
Heliyon 10 (2024) e27665

Available online 6 March 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Conflict-Based safety evaluations at unsignalized intersections 
using surrogate safety measures 

Dungar Singh a,*, Pritikana Das a, Indrajit Ghosh b 

a Department of Civil Engineering, Maulana Azad National Institute of Technology Bhopal, 262003, India 
b Department of Civil Engineering, 247667, Indian Institutes of Technology Roorkee, India   

A R T I C L E  I N F O   

Keywords: 
Traffic safety management 
Traffic conflicts 
Proactive approach 
Surrogate safety measures 

A B S T R A C T   

Conflict-based road safety assessments may provide a deeper insight into the processes leading to 
crashes compared to assessments solely based on field crash data. The evaluation of road safety is 
conducted on specific road segments using different surrogate measure of safety indicators, such 
as temporal, spatial, and kinematic proximity measures, depending on the relevant context and 
applicability of these measures. Therefore, this study endeavored to develop a methodology by 
adopting safety measures such as post encroachment time (PET) and conflicting speeds of through 
vehicles for crossing maneuvers and time to collision (TTC) for rear-end collisions at five 
unsignalized intersections in urban mixed traffic conditions. Critical conflicts are calculated by 
calculating a speed variable known as the critical speed, which is based on the braking distance. A 
study found that the motorized two wheeler (MTW) categories involve the highest proportion of 
critical conflict with right-turning vehicles, followed by cars, autos, and light commercial vehicle 
(LCVs). Furthermore, crossing conflicts were modeled as a function using the generalized linear 
regression approach. The findings revealed that the most significant factors were traffic volume 
and vehicular composition in a conflicting stream. The unsupervised classification technique k- 
mean clustering was used to determine the defined severity level threshold for rear-end ma
neuvers. The result observed was that a TTC threshold of less than 1.15 s was identified as high- 
risk vehicular interaction. 

Additional investigation indicated that presence of certain moving vehicle categories, including 
MTWs and cars, led to a higher proportion of critical crossing conflicts. The conceptualized safety 
framework can be applied to evaluate safety at unsignalized intersections in the mixed traffic 
scenarios.   

1. Introduction 

Road safety is poses a significant concern in growing economies such as India. Where vehicles frequently permeate through traffic 
along an intended path, the traffic is known as non-lane base movement. This frequently results in less attention being focused on 
safety issues, which causes too many crashes. With approximately 1.5 million fatal crashes annually, India currently holds the worst 
road crash rate worldwide [1]. 

According to a recent accident report, 2020 has seen a 12.86% decrease from the prior year owing to COVID restrictions. 

* Corresponding author. Maulana Azad National Institute of Technology Bhopal, India. 
E-mail address: dsdudi97@gmail.com (D. Singh).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e27665 
Received 1 July 2023; Received in revised form 28 February 2024; Accepted 5 March 2024   

mailto:dsdudi97@gmail.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e27665
https://doi.org/10.1016/j.heliyon.2024.e27665
https://doi.org/10.1016/j.heliyon.2024.e27665
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e27665

2

Approximately 19.84% of the 11,654 crashes and 18.72% of the 2535 fatalities occurred at unsignalized T-intersections [1]. The 
complexity of a right turn and through movements at unsignalized T-intersections make conflicts more serious [2–4]. These facilities 
mainly use priority rules and stop control to regulate traffic. Therefore, a safe space opens, and the vehicles in the minor approach 
merge into the major approach, which has priority for right-of-way. In contrast, in developing countries such as India, priority reg
ulations and rules are not obeyed by drivers; therefore, drivers sense equal priority when navigating an intersection [4–8]. Henceforth, 
due to their ease of manoeuvrability and driver propensity for aggressive driving, drivers of smaller vehicles, such as MTWs and auto 
rickshaws, are responsible for 21% of all crashes and fatalities in Indian mixed traffic situations [1]. At intersections, the manoeuvre of 
left-turning traffic rarely causes severe problems. However, critical conflict situations mostly occur between vehicles making right 
turns and through traffic, leading to hazardous conditions and an increased risk of collisions. So that, there is necessary to conduct 
trustworthy safety analysis to greatly enhance safety and reduce the number of crashes. Over the years, researchers have devised 
various methods to evaluate traffic safety. These approaches include crash-based before-and-after studies [9], the identification of 
black spot programs [10], statistical modeling [11], and road safety audits, [10]. These techniques mostly rely on crash data from the 
past and expert, knowledgeable field observations. Safety is evaluated through various statistical methods, primarily focusing on crash 
occurrences as a measure. Traffic crash assessment can assist in understanding the common pattern and help identify key contributing 
elements that facilitating the implementation of appropriate countermeasures. Therefore, a crash-based assessment is logically sound 
and trustworthy. The conventional crash-based assessment follows a reactive approach that shows significant drawbacks relying on 
police-reported crash data, which suffers from under-reporting and inaccurate information about crash patterns. Crash data is 
generally biased across multiple resources and does not define a pre-crash scenario based on location [12,13]. Therefore, safety 
evaluation methods that are reliable, fast, and do not solely rely on crash data are desperately needed. A traffic based conflict 
assessment can assess high-risk circumstances that may result in a potential crash, as illustrated by Hyden’s pyramid [14]. In keeping 
with this, a couple of review papers are available on the utilization of traffic conflict approach in road facilities safety assessments 
[15–19]. The traffic conflict approach may be determined the frequency of near-miss crashes directly in moving traffic. Globally, 
researchers have advocated for the proactive use of traffic conflicts for safety analysis. Traffic conflict-based safety assessment is 
preferable to crash-based analysis because it complements (1) improving the efficiency and speed of road safety evaluation, (2) 
elucidating the relationship between risk and various design features, (3) providing information on hazardous interactions, thus 
establishing a link between risky driving and driver behavior, (4) describing the failure mechanisms that cause crashes, and (5) 
defining the collision risk process more precisely in both peak and non-peak traffic situations. Researchers have developed several 
proximal indicators that indicate proximity to crashes and may be employed to evaluate different road facilities safety through the 
traffic conflict technique. However, prior to implementing this type of process, vehicle trajectories must be used to determine the 
number or seriousness of potentially dangerous scenarios that might appear on certain road infrastructure to determine standards of 
safety. The most well-known of these surrogate measure of safety (SMoS) indicators are PET and TTC. 

The procedure for extracting PET from the recorded video is demonstrated in Fig. 1. PET is calculated using equation (1) as follow: 

PET = t2 − t1 (sec) (1) 

It is depict the duration between the departure of the first road user (t1) from a shared spatial zone and the arrival of the second user 
(t2) in that same zone [20]. 

TTC value at instant is times left until a potential collision between two vehicles has occurred if the their current trajectories and 
speed difference are unchanged [21,22], as depicted in Fig. 2: a leader-follower pair. Therefore, equation (2) shows, that TTC can be 
determined as subsequent vehicle (F) at instant relative to a leading vehicle (L) against a rear-end collision. 

TTC=
Xl − Xf − Ll

Vf − Vl
(sec) ∀Xf > Xl (2)  

Fig. 1. PET data extraction procedure.  
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Whereas: 
Vf = following vehicle speed (m/s); Vl = leading vehicle speed (m/s); Xl = position of leading vehicle, Xf = position of following 

vehicle, ll = Conflicting vehicle length. TTC appears to be important only in situations where the follower vehicle has a greater speed 
than the leader vehicle. Consequently, in normal vehicular interaction, the vehicle of follower vehicle was lower than that of the leader 
vehicle. 

With this research motivation, the current study objective is to develop separate conflict-based assessments for unsignalized in
tersections with diverse geometries and traffic characteristics in mixed traffic conditions. The study assesses the percentage of critical 
crossing conflicts using important surrogate measures PET and conflicting speed vehicles (CSVs), and generalized linear regression will 
be used to identify significant parameters influencing target variable number conflicts, whereas TTC is being used to determine the 
severity risk of approaching vehicle flow at intersections. 

2. Literature review 

Over the past few decades, there has been a plethora of studies aimed at assessing the safety of different road facilities. Urban road 
traffic management is a critical issue because only efficient traffic control strategies can improve the safety of urban roads. Researchers 
have focused on using traffic conflict approach with the implementation of different SMoS to evaluate vehicle safety in various traffic 
facilities because of issues with road crash data, both qualitatively and quantitatively. Utilizing of the micro-simulation model in 
roundabout safety analysis [23], calibrated VISSIM and AIMSUM for different types of roundabouts, and vehicle trajectories from 
micro-simulation software were used to determine traffic conflict in Surrogate Safety Assessment Model (SSAM) software. [24], 
developed a novel safety indicator, namely the rear-end crash risk index (RCRI), to access continuous moving vehicles conflicts 
extracted from the Shanghai naturalistic driving study dataset. Additionally, the authors of the implemented linear regression model 
observed significant effects of traffic density, driving behavior, day of the week, and time of day on vehicle driving risks [25]. used PET 
to recommend that left-turn path-coordinated intersection management improve safety levels and travel efficiency at intersections. 
Analyze the safety of signalized intersections, researchers [26], used safety measures PET and T2 to analyze near-crash critical 
bicycle-vehicle conflict. Their study authors found that the prediction of conflict using random forest is better than other algorithms 
such as logistic regression and support vector machine (SVM). Analyzing skid safety hazards [27], revealed that SMoS, skid marks, 
show a strong linear correlation between rear-end crashes on freeway sections. The authors [6] had success in developing a classi
fication and regression tree (CART) model with an accuracy rate of 83% and a logistic regression model that correctly predicted 79% of 
fatal crashes. These models are essential for comprehending and tackling the causes of road collision deaths in India. Researchers [28] 
assessed the safety of pedestrians that considered highly vulnerable at intersections. The researcher used an unmanned aerial vehicle 
video technique for the analysis of PET and relative-TTC (RTTC). The results revealed many risky driving behaviors of right-turn 
vehicles around and outside crosswalks. [29], taking into account the vehicle speed variation coefficient throughout the highway 
to different truck proportions and the SMoS 85th percentile speed minus the 15th percentile speed (85%V–15%V). These tests were 
conducted at different times, and machine learning algorithms such as the k-mean and SVM were used to assess the traffic conflict 
conditions at various times. In their analysis of road safety in Indian mixed traffic flow, researchers such as [30], evaluated crossing 
conflict at unsignalized intersections. Surrogate measures PET used to categorize critical and noncritical conflicts. The implemented 
Tweedie distribution regression model revealed that critical and non-critical conflicts are significantly influenced by factors like as 
traffic volume, composition, time of day, and intersection geometry. But some researchers, like [3,30–32] found critical conflict using 
the critical speed, which was developed by combining the vehicle’s speed and the PET. In their study [33], analyzed the impact of 
traffic conflict, MTW, and auto on critical and noncritical conflicts at an unsignalized intersection using a truncated negative binomial 
regression model. The authors observed that smaller vehicles have a significant influence on traffic conflicts [7]. revealed that key 
crossing conflicts are significantly Influenced by the number and make-up of both violating and conflicting traffic streams. Higher 
offending volume correlates with an rise in conflicts, while conflicting volume shows a decrease in conflicts. Intersection geometry 
plays a crucial role, with central islands reducing negative conflicts but increasing positive conflicts. Using many SMoS indicators, 
including PET, Delta t (Δt), and the predicted loss of kinetic energy (ΔKE) at unsignalized intersections [34], created the conflict 
severity index (CSI). The authors observed that at a specific PET and Δt threshold, the severity index (CSI) increases with increasing 
vehicle speed, relative mass difference, and conflict angle. [3], used quantitative and qualitative techniques to evaluate critical conflict 
at unsignalized intersections. It was found that the PET threshold of 1 s was used to define critical conflict. However [35], employed 
modified TTC (MTTC) to analyze the safety of ordered and disordered traffic conditions. The author estimated the conflict using 

Fig. 2. TTC data extraction procedure.  
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simulated vehicle Next Generation Simulation (NGSIM) trajectory data and compared it with real-time crash data. The results revealed 
a strong temporal and spatial correlation with actual crashes. The exhaustive literature review reveals that road safety is a major 
concern in both homogenous and heterogenous traffic conditions. Researchers use multiple surrogate safety measures to evaluate the 
safety of various road facilities, whereas few studies have used a virtual environment, such as a micro-simulation tool, in addition to 
SSAM software. However, it shows that there is no standard for selecting traffic surrogate indicators and severe conflict levels. Each 
surrogate indicator has advantages, disadvantages, and appropriateness that the scenario must weigh. However, research evaluating 
the influence of road geometry traffic volume and composition, using an empirical approach is scarce. The assessment of rear-end 
conflict in approaching lanes at unsignalized intersections has been heavily ignored in previous research. Based on rear-end con
flict severity, it can be defined as critical or non-critical, leading to the development of suitable surrogate indicators. In disordered 
traffic scenarios, vehicles with diverse static and dynamic features and poor lane discipline interact in several dimensions of space and 
time. Therefore, assessing safety at traffic facilities in heterogeneous areas is more difficult. Henceforth, above the concern, current 
study endeavors to assess safety at unsignalized intersections in the hope that the contribution made by this study will serve as a 
foundation and insights and initiate discussions on operational policy changes in traffic conditions, focusing on enhancing safety. 
These discussions can lead to proactive measures for improving safety in transportation systems. 

3. Study methodology 

In this study, the safety of five three-arm unsignalized intersections was analyzed using different SMoS. All intersections have two 
approaches along a major road, and a third approach merge a minor road. Indian traffic scenario: vehicles drive on the left, so that the 
left turn from a minor road and a major road at unsignalized intersection, rarely involved in the conflict, whereas vehicles from both 
major and minor approaches must stop and yield at the intersection before proceeding to cross the through traffic on the major road. 
Right-turning vehicles (offending vehicles) have to identify an acceptable gap to cross through conflicting traffic on major roads. In 
cases where major roads have high traffic volumes, crossing vehicle drivers will have to wait longer to find adequate gaps to cross the 
road. In high traffic volumes, vehicles on major roads take evasive actions to decelerate or stop vehicles simultaneously. Based on an in- 
depth overview of the available literature Fig. 3 depicts the study methodology. The study used a SMoS, namely TTC, PET, and 
conflicting vehicle speed to identify conflict. On major roads, there could be problems with every right-turning vehicle and 
approaching vehicles in every lane at the intersection. For both major and minor approaches, a crossing conflict occurs when the 
offending vehicle collides with a through-moving vehicle at the intersection. Rear-end collisions occur when two consecutive vehicles 
move upstream and downstream at an intersection, and the leader vehicle takes an evasive action, such as braking, while the following 
vehicle, which is decelerating, reacts to avoid collision. The following sections outline the safety analysis of unsignalized intersections 
and the application of SMoS in this study. 

3.1. Site selection and data collection 

The study selected three-arm unsignalized intersections situated in tier-2 Bhopal city. To collect real data, careful consideration was 
taken while selecting the study area for field data collection. The intersections were identified based on various selection criteria, 
geometric specification, and traffic characteristics such as (a) all the intersections had similar types of traffic facilities such as three- 
legged intersections, (b) moderate traffic volume on both priority and non-priority streams, (c) sites were devoid of side friction 

Fig. 3. Flow chart of the proposed framework.  
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activities, bus stops, or roadside vendors, (d) motorist vehicle travel at their desired speed in urban conditions, (e) there were very few 
activities for pedestrians and bicycles, and (f) high vantage points were present near the location to capture video-graphic data. As per 
the above selection criteria, this study focuses on the speed of approaching vehicles at the intersection and right-turning vehicles for 
crossing conflicts. Fig. 4 shows snapshots of selected study locations. In terms of traffic flow characteristics, the selected study locations 
differ considerably. All selected intersection geometric and traffic characteristic details are demonstrated in Table 1. Traffic data were 
gathered from 12 p.m. to 6 p.m. encompassing both peak and off-peak hours, and recorded under favourable weather conditions. To 
obtain a clear view of the intersection area, a high-definition video camera is positioned at a high vantage point. where intersection 
areas are selected on the basis of the internal geometry of the influence area of interaction between different conflicting vehicles. Video 
graphic techniques were employed to collect data related to traffic conflict and operational traffic data from the study sites. To collect 
these data, different trap lengths were drawn on the intersection conflict area in recorded video using the semi-automated software 
Kinovea 9.4 [36]. Each intersection is represented by a unique identifier: 6-No Intersection (S1), Board Office Intersection (S2), 
Vaishali Nagar Intersection (S3), Ratnagiri Intersection (S4), and Neelbad Intersection (S5) for clearer visualization as shown in Fig. 4. 
Snapshot samples of Kinovea 9.4 grids placed on videographic-recorded sites (S1, S4) are shown in Fig. 4. The geometric configuration 
of each intersection was physically measured at each site to minimize obstructing traffic flow. At all intersections, two types of rear-end 
and crossing maneuvers are observed: (1) right-turning vehicles on both major and minor roads, as well as through-moving vehicles on 
the major roads; and (2) approaching vehicle maneuvers on the through movement at the intersections. Although both traffic 
movement crossing maneuvers and approaching maneuvers are observed to be more common at all intersections, the reason for this is 
that a single vehicle is involved in conflict with multiple vehicles. However, previous researchers have observed that crossing conflict is 
more severe at unsignalized intersections, [2,8,30,33,37]. 

3.2. Data extraction 

Following data collection of intersections, the recorded video is transferred to a PC where all necessary traffic data are extracted for 
further analysis, such as vehicular traffic volume, number of conflicts vehicular composition, and vehicle categories involved in 
conflict situations. Furthermore to obtain conflict data involves dividing the intersection conflict area into equal-sized square grids. 
Conflict data such as SMoS namely PET, TTC, and conflicting vehicle speed are extracted by overlapping a grid size to 3.5 × 3.5 m using 
the semi-automated software Kinovea; 9.4. The grid aid in determining the precise physical location of the conflict by splitting the 
intersection area into smaller sections. This open source video processing program is often employed for sports assessment that de
mands the maximum degree of precision, such as monitoring a cricket ball and calculating the bowler’s speed when the ball has been 
thrown [38]. These grids are spatial spots at an intersection where two conflicting vehicles are moving simultaneously. Recorded video 
graphics are displayed on the PC screen at a rate of 25 frames per second. The SMoS indicator PET and TTC are computed using the 
above section mentioned in equations (1) and (2). For calculating CSV that are conflicting through vehicles, the time for covering the 
distance over grids is recorded, and their speed is calculated. Furthermore, to reduce human error, operational traffic data, and conflict 

Fig. 4. Camera views of the intersection sites.  
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are extracted by two skilled persons. For the current study, TTC for rear-end conflict for downstream movement and PET, the con
flicting vehicle speed for right-turning movement, and crossing conflict were extracted. To facilitate comprehension, Fig. 5 provides a 
schematic illustration of crossing conflicts and rear-end conflicts with interacting vehicles at an unsignalized intersection. Conflicting 
vehicles are straight-moving vehicles on major roads, the offending vehicle is arriving from a minor road, and trialling vehicles in a 
rear-end collision where the vehicle speed is higher than that of the leading vehicle. 

The hourly vehicular traffic volume of intersection sites varies from 1667 to 4381 veh/hour. Five types of vehicle categories were 
observed in the selected study sites: MTW, auto, car, LCV including passenger taxi, light and median goods vehicle, and other heavy 
commercial vehicle (HCV) including buses and small trucks. Tables 2 and 3 shows the composition of all vehicles involved in the 
observed conflict, both right-turning conflicts and conflicting vehicles. The proportion of MTWs is dominant, accounting for 46%–58% 
of all vehicle classifications at all sites. The proportion of cars is found to be the second largest followed by auto. Selected urban sites 
offer diverse traffic conditions and complex road infrastructure, making them ideal for safety assessments. Thus, MTWs accounted for 
the highest proportion as they are the main way of moving passengers from their origin to their destination. 

3.3. Modelling of conflicts 

Modelling of conflicts PET values use as crucial metric to examine crossing conflicts within the temporal proximity of a crossing 
event; a lower PET indicates closer proximity to a crash occurrence. Likewise, all traffic conflict interactions are not converting into 
crashes. Previous research identified critical conflicts based on the critical speed. Critical conflicts are identified from other non-critical 
events based on the critical speed. The fundamental idea is that a conflict should be classified as critical if the through moving vehicle 
conflicting speed appears to be higher than the related the critical speed [30,31,37]. Using this concept, critical speeds for various PET 
levels are calculated by assuming g = 9.81 m/s2 and coefficient of friction = 0.35, as indicated in equation (3) below.  

Critical speed, v = 2gf × PET Equation                                                                                                                                        (3) 

In order to evaluate the safety of unsignalized intersections, considering critical crossing conflicts helps to better understand and 
quantify traffic safety that reflects near-crash scenarios. Only important crossing conflicts are considered in this current study. Crash 
and conflict prediction models are often developed using generalized linear models [39]. GLM comprises three elements: the response 
distribution (with mean ui), linear predictor BTX, and link function. It is commonly used when the sample being analyzed is a count 
dataset with flexible models that include a link function to link a linear predictor and its variability characterized by a distribution in an 
exponential dispersion group. The primary aims of the GLMs is to apply the concept of linear modeling to circumstances in which the 
independent variable and mean response have a linear relationship. The following criteria apply to this model: (1) it preserves the 
linear element; (2) distributions are limited to the exponential dispersion group; and (3) responses need to be independent. 

Table 1 
Intersection Inventory details of road geometric and traffic characteristic.  

Sn. 
No. 

Intersection (Case) Lane 
configuration 

Peak hour 
volume (Veh/h) 

Off-peak hour 
volume (Veh/h) 

Avg. traffic 
volume (Veh/h) 

Intersection area 
(sqm) 

Coordinate 
(Longitude, Latitude) 

1 6-No Intersection 
(S1) 

4-lane X 2-lane 3688 2456 3072 369 23.228435, 
77.428528 

2 Board office 
Intersection (S2) 

6-lane X 2-lane 4381 2765 3573 300 23.230611, 
77.430229 

3 Vaishali Nagar 
Intersection (S3) 

4-lane X 2-lane 3784 2036 2910 204 23.218075, 
77.397720 

4 Ratnagiri 
Intersection (S4) 

6-lane X 6-lane 4092 2484 3288 369 23.250986, 
77.479554 

5 Neelbad Intersection 
(S5) 

4-lane X 2-lane 2579 1667 2123 191 23.193503, 
77.343529  

Fig. 5. Conflict between the offending and conflicting vehicles: (a) crossing conflict; (b) rear-end conflict.  
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where ’link function’ refers to a mathematical function that employs a linear combination of explanatory variables to represent the 
categorical variable. When dealing with data involving continuous, categorical, and count-dependent variables, function g() 
frequently accommodates an identity, a logit, or a log transformation. 

The GLM can be expressed in equation (4) as: 

g(ui)= βiXi (4)  

Where ui = E(yi) = g − (βiXi).g() is a link function that uses a linear combination of explanatory variables to display the category 
variable. Function g() typically employs an identity, a log, or a logit transformation for continuous, categorical, and count-dependent 
variables, respectively. 

The conflict model is expressed statistically as follows in Equation (5): 

ln (Yi)= βο + β1 ∗ Xi1 + ......+ βm ∗ Xim, (5)  

where ln (Yi) = predicted the crossing conflicts; Xi1, Xim = covariates representing traffic related; β0, β1, βm = model parameters. 
The examination of crossing conflicts through PET analysis focuses on the temporal closeness to a potential crash event; with lower 

PET values indicating a higher degree of temporal proximity. However, it’s essential to note that not all conflicts result in crashes. 
Research indicates that crossing conflicts with PET values less than or equal to 1 s closely resemble crash scenarios, irrespective of 
traffic composition [3,40]. As a result, this study uses the PET values to classify crossing conflicts as critical and noncritical crossing 
conflicts. 

4. Analysis and discussion 

From the videography data, the crossing conflict safety measure PET and rear-end conflict safety measure TTC were extracted from 
all study sites. Further estimated PET and TTC frequency distributions and exploratory analyses are conducted. 

4.1. Frequency distribution of proximal indicators 

The proximal distribution SMoS of PET and TTC thresholds, which vary from 0 to 6 s and 0–5 s, has been examined for all sites. 
Fig. 6 shows that at sites S-1, S-2, and S-4, the maximum PET thresholds are distributed from 0 to 2.5 s, respectively. At the intersection 
(S-3; S-5), a significant portion of the PET threshold lies within the range of 1–3 s. 

The significant amount lies within the range of 1.5–2.5 s in the case of the TTC threshold distribution shown in Fig. 7 at that site (S- 
2; S-5). Whereas the TTC threshold at (S-1) ranges from 1.5 to 3 s, it ranges from 2 to 3 sat (S-3). At S-4, a significant amount of the TTC 
threshold lies within a range of 1–1.5 s. 

4.2. Characteristics of the proximal indicators 

Exploratory data analysis was conducted to ascertain the characteristics of safety measures, PET, TTC, and conflicting vehicle 

Table 2 
Characteristics of PET and conflicting vehicle speed.  

Study sites Intersection (S1) Intersection (S2) Intersection (S3) Intersection (S4) Intersection (S5) 

No of observed conflicts 755 585 556 870 497 
Average PET (s) 1.85 1.82 2.06 1.94 2.06 
Minimum PET (s) 0.23 0.13 0.29 0.11 0.05 
Maximum PET (s) 5.72 5.34 5.80 5.80 5.47 
Minimum CSV (km/h) 13.21 11.92 10.55 11.52 13.82 
Average CSV (km/h) 28.40 30.28 25.33 32.03 28.05 
Maximum CSV (km/h) 50.47 54.11 50.33 52.38 49.28 
Composition of vehicles involved conflict (%) 

MTW:Auto:Car:LCV:HCV 
58:5:24:8:5 47:12:26:11:4 53:12:26:6:3 46:7:27:7:13 53:10:26:7:4  

Table 3 
Characteristics of the TTC.  

Study sites Intersection (S1) Intersection (S2) Intersection (S3) Intersection (S4) Intersection (S5) 

No of observed conflicts 900 1165 1100 996 933 
Average TTC (s) 1.83 1.43 2.30 1.40 2.03 
Minimum TTC (s) 0.24 0.28 0.36 0.67 0.34 
Maximum TTC (s) 4.92 4.97 4.93 4.91 2.02 
Composition of vehicles involved conflict (%) 

MTW:Auto:Car:LCV:HCV 
56:9:19:12:4 54:9:26:9:2 55:8:20:11:6 49:4:25:9:13 57:9:18:12:4  
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speed. Therefore, several parameters are estimated for this purpose, including the minimum, average, and maximum values of SMoS 
indicators as well as the preparation of vehicles presented at each site, as shown in Tables 2 and 3 The extracted data shows that for all 
study sites, 8357 conflicts are observed. Each crossing conflict analysis was relied on PET values and CSV, whereas the rear end conflict 
analysis was based on the TTC indicator. The PET and TTC threshold ranges are 0–6 s and 0–5 s, respectively, considered identifying 
conflicts. Conflicts with PET and TTC thresholds greater than 6 s and 5 s are common conflicts and are not harmful since the driver has 
enough time to keep maintain control of the vehicle and while take evasive action if necessary. The average PET value for all sites 
ranged from 1.82 to 2.06 s, and the TTC value ranged from 1.4 s to 2.30 s, which is a very low threshold. From this observation, both 
vehicles on the right of way and non-priority vehicles are at high risk at a three-legged intersection. However, the average speed of 
vehicles varies from 25 to 31 km/h. The average vehicle speed at the site (S-4) is higher than that at the other intersections because of 
the suburban area at the intersection. The average TTC threshold at site (S-4) is 1.4 s, which indicates that the right-hand vehicle is 
involved in a higher degree of collision compared to non-priority vehicles. It was discovered that MTWs accounted for the highest 
proportion of all sites, ranging from 46 % to 58%. Because MTWs are a more prevalent mode of transportation for moving passengers 
between locations, they are found in higher proportions across all sites. The proportion of cars was observed to be the second largest, 
followed by LCV. 

4.3. Distribution of crossing critical conflicts 

The observed conflict is based on safety measures such as PET from 0.5 to 6 s from each site, which are separated into different 
categories with an increment of 0.5 s. When there is a conflict, the lower threshold of safety measures for each group is used to calculate 

Fig. 6. PET frequency distribution for intersections.  
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the group critical speed. Critical conflicts are those having a certain PET threshold and conflicting speed higher than the corresponding 
calculated critical speeds [8,30,31]. The concept has been employed to identify the critical conflicts by on through moving vehicle, 
MTW, auto, car, LCV, and HCV, respectively. The sum of all vehicles involved in a critical conflict were found at each intersection is 
given as the total critical conflict. It is found at critical conflicts at the site S-1 (43.2%), S-2 (40.51%), S-3 (25.19%), S-4 (43.44%) and 
S-5 (30.37%) respectively. Depending on the PET threshold and the vehicle conflicting speed, Table 4 shows that at all sites, through 
moving vehicle, MTW categories are involving the highest proportion of critical conflict with right turning movement vehicle followed 
by car, auto and LCV. It is thus pretty clear that there is a very high chance of collisions of MTW. Although the MTW has higher speed 
and manoeuvrability compared to other vehicles, which could increase the probability of collision, The reasons for that are the 
relatively small temporal gap between the right-turning vehicle and approaching through moving MTW in the conflict area, which in 
turn leads to a higher proportion of critical conflict. On the contrary, HCV, characterized by larger size and reduced manoeuvrability, 
tend to experience fewer critical conflicts at intersections. The decreased speed of HCVs at intersections contributes to lower critical 
conflict rates compared to other vehicles. 

The study employs PET and CSV to differentiate critical conflicts from the overall crossing conflicts observed across all intersection 

Fig. 7. TTC frequency distribution for intersections.  
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Table 4 
Distribution of conflicts for through traffic with right-turning conflict.  

Study Site 
(Intersection) 

Total number 
of conflict at 
Intersection 

Through moving vehicle categories 

MTW Auto Car LCV HCV 

Total 
number 
of 
conflicts 

Number 
of critical 
conflict 

Percentage 
of critical 
conflict 

Total 
number 
of 
conflict 

Number 
of critical 
conflict 

Percentage 
of critical 
conflict 

Total 
number 
of 
conflict 

Number 
of critical 
conflict 

Percentage 
of critical 
conflict 

Total 
number 
of 
conflict 

Number 
of critical 
conflict 

Percentage 
of critical 
conflict 

Total 
number 
of 
conflict 

Number 
of critical 
conflict 

Percentage 
of critical 
conflict 

S-1 755 435 218 28.9 36 16 2.1 183 55 7.3 62 28 3.7 39 9 1.2 
S-2 585 276 129 22.05 70 26 4.44 151 52 8.89 64 30 5.13 24 0 0 
S-3 556 297 79 14.21 61 18 3.24 143 32 5.76 36 8 1.44 19 3 0.54 
S-5 497 265 102 20.52 50 11 2.21 129 27 5.43 35 10 2.01 18 1 0.20 
S-4 870 399 189 21.72 59 36 4.14 231 108 12.41 61 30 3.45 120 15 1.72  
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sites. CSV that are higher than the critical speed is deemed critical conflict. The above Table 5 shows the frequency of conflicts at each 
site and the percentage of critical conflicts. The data indicate that there are between 140 and 378 critical conflicts at the selected study 
locations. Consequently, there is a noticeable increase in the proportion of critical conflicts, from 25.19% to 43.44%. All the locations 
are therefore equally risky; nevertheless, based on the critical conflict frequency and their proportional share, the study sites (S-1, S-4) 
are the most dangerous. Because the primary cause of critical crossing conflict situations at unsignalized intersections is the undis
ciplined driver behavior of non-prioritized vehicles right-turners, their movement must be managed to address these dangerous places. 
Therefore, to improve junction safety, several traffic control and calming techniques could be implemented. Warning signs can be 
implemented to draw attention to driver manoeuvrability. While installing camera intersections can help increase driver adherence to 
traffic regulations, on minor roads, Speed humps and speed tables can be built to restrict speed and enhance safety, and on major roads, 
a right turn lane can be given to encourage orderly movements. 

4.3.1. Development of a generalized linear model crossing conflict 
For the combination of all selected intersection datasets, PET data of each intersection was conducted to evaluate the significance of 

the different means of two different intersection datasets. It has been observed that the intersection p-value range varies from 0.209 to 
0.870. This denotes the null hypothesis, which claims that the PET values of the chosen dataset from intersections do not significantly 
differ from one another. Therefore, further analysis data have been compiled. At a 5-min data aggregation period, the total number of 
conflicts, traffic volume, critical conflicts, and vehicle composition were aggregated together. Table 6 provides an overview descriptive 
statistics of the dependent and independent variables. 

The generalized linear model (GLM) was developed using a 5-min data aggregation period. GLM analysis was performed using 
independent variables that correlated with the dependent conflict. Descriptive statistics are shown in Table 6, which lists the variables 
considered for the analysis. The GLM analysis output, considering six parameters (MTW, Car, Auto LCV, HCV, and Volume), resulted in 
a model from SPSS 20.0, as illustrated in Table 7. The standard deviation of the output variable changed as a result of changes in the 
input variable is represented by coefficient B, and the positive or negative sign of coefficient B indicates a rise or fall in the output value 
resulting from changes in the input variable. Included in the model were the variables with p < 0.05. There is a substantial correlation 
between the MTW, Car, LCV, HCV, and volume with the number of conflicts. The model developed after considering six independent 
variables is displayed in equation (6). 

Conflict = − 1.717 + 1.016(MTW) + 0.988(Car) + 0.973(LCV) + 1.072(Auto) + 1.018(HCV) – 0.025(Volume) Equation (6) 
Table 7 illustrates the significant influence of traffic volume on the number of crossing conflicts within conflict intervals. As traffic 

volume increases, there is a corresponding decrease in the number of conflicts. This is explained by the fact that when traffic volume 
increases, the gap in the traffic stream narrows. As a result, the offending stream’s vehicles roll over narrower gaps, which lowers their 
speed, increases their PET, and reduces conflicts. The relationship between traffic volume and confrontations crossing conflicts is 
consistent with the results obtained by Refs. [2,7,41]. As there are more conflicts, there are more motor vehicles (MTW, Auto, Car, LCV, 
and HCV) in the conflicting stream. The developed GLM model yielded results for the Akaike information criterion (AIC) of 74.35 and 
the Bayesian information criterion (BIC) of 97.39. The model showed the best fit when the BIC was greater than the AIC. 

In order to verify the model accuracy, the Poisson-Tweedie model was developed for conflict using the same variables. The 
established model produced findings with a BIC of 257.02 and an AIC of 233.98. Therefore, the GLM is shown to have a superior 
goodness-of-fit. As a result, based on traffic flow as well as intersection-related variables, the developed model is helpful in predicting 
crossing conflicts at other unsignalized intersections and accurately demonstrates the field situation. 

4.4. Classification of the severity level 

The TTC indicator was categorized based on several groups in order to measure the severity of conflict using the k-means clustering 
technique. In order to address clustering issues in machine learning, k-means is centroid-based algorithm [42]. Cluster validation was 
carried out to assess the quality of the clusters. Moreover, silhouette analysis is employed to identify the optimal number of clusters 
within a specific range of datasets. The MATLAB program was used to classify data for various k-values, producing groups that were 
divided into two, three, four, and five clusters. Fig. 8(a–c) displays the silhouette plots and average values for each cluster. The average 
of all-cluster silhouettes is known as the global silhouette value, and it functions as a useful validity metric for clustering. A higher 
global silhouette value denotes a robust structure, whereas a lower value indicates insufficient clustering [43,44]. [43], stated that a 
strong-quality cluster has a global silhouette value of 0.71–1.0. A value between 0.51 and 0.70 shows an average structure, 0.26 and 
0.50 is a poor structure, and less than 0.25 is no appreciable structure. In this investigation, k = 2 had a global silhouette value of 0.75, 
k = 3 had a value of 0.54, and k = 4 had a value of 0.74. These values show that k = 2 was the maximum value; the two clusters were 
determined to be optimal. Thus, conflict intensity was divided into two groups. The first category indicates high-risk vehicular 
interaction, whereas a quick action is required from at least one user because of the very narrow spacing between the two vehicular. 

Table 5 
Characteristics of critical conflicts.  

Study Site Intersection (S1) Intersection (S2) Intersection (S3) Intersection (S4) Intersection (S5) 

No. of observed conflicts 755 585 556 870 497 
No. of critical conflicts 326 237 140 378 151 
Percentage of critical conflicts (%) 43.2 40.51 25.19 43.44 30.37  
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The second is moderate-risk interaction; there is sufficient space between the two vehicles, and one user needs to act right away. 
Cluster analysis was used to determine the threshold value, which denotes the collision risk threshold from high to moderate. Fig. 8 (d) 
shows that when TTC is less than 1.15 s, the vehicular interaction is at high risk of collision. While the most commonly cited TTC 
threshold is 1.5 s, some earlier studies have increased the threshold to 2.5 s [31]. This shows that a determined threshold could be used 
to identify conditions for the analysis of high-risk vehicle interactions in mixed traffic conditions. 

5. Conclusion 

At an unsignalized intersection, traffic flow becomes very challenging in mixed traffic conditions. This is due to fast-moving 
approaching vehicle’s potential to collide with other oncoming and turning vehicles at intersections due to their undisciplined 
behaviour of driver. As a result, this intricate move intensifies the conflict and increases the likelihood of a collision. For that reason, 
this study adopted a conflict-based safety evaluation approach to analyze the safety of five unsignalized intersections. The crossing 
conflict manoeuvre were characterized by incorporating vehicular CSV and PET. As a result, critical crossing conflicts are identified by 
determining another variable known as critical speed. Traffic Conflicts are identified as critical when conflicting vehicular speeds 
exceed the estimated critical speeds. Along with the potential surrogate indicator, TTC was used to identify rear-end conflicts in 
approaching traffic movements at intersections. The optimal TTC threshold for identifying significant rear-end conflict situations in 
approaching movements is observed to be 1.15 s. The result shows that a significant number of critical conflicts occurred in the turning 
movement at all intersections, from 25.19% to 43.44% This demonstrates that the driver of the vehicle accepts minor gaps and takes, 
which are essential and harmful to their safety. The percentage of critical conflicts involving MTWs is higher than that of other vehicles 
in conflicting maneuvers. As a result, this very short interval between the end of a right-turning vehicle’s intrusion and the arrival of a 
moving MTW at the conflict zone rise the percentage of critical crossing conflicts. Moreover, a generalized linear model is employed to 
predict the occurrence of crossing conflicts based on factors such as traffic volume and composition. The frequency of crossing conflicts 
in the movement of traffic is highly influenced by the composition of the traffic. The potential for conflict increases with the prolif
eration of MTW, autos, cars, LCV, and HCV in conflicting streams. On the other hand, conflict drastically decreases when traffic volume 
increases. Overall, the study concluded that the conflict-based approach is efficient for evaluate of safety at unsignalized intersections, 
which are most vulnerable to all types of road facilities. Thus, the insights may be used to enhance safety at unsignalized intersections 
that have road geometry comparable to the chosen sites, where traffic volume ranges from 1667 to 4381 vehicles per hour. This study 
contains constraints that can be expanded to identify rear-end critical conflict in the approaching stream for the inclusion of more types 
of traffic facilities. It can also be performed through simulation using this concept. In conclusion, it can be argued that most India and 
other developing nations have severe problems with the accessibility and reliability of crash records. 
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Table 6 
Descriptive statistics of selected variables.  

Variable Details  

N Minimum Maximum Mean Std. Deviation 
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Car 60 8.10 31.32 16.57 5.29 
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Auto 60 0.00 10.20 3.84 2.00 
HCV 60 0.00 7.83 2.25 2.23 
Volume 60 18.00 49.00 30.17 7.51  

Table 7 
Model summary.  

Parameter B Std. Error Exp(B) Sig. 
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Car 0.988 0.0182 0.000 
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[23] Orazio Giuffrè, Anna Grana, Maria Tumminello, Tullio Giuffrè, Salvatore Trubia, Antonino Sferlazza, Marko Rencelj, Evaluation of roundabout safety 

performance through surrogate safety measures from microsimulation, J. Adv. Transport. 1–14 (2018) (2018), https://doi.org/10.1155/2018/4915970. 
[24] Q. Shangguan, T. Fu, J. Wang, R. Jiang, S. Fang, Quantification of rear-end crash risk and analysis of its influencing factors based on a new surrogate safety 

measure, J. Adv. Transport. (2021), https://doi.org/10.1155/2021/5551273. 
[25] M. Yang, H. Yu, L. Bai, Simulation-based evaluation of variation in left-turn paths in the coordinated intersection management’, J. Adv. Transport. (2021) 

https://doi.org/10.1155/2021/6243530. 
[26] D. Rostami, A. Katthe, A. Sohrabi, Aryan, J. Arash, Predicting critical bicycle-vehicle conflicts at signalized intersections, J. Adv. Transport. (2020) 1–16, 

https://doi.org/10.1155/2020/8816616Shangguan. 
[27] Y. Ma, W. Huang, Z. Tian, D. Li, H. Cai, J. Su, Research of surrogate measure for freeway crashes based on tire skid marks, J. Adv. Transport. (2021), https://doi. 

org/10.1155/2021/6673933. 
[28] P. Chen, W. Zeng, G. Yu, Surrogate safety analysis of pedestrian-vehicle conflict at intersections using unmanned aerial vehicle videos’, J. Adv. Transport. 

(2017) https://doi.org/10.1155/2017/5202150. 
[29] Shengdi Chen, Shiwen Zhang, Yingying Xing, Jian Lu, Yichuan Peng, H. Zhang, The impact of truck proportion on traffic safety using surrogate safety measures 

in China, J. Adv. Transport. (2020) 1–15, https://doi.org/10.1155/2020/8636417. 
[30] S. Shekhar Babu, P. Vedagiri, Proactive safety evaluation of a multilane unsignalized intersection using surrogate measures, Transportation Letters 10 (2) (2018) 

104–112, https://doi.org/10.1080/19427867.2016.1230172. 
[31] D. Singh, P. Das, P. Noor, Surrogate Safety Evaluation at Uncontrolled Intersection in Non-lane Base Traffic Conditions’, vol. 93, European Transport/Trasporti 

Europei, 2023, pp. 1–16, https://doi.org/10.48295/et.2023.93.11. 
[32] K.A. Srinivasula Reddy, Akhilesh Chepuri, Shriniwas S. Arkatkar, Gaurang Joshi, Developing proximal safety indicators for assessment of un-signalized 

intersection – a case study in Surat city, Transportation Letters 12 (5) (2020) 303–315, https://doi.org/10.1080/19427867.2019.1589162. 
[33] Aninda Paul, Jaydip Goyani, Shriniwas Arkatkar, Gaurang Joshi, Modeling the effect of motorized two-wheelers and autorickshaws on crossing conflicts at 

urban unsignalized T- intersections in India using surrogate safety measures, Transport. Res. Procedia 62 (2022) 774–781, https://doi.org/10.1016/j. 
trpro.2022.02.096. 

[34] M. Paul, I. Ghosh, Development of conflict severity index for safety evaluation of severe crash types at unsignalized intersections under mixed traffic’, Saf. Sci. 
144 (August) (2021) 105432 https://doi.org/10.1016/j.ssci.2021.105432. 

[35] A. Charly, T.V. Mathew, Estimation of traffic conflicts using precise lateral position and width of vehicles for safety assessment’, Accid. Anal. Prev. 132 (July) 
(2019) 105264 https://doi.org/10.1016/j.aap.2019.105264. 

[36] Kinovea, C. Dehwko, Kinovea (2019). http://www.kinovea.org. 
[37] M. Paul, I. Ghosh, Speed-based proximal indicator for right-turn crashes at unsignalized intersections in India’, J. Transport. Eng., Part A: Systems 144 (6) 

(2018) https://doi.org/10.1061/jtepbs.0000139. 
[38] A. Kathuria, P. Vedagiri, Evaluating pedestrian vehicle interaction dynamics at un-signalized intersections: a proactive approach for safety analysis’, Accid. 

Anal. Prev. 134 (2019) 105316 https://doi.org/10.1016/j.aap.2019.105316. 
[39] M.V. Wüthrich, M. Merz, Introduction, in: Statistical Foundations of Actuarial Learning and its Applications, Springer Actuarial. Springer, Cham, 2023, https:// 

doi.org/10.1007/978-3-031-12409-9_1. 
[40] L. Peesapati, M. Hunter, M. Rodgers, Evaluation of post encroachment time as surrogate for opposing left-turn crashes, Transportation Research Record:Journal 

of the Transportation Research Board 2386 (2013) 42–51. 
[41] J. Goyani, N. Gore, S. Arkatkar, Crossing conflict models for urban un-signalized T-intersections in India’, Transportation Letters 00 (00) (2023) 1–9, https:// 

doi.org/10.1080/19427867.2023.2250161. 

D. Singh et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(24)03696-X/sref1
https://doi.org/10.1155/2016/1305890
https://doi.org/10.1080/17457300.2019.1669666
https://doi.org/10.1016/j.iatssr.2022.03.001
https://doi.org/10.1177/0361198120925258
https://doi.org/10.1016/j.heliyon.2022.e11531
https://doi.org/10.1080/17457300.2022.2147194
https://doi.org/10.1080/17457300.2019.1669666
https://doi.org/10.1016/S0001-4575(01)00062-8
https://doi.org/10.1016/S0001-4575(01)00062-8
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref11
https://doi.org/10.1016/j.ssci.2010.07.016
https://doi.org/10.1016/j.ssci.2010.07.016
https://doi.org/10.1016/j.aap.2006.02.003
https://doi.org/10.1016/j.aap.2006.02.003
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref13
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref14
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref14
https://doi.org/10.1016/j.amar.2021.100185
https://doi.org/10.1007/s12205-023-0979-y
https://doi.org/10.1007/978-981-99-6090-3_51
https://doi.org/10.1007/978-981-19-4204-4_7
https://doi.org/10.1016/j.aap.2023.107380
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref20
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref21
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref22
https://doi.org/10.1155/2018/4915970
https://doi.org/10.1155/2021/5551273
https://doi.org/10.1155/2021/6243530
https://doi.org/10.1155/2020/8816616Shangguan
https://doi.org/10.1155/2021/6673933
https://doi.org/10.1155/2021/6673933
https://doi.org/10.1155/2017/5202150
https://doi.org/10.1155/2020/8636417
https://doi.org/10.1080/19427867.2016.1230172
https://doi.org/10.48295/et.2023.93.11
https://doi.org/10.1080/19427867.2019.1589162
https://doi.org/10.1016/j.trpro.2022.02.096
https://doi.org/10.1016/j.trpro.2022.02.096
https://doi.org/10.1016/j.ssci.2021.105432
https://doi.org/10.1016/j.aap.2019.105264
http://www.kinovea.org
https://doi.org/10.1061/jtepbs.0000139
https://doi.org/10.1016/j.aap.2019.105316
https://doi.org/10.1007/978-3-031-12409-9_1
https://doi.org/10.1007/978-3-031-12409-9_1
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref43
http://refhub.elsevier.com/S2405-8440(24)03696-X/sref43
https://doi.org/10.1080/19427867.2023.2250161
https://doi.org/10.1080/19427867.2023.2250161


Heliyon 10 (2024) e27665

15

[42] S. Guha, R. Rastogi, K. Shim, CURE: an Efficient Clustering Algorithm for Large Databases, ACM SIGMOD Conference, 1998. 
[43] P. Spector, Stat 133 Class Notes 2013—Spring, Univ.of California, Berkeley, 2011. http://www.stat.berkeley.edu/%7Es133/all2011.pdf. (Accessed 25 July 

2016). 
[44] Abhinav Kumar, Madhumita Paul, Indrajit Ghosh, Analysis of pedestrian conflict with right turning vehicles at signalized intersections in India, J. Transport. 

Eng. (2019) 145, https://doi.org/10.1061/JTEPBS.0000239. 

D. Singh et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(24)03696-X/sref40
http://www.stat.berkeley.edu/%7Es133/all2011.pdf
https://doi.org/10.1061/JTEPBS.0000239

	Conflict-Based safety evaluations at unsignalized intersections using surrogate safety measures
	1 Introduction
	2 Literature review
	3 Study methodology
	3.1 Site selection and data collection
	3.2 Data extraction
	3.3 Modelling of conflicts

	4 Analysis and discussion
	4.1 Frequency distribution of proximal indicators
	4.2 Characteristics of the proximal indicators
	4.3 Distribution of crossing critical conflicts
	4.3.1 Development of a generalized linear model crossing conflict

	4.4 Classification of the severity level

	5 Conclusion
	Data availability statement
	Additional information
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


