trap results in contradictory information for
users deciding on a method. In this study, we addressed
this problem for miRNA sequencing by developing the
carefully designed pair of data sets, the resampling-based
simulation algorithm, and the relevant graphical and nu-
meric analytics. We make these data and tools publicly
available to the research community so interested re-
searchers can reproduce our study and study additional
methods reported in the literature and newmethods as they
emerge.

We previously successfully applied the paired data set
strategy to assess normalization methods for miRNA
microarrays.11,23-25 We expect this general strategy to be
useful in assessing normalization for other types of high-
throughput data, as well. In this article, we used this
strategy to examine the unique challenge of depth
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normalization for miRNA sequencing. Our findings can
provide a useful stepping stone for understanding the
same issue of depth normalization for the sequencing of
RNAs and metagenomics.26,27 Compared with miRNA
sequencing, RNA sequencing is subject to an additional
source of depth variation from gene length, whereas
metagenomic sequencing faces the complication due to

data compositionality and sparsity to a greater extent.28

They present even more challenging scenarios to have
effective normalization methods.

In conclusion, caution should be exercised when ap-
plying depth normalization, and more effective methods
should be developed with robust, realistic, and objective
assessment.
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N
o

 N
o

m
r

T
C

U
Q

M
ed

D
E

S
eq

P
o

is
so

n
S

eq

T
M

M

Q
N

Q
N

 w
it

h
 f

ilt
er

in
g

S
V

A

R
U

V
g

R
U

V
s

R
U

V
r

D

False-discovery rate

False-negative rate0.0

0.2

0.4

0.6

0.8

1.0
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FIG 6. Box plot of false-negative rate and false-discovery rate from the simulation study under four scenarios of differential expression (DE): (A) low and
symmetric; (B) low and asymmetric; (C) moderate (10%) and asymmetric; and (D) moderate (20%) and asymmetric. Med, median; No Norm, no
normalization; QN, quantile normalization; RUV, remove unwanted variation; TC, total count; TMM, trimmed mean of M-values; UQ, upper quartile.
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APPENDIX

A. Method 1: Choice of Methods for Differential

Expression Analysis

We assessed the evidence against the null hypothesis of equivalent
expression in myxofibrosarcoma versus pleomorphic malignant fibrous
histiocytoma using the benchmark data for the 54 tumor samples. Cur-
rently there are 3 state-of-the-art statistical tests for differential expression
analysis of sequencing data: (1) edgeR, (2) DESeq, and (3) voom. Among
them, edgeR and DESeq assume a negative binomial distribution for the
data across samples, whereas voom assumes a normal distribution for
the logarithm-transformed data. We previously conducted an empirical
comparison of the three methods using two publicly available data sets,
one from The Cancer Genome Atlas ovarian study and the other from
a breast cancer study. In this previous study, we found the P values based
on the three methods were close, with voom providing a middle ground
between edgeR andDESeq; in addition, among themicroRNAs (miRNAs)
whose differential expression status differed between the methods, voom
was more aligned with the empirical evidence. As such, in this article, we
used voom as the primary method for differential expression analysis with
the results reported in the main text, and edgeR as a secondary method
with the results reported in the Data Supplement.

B. Method 2: Descriptions of Depth Normalization

Methods Evaluated

We examined nine commonly used normalization methods, including
six scaling-based methods and three regression-based methods (6 if
counting the variations for two of the methods). A scaling-based
method calculates a scaling factor on the basis of the data for each
sample and divides its counts by this factor. A regression-based
method can be nonparametric or parametric: nonparametric methods
are based on, for example, a quantile-quantile plot, whereas parametric
methods are based on a linear regression, which typically includes
a covariate representing systematic depth variation (by using a known
batch variable or deriving a surrogate batch variable from the data) in
a regression framework for analysis of differential expression.

1. Total count (TC) calculates the total count of mappable reads in
each sample and uses its ratio over the average total count across
samples as the scaling factor. It has also been referred to as the
library size in the literature.

2. Upper quartile (UQ) calculates the upper quartile of nonzero counts
in each sample and uses its ratio over the average upper quartile
across samples as the scaling factor.

3. Median calculates the median of nonzero counts in each sample and
uses its ratio over the averaged median across samples as the scaling
factor.

4. Trimmed mean of M values (TMM) takes the ratios of counts in
a sample over the counts of an ad hoc reference sample and
calculates a weighted trimmed mean of the log ratios across
markers as the scaling factor. The calcNormFactors() function in
the edgeR package was used for its estimation.

5. DEseq takes the ratios of the counts in a sample over the counts of
a pseudo reference sample (defined as the geometric mean
counts across samples) and calculates the median of the log
ratios as the scaling factor. The estimateSizeFactors() and size-
Factors() functions in the DESeq package were used for its
estimation.

6. PoissonSeq models the count data using a log-linear model and
includes sequencing depth as a covariate in the model. The model
is fitted using an iterative process that alternates between selecting
equivalently expressed markers and estimating the model pa-
rameters. The PS.Est.Depth() function in the PoissonSeq package
was used for its estimation.

7. Quantile normalization (QN) was inspired by quantile-quantile plot.
This regression-based approach was originally developed for nor-
malizing microarray data. It equates the rank statistics of each
sample to the average rank statistics across samples. The nor-
malize.quantiles() function in the preprocessCore package was
applied to the count data after moderated logarithm transformation
(ie, adding 1 to the count data to handling the zero counts before
applying logarithm). With the relatively large proportion of zeros in
the miRNA sequencing data, we have noticed a negative impact on
the performance of QN due to the ambiguity in handling these tied
zeros. As a result, we also examined the use of QN after filtering out
markers with mean count , 4.

8. Surrogate variable analysis (SVA) is a regression-based approach
that calculates the probabilities for markers being affected by the
variation in sequencing depth and not by the biologic covariate of
interest, uses the probability-weighted principal components to
approximate the systematic variations in depth, and includes them
as covariates in a linear model for the analysis of the log-
transformed count data. The svaseq() function in the sva package
was used. By default, it only includes markers that have . 5 reads
in at least two samples.

9. Remove unwanted variation (RUV) is a regression-based ap-
proach that follows a similar overall strategy as SVA, aiming to
use markers that have constant abundance levels across
samples. It differs from SVA in several technical aspects, such as
the use of the generalized linear model for the counts data in
place of the linear model for log counts data. It is also available to
use replicate samples for constructing covariates that represent
systematic variations. The RUVs(), RUVr(), and RUVg() func-
tions in the RUVSeq package were used, implementing the 3
variations of RUV.
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FIG A1. Scatter plot between triplicate runs of the pooled myxofibrosarcoma sample (MXF_PL) and between triplicate runs of the pooled
pleomorphic malignant fibrous histiocytoma sample (PMFH_PL). Each data point represents a microRNA.
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FIG A2. (A) Scatter plot of group mean differences versus group mean averages in the benchmark data, with the significantly differentially expressed
microRNAs (miRNAs) highlighted in red. Each data point represents an miRNA. (B) Histogram of group mean averages across 54 samples for significant
miRNAs in the benchmark data. (C) Histogram of group mean differences between MXF and PMFH for significant miRNAs in the benchmark data.
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FIG A3. (A) Scatter plot of group means for myxofibrosarcoma (MXF) in the test data versus that in the benchmark data. Each data point represents
a microRNA. (B) Scatter plot of group means for pleomorphic malignant fibrous histiocytoma (PMFH) in the test data versus that in the benchmark data.
Each data point represents a microRNA.
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FIG A5. (A) Scatter plot comparing the false-negative rate with the false-discovery rate for test data before and after normalization, using edgeR as the
method for differential expression. Each data point represents a normalization method. (B) CAT plot comparing the agreement of significance ranking of top
microRNAs (miRNAs) in the test data (before and after scaling normalization) with that in the benchmark data, using edgeR as the method for differential
expression. (C) CAT plot comparing the agreement of significance ranking of top miRNAs in the test data (before and after regression-based normalization)
with that in the benchmark data, using edgeR as themethod for differential expression. (D) Dendrogram comparing theP values (on the−log10 scale) for test
data among different methods for normalization using edgeR as themethod for differential expression. CAT, concordance at the top; Med,median; NoNorm,
no normalization; QN, quantile normalization; RUV, remove unwanted variation; TC, total count; TMM, trimmed mean of M-values; UQ, upper quartile.
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