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Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight
neoplastic lesions spread over the entire body. This makes it an important therapy option
for patients suffering from metastatic melanoma, which is often resistant to chemotherapy.
However, conventional cellular vaccination approaches, based on monocyte-derived DCs
(moDCs), only achieved modest response rates despite continued optimization of various
vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo
culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus,
focused on vaccines that make use of primary DCs. Though rare in the blood, these nat-
urally circulating DCs can be readily isolated and activated thereby circumventing lengthy
ex vivo culture periods. The first clinical trials not only showed increased survival rates but
also the induction of diversified anti-cancer immune responses. Upcoming treatment para-
digms aim to include several primary DC subsets in a single vaccine as pre-clinical studies
identified synergistic effects between various antigen-presenting cells.
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INTRODUCTION
Melanoma is a malignant transformation of melanocytes – the
pigment producing cells of the epidermis – and the most aggres-
sive cancer of the skin (1). Over the past years, the number of
melanoma incidences rose worldwide and reached 232,130 diag-
nosed cases in 2012 (2–4). Once melanoma patients develop
metastatic disease, life expectancy drops and survival rates are low
(1, 5, 6). Traditional treatment methods focus on chemotherapy
and radiation therapy, which are highly invasive and often fail to
induce objective clinical response (6).

Novel treatment strategies focus on melanoma patients that
carry an activating mutation in protein kinases involved in MAPK
or AKT signaling (7). Recently approved small molecule inhibitors,
such as vemurafenib, allow specific targeting of these mutated
kinases and lead to rapid tumor regression and prolonged survival
in treated patients (7–9). However, due to the prompt develop-
ment of resistance in many cases, and major cutaneous side effects,
including the induction of neoplastic lesions, small molecule
inhibitors are so far of limited clinical use (6, 8).

As pharmacological treatment paradigms fail to induce last-
ing responses, researchers, clinicians, and patients turn to

Abbreviations: APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte; DC,
dendritic cell; FSME, Frühsommer-meningoencephalitis; HLA, human leukocyte
antigen; i.d., intradermal; IFN, interferon; IL, interleukin; i.v., intravenous; KLH,
keyhole limpet hemocyanin; mDC, myeloid dendritic cell; MHC, major histocom-
patibility complex; moDC, monocyte-derived dendritic cell; NK cell, natural killer
cell; pDC, plasmacytoid dendritic cell; PRR, pathogen recognition receptor; TAA,
tumor-associated antigen; TLR, toll-like receptor.

immunotherapy, which – due to major advances – was recently
declared as breakthrough of the year 2013 by scientific journal
Science (10).

The ability of the immune system to fight tumors was first
described by William B. Coley, who in the nineteenth century
observed cancer regression in patients suffering from inoperable
sarcoma after injecting bacterial toxins into neoplastic lesions (11).
Today, cytotoxic CD8+ T lymphocytes (CTLs) are considered to
be the fundamental mediators of anti-cancer immunity (12–16).
In vitro experiments and studies in mice showed that CTLs are able
to specifically target cancerous cells and destroy them by inducing
apoptosis (12, 13, 17). Clinical evidence confirmed the importance
of CTLs in patients suffering from melanoma and other cancers,
as infiltrating CD8+ T cells found in tumor biopsies were strongly
associated with improved life expectancy (18–20). Furthermore,
melanoma patients with tumor-specific T cells in peripheral blood
displayed increased clinical response rates (21). Immunotherapy
hence aims to induce a potent and lasting T cell response against
malignant cells.

One approach to potentiate the patient’s own immune
response is to prolong the activity phase of the T cell response.
Immunomodulatory drugs, such as the CTLA-4-blocking anti-
body ipilimumab or the PD-1-blocking antibody nivolumab, aim
to unleash the patients’ natural anti-cancer T cell responses by
interfering with inhibitory pathways (22–27). Neoplastic cells fre-
quently exploit, e.g., the PD-1 pathways to suppress the immune
system leading to immune escape and disease progression (28,
29). Notably, ipilimumab was the first treatment agent to provide
survival benefit for patients suffering from melanoma and is now
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standard treatment for this type of cancer (10, 26, 28). Although
only effective in a minority of patients, ipilimumab frequently
induces objective responses that are remarkably long lasting (26,
30). Due to their broad mechanism of action, immunomodula-
tory antibodies can, however, cause severe and potentially fatal
side effects by activating autoreactive T cells. Patients with, e.g.,
skin rash, colitis, hypophysitis, or high-grade hepatic adverse
events were reported (6, 30). To overcome these side effects,
targeted therapies that only activate cancer-specific T cells are
desired.

Specific T cell responses are naturally induced by dendritic
cells (DCs) (31, 32). DCs are professional antigen-presenting cells
(APCs) that sample the body for antigens and danger signals
derived from pathogens or tumors (33). After encountering such
signals, DCs become activated and migrate to the lymph node,
where they activate naïve T cells to become CTLs or helper T cells
(32, 33). Due to their great regulatory capacities and outstand-
ing ability to activate antigen-specific T cells, DCs have become
an attractive target in several immunotherapeutic approaches in
cancer.

Cellular vaccination therapies were developed in the mid 1990s,
when new laboratory techniques allowed the enrichment of DCs
from peripheral blood (34–37). Murine DCs were isolated from
peripheral blood by density gradients, loaded ex vivo with tumor
antigens, and injected back into the blood (17, 38). This technique
was rapidly transferred to the clinical setting when in 1996 pioneer
Frank Hsu treated patients suffering from B-cell lymphoma with
autologous, antigen-loaded DCs (39). Strikingly, clinical response
could be detected in a majority of patients, kickstarting the field
of therapeutic DC vaccination (Figure 1).

However, only after Sallusto and colleagues discovered a
method to differentiate DCs from monocytes in vitro, sufficient
cellular material was available to start clinical trials that went
further than pure proof of principal (40). Following this devel-
opment, Nestle and colleagues conducted the first DC vaccina-
tion trail in melanoma patients in 1998 (41). In this study, the

group isolated autologous monocytes from peripheral blood of
the patients and generated DCs ex vivo. Monocyte-derived DCs
(moDCs) were subsequently pulsed with tumor-associated anti-
gen (TAA) peptides or tumor lysate, and injected into the lymph
nodes of the patients to activate the immune system. The results of
this study were promising, as complete and partial responses could
be observed in a number of patients. Furthermore, tumor-specific
T cells were found in vaccinated patients, indicating the induction
of a melanoma-specific immune response.

In the following years, a considerable number of phase I/II clin-
ical trials explored the impact of various vaccination parameters
on the treatment outcome. In this review, we will give an overview
of the major advances in the field of therapeutic DC vaccination
against melanoma since the initial study by Nestle. Further, we
will highlight current developments focusing on natural DC sub-
sets and their impact on immunotherapy, and we will conclude
with an outlook on future vaccination strategies including the
synergistic effects of DC subsets.

MATURATION OF DCs
A major disadvantage of the DC vaccination protocol employed
by Nestle et al. was the lack of activation signals. After differen-
tiation, most moDCs possess an immature phenotype, which is
dominated by high antigen uptake capabilities and poor T cell
stimulatory abilities (42–45). Activation of DCs leads to the devel-
opment of a mature phenotype characterized by upregulation
of co-stimulatory molecules, major histocompatibility complex
(MHC) molecules, and certain chemokine receptors (33, 46, 47).
Especially the latter is of great importance for vaccination effi-
cacy, as expression of the chemokine receptor CCR7 promotes the
migration of injected DCs to the lymph nodes where the acti-
vation of T- and B-cells occurs (42, 47, 48). In addition to their
inferior stimulatory capabilities, immature DCs were shown to
induce antigen-specific tolerance, proposing that injection with-
out activation signals is not only ineffective but also potentially
detrimental (49).

FIGURE 1 | Development of DC-based immunotherapy against melanoma.
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While in vivo maturation signals primarily come from contact
with pathogens or tissue injury, immature DCs can be matured
by incubation with pathogen recognition receptor (PRR) ago-
nists or cytokines such as TNF-α, and prostaglandin E2 (50, 51).
In a clinical setting, CD40 ligation has also been used for DC
activation (52, 53).

In 2003, a phase I/II clinical trial treating stage IV metasta-
tic melanoma patients with autologous, antigen-loaded moDCs
confirmed the superiority of mature DCs to induce strong immu-
nity, as the immunological response against both included TAAs
and the control antigen keyhole limpet hemocyanin (KLH) was
improved in the majority of patients treated with mature DCs, as
opposed to immature DCs (54). Strikingly, tumor regression could
only be observed in patients of the mature DC arm, indicating that
activating DCs prior injection improves clinical response as well.
Other groups that employed modified maturation cocktails made
the similar observations that DC maturation is necessary for the
induction of a superior immune response (55–59). These results
confirmed in a clinical setting what was already known for in vitro
models: infused DCs need to express potent stimulatory molecules
to generate a strong T cell response, especially when presenting
cancer antigens with low immunogenicity. Nevertheless, as proper
homing to the lymph nodes is a prerequisite for DC-mediated T
cell activation, upregulation of CCR7 may also partly explain the
observed differences (42).

ROUTE OF ADMINISTRATION
In addition to maturation-induced upregulation of CCR7, the
route of administration has a major impact on the migration
of DCs to the T cell rich zones in the lymph nodes (42). Since
intravenously (i.v.) injected, ex vivo generated DCs fail to induce
potent skin-homing T cells in mice and appeared to be less effi-
cient in inducing TH1 responses in humans, previous clinical trials
focused on subcutaneous or intradermal (i.d.) administration of
the vaccines (60–62). However, using 111In-labeling and scintig-
raphy, we could show that most of the injected DCs remain at
the injection site, where they rapidly die to be phagocytosed by
macrophages (42, 63, 64). Pretreatment of the skin with cytokines,
toll-like receptor (TLR) ligands, or activated DCs did not lead to
increased migration (64). Interestingly, Aarntzen et al. identified
the number of injected DCs as an important factor for migra-
tion as a low cell density at the injection site correlated with high
migration efficiency (64).

To further improve migration of DCs to lymph nodes and
enhance the induced immune responses, different routes of
administration have been explored in various studies (65, 66).
Direct injection of DCs into the lymphatic system of the skin
appeared to be a promising approach, as it ensures that most of
the DCs reach the T- and B-cell rich zones of the lymph nodes.
To test this hypothesis, our group conducted a phase I/II clinical
trial and vaccinated melanoma patients with ex vivo generated,
antigen-loaded, mature moDCs that were injected either intran-
odally or intradermally (65). Although intranodal vaccination led
to increased DC migration to efferent lymph nodes, no difference
in the frequency of tetramer-specific T cells could be detected.
Furthermore, melanoma-specific T cells induced by i.d. vaccina-
tion turned out to be more functional, which might be caused by

bystander activation of APCs at the injection site. Similar results
have been found by Kyte et al. using mRNA transfected moDCs
(66). Taking the complicated procedure of intranodal vaccination
into account, intradermal injection of DCs appears to be the opti-
mal route of administration in case of sufficient cellular material.

T CELL HELP
In the late 90s several groups independently discovered that, in
absence of a strong inflammatory stimulus, DCs need to interact
with CD4+ T cells to induce potent cytotoxic CD8+ T cells –
a process called DC licensing (67–70). These findings, together
with other important discoveries in the early 2000s, shifted the
focus of therapeutic anti-cancer vaccination toward the CD4+ T
cells and the impact of helper responses (71–73). Besides licens-
ing DCs, T cell help plays a crucial role in memory generation
and maintenance as well as affinity maturation of tumor-specific
antibodies (72, 74, 75). Additionally, CD4+ T cells were shown
to activate the innate immune system, to enhance the cytolytic
function of macrophages, to induce senescence in malignant cells,
and to destroy neoplastic cells directly (76, 77). The latter is
of particular importance in the melanoma setting, where trans-
formed melanocytes tend to constitutively express MHC class II
molecules (78, 79). In particular, TH1 cells appear to be asso-
ciated with favorable clinical outcome and overall survival (80).
Despite this knowledge, integration of CD4+ T cell help in clin-
ical trials was hampered due to the lack of defined TAA peptides
binding to MHC class II molecules. To partly overcome this lim-
itation, DCs were pulsed with unrelated antigens such as KLH or
tetanus toxoid. The CD4+ T cells generated against these antigens
were supposed to secrete interleukin (IL)-2 and pro-inflammatory
cytokines, and to further activate the injected DCs, leading to an
improved priming of cancer-specific CTLs (81). Whether or not
the antigen-independent CD4+ T cell help had a strong effect on
T cell priming could however not been definitely proven.

This changed when several groups characterized immunogenic
melanoma-associated MHC class II epitopes of the tumor antigens
gp100 and tyrosinase leading to a comparative study of melanoma
patients treated with moDCs pulsed with both MHC class I and
class II epitopes or MHC class I epitopes alone (79,82–84). Analysis
of patient samples showed that the simultaneous administration of
TAAs restricted to both MHC classes lead to a broader anti-cancer
T cell response with higher functionality compared to patients
who received DCs loaded with epitopes for MHC class I only
(79). Importantly, the tumor-specific CD4+ T cells were Foxp3
negative and displayed a TH1 phenotype, indicating that the vac-
cination did not induce regulatory T cells. This trend was reflected
in the clinical response, as patients of the MHC class I/II arm
showed increased progression free and overall survival, whereas
no clinical benefit could be detected in patients of the MHC class
I arm. The results thus indicate that antigen-specific CD4+ T cell
help is indeed beneficial for the induction of a strong cancer-
specific immune response, which is in line with a number of other
studies (57, 85).

ANTIGEN LOADING AND HETEROCLITIC PEPTIDES
Antigen loading was revolutionized when clinical grade mRNA
electroporated moDCs became available. MRNAs coding for
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full-length TAA proteins containing multiple immunogenic epi-
topes were synthesized and used to transfect DCs (86, 87). In this
approach, the transfected DCs translate the injected mRNA into
full-length proteins, which are subsequently degraded by the pro-
teasome and presented on MHC class I molecules (86). Adding
an MHC class II targeting tag to the mRNA leads to the trans-
port of translated proteins to exosomes and presentation on MHC
class II molecules, necessary for priming CD4+ T cells (88, 89).
Using electroporated DCs, several problems were solved: due to
the presence of multiple immunogenic epitopes within the same
protein, CD8+ and CD4+ T cells could be stimulated at the same
time, and the induced immune responses became broader. The
same effect rendered human leukocyte antigen (HLA)-restriction
obsolete, as the various epitopes contained in each protein are able
to bind to different HLA molecules. This made the enrollment of a
much larger number of melanoma patients possible and increased
the number of individuals potentially benefiting from this treat-
ment (90, 91). These improvements however come with the price
of reduced viability, which can turn into a serious problem when
cellular material is scarce (92).

Studies using electroporated moDCs conducted by our group
and others indeed showed the induction of specific CD4+ and
CD8+ T cells in patients suffering from metastatic melanoma
(63, 90, 91, 93). Interestingly, T cells specific for epitopes different
from the TAA peptides employed in previous vaccines were read-
ily detected in a number of patients, thus indicating an increased
breadth of the immune response (93).

Soon after the first studies with electroporated moDCs were
published, Bonehill et al. simplified the loading and activation
process for moDCs distinctly. In their approach, they transfected
DCs with mRNA, not only coding for TAA proteins, but also for
the maturation-inducing molecules, CD40L and caTLR4 (consti-
tutively active form of TLR4), as well as the T cell co-stimulatory
molecule, CD70. This led to prolonged and enhanced maturation
of DCs (90, 94, 95).

In parallel to the development of mRNA-based DC vaccines,
various groups tried to improve the immunogenicity of the tra-
ditional peptide-pulsing approach to load DCs. Using rational
design, researchers modified known TAA peptides by replac-
ing single amino acids to improve binding to the MHC groove
creating so called heteroclitic peptides (96–98). Due to tighter
binding, heteroclitic peptides are presented for an extended time
period, supposedly leading to stronger T cell activation. However,
whereas many pre-clinical studies showed increased immuno-
genicity in vitro, clinical trials directly comparing modified and
wild type peptides failed to measure any positive effect of hete-
roclitic peptides and even showed decreased frequencies of TAA-
specific T cells in some patients (98). It appeared that the modified
epitopes differed too much from the wild type peptide leading to
the induction of T cells that were unable to detect endogenously
presented antigens (99).

In summary, the development of mRNA electroporated moDCs
simplified anti-cancer immunotherapy significantly as transfec-
tion of DCs not only induces a broad, HLA-independent CD4+

and CD8+ immune response but also reduces the time and costs
for vaccine preparation. In contrast, heteroclitic peptides failed

to prove superior immunogenicity in immunotherapy against
melanoma.

EFFICACY OF DC IMMUNOTHERAPY
Although various vaccination parameters could be optimized and
lasting responses were observed in selected patients, so far none of
the conducted clinical trials using moDCs could demonstrate sta-
tistically supportable evidence for survival benefits in vaccinated
patients. This became especially evident when in 2006 Schaden-
dorf et al. published the first and so far only randomized phase III
trial designed to demonstrate the clinical efficacy of moDC ther-
apy in melanoma patients (100). The study was aborted early, as
the Data Safety and Monitoring Board did not expect the group
to reach the study goal. Analysis of the preliminary data could
demonstrate the induction of an anti-cancer immune response in
various patients but failed to show improved overall survival. Fur-
ther, objective response was lower in the group of patients treated
with DC vaccination as opposed to chemotherapy with dacar-
bazine (DTIC); thus no clinical benefit of moDC therapy could be
detected.

One explanation for the observed lack of clinical response could
be the inferior capacity of moDCs to induce effective anti-cancer
immunity. However, as the study was already initiated in 1999 –
thus only 1 year after the publication of the first phase I trial on
moDC-based vaccines in melanoma by Nestle et al. – many of
the aforementioned developments, including proper maturation
of DCs, were not yet translated to the clinics (54, 100–103). Fur-
thermore, several studies suggest that the employed maturation
cocktail based on pro-inflammatory cytokines might not have
been optimal for the induction of a strong anti-cancer immune
response (51). DCs solely activated by these cytokines show only
limited capabilities to produce polarizing cytokines that further
decrease soon after activation – a phenomenon called exhaus-
tion (51, 104, 105). At the time of injection, DCs thus might have
possessed only limited capabilities to induce TH1 cells and CTLs.
Additionally, the employed clinical protocols were not suited for
multicenter trials leading to highly variable maturation levels and
low numbers of generated DCs (100).

Interestingly, in the same year as Schadendorf et al. published
their moDC study, Small et al. presented the results of a placebo-
controlled phase III trial on DC-based immunotherapy in patients
with metastatic asymptomatic hormone refractory prostate cancer
(106). In contrast to Schadendorf et al., the authors employed a
heterogeneous mixture of readily isolated leukocytes enriched for
naturally circulating DCs by gradient centrifugation, thus avoid-
ing long term in vitro culture. The leukocytes were activated and
antigen-loaded using a recombinant fusion protein consisting of
granulocyte-macrophage colony-stimulating factor and the TAA
protein prostatic acid phosphatase. The prepared leukocytes were
subsequently injected i.v. – <48 h after isolation. Strikingly, sig-
nificantly increased overall survival and prolonged time to disease
progression could be observed among patients of the treatment
arm, thereby proving clinical efficacy of DC-based immunother-
apy. Together with supporting studies, these results finally led
to the first FDA approval for a cell-based therapy, Provenge®, in
2010 (107).
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NATURALLY CIRCULATING DCs
Inspired by the promising results of the Provenge® trial, we pos-
tulated that purified naturally circulating DCs would be superior
in anti-cancer immunotherapy against melanoma (51). Not only
are these DCs efficient in generating CTLs, they can also be readily
isolated from the blood (108, 109). This allows immediate activa-
tion and antigen loading, thus avoiding long incubation periods
and enabling robust standardization for use in multicenter trials.
Therefore, natural DCs, despite their rare occurrence in peripheral
blood, display various advantages over moDCs that are making
them an attractive target for anti-cancer therapy.

Human naturally circulating DCs can be divided into two main
subsets: plasmacytoid DCs (pDCs) and myeloid DCs (mDCs),
each with distinct phenotype and function during the immune
response (Figure 2) (110). MDCs can be further subdivided in
CD1c+ (BDCA1) DCs, CD141+ (BDCA3) DCs, and CD16+ cells,
where the latter are considered to be more monocyte-like (111–
115). MDCs are specialized in immunity against fungi and bac-
teria and have an enhanced ability to sense tissue injuries (110,
111). They are able to capture environmental- and cell-associated
antigens and show high phagocytic activity (116).

CD141+ DCs are specialized in the detection and uptake of
necrotic cells and excel in cross-presenting these antigens to T
cells (117–120). Remarkably, CD141+ DCs uniquely express the
C-type lectin CLEC9A (DNGR-1), which allows sensing of dam-
aged cells by binding to exposed actin filaments (121, 122). In
addition, CD141+ DCs can be activated using a distinct set of
TLRs including TLR1, 2, 3, 6, and 8 (117, 123). Especially, TLR3
is strongly expressed and leads to upregulation of co-stimulatory
molecules, as well as the secretion of pro-inflammatory cytokines

and chemokines (117, 123). Upon activation, CD141+ DCs are
able to secrete IFN-γ and IL-12, which allows the effective induc-
tion of TH1 and CTL responses (117, 119). However, due to
the limited availability in blood and lack of GMP-grade isola-
tion reagents, CD141+ DCs are currently not feasible for cellular
immunotherapy. Several developments focusing on improved iso-
lation and culturing, nevertheless, might allow their employment
in future DC vaccination.

CD1c+ DCs are responsive to a great variety of microbial and
fungal stimuli (124). Triggering of TLRs 1/2/6 by bacterial lig-
ands leads to the activation of CD1c+ DCs and secretion of large
amounts of the TH1-skewing cytokine IL-12 (123, 125, 126). Due
to their potent antigen processing and presentation machinery,
activated CD1c+ DCs are able to induce TH1 cells and cytotoxic T
cells leading to a potent cellular immune response (108, 112, 117,
123, 126, 127). Moreover, in vitro studies showed that CD1c+ DCs
isolated from healthy donors and prostate cancer patients are able
to prime tumor-specific CD8+ T cells (108, 128).

In contrast to mDCs, pDCs are specialized in the detection
and control of viral infections (110, 129). Viral infections are
rapidly detected by pDCs via the engagement of TLR7 and/or
TLR9 (116, 129). TLR triggering by viral agents leads to a rapid
burst of type I interferons (IFNs) and induces cytotoxic func-
tions in pDCs as well as natural killer (NK) cells (110, 130, 131).
These outstanding antiviral activities make pDCs the key effector
cells in early antiviral immunity (110). In a steady state, pDCs
are characterized by low expression of MHC class II and co-
stimulatory molecules (111). This phenotype is associated with
tolerance induction and TH2 immunity, properties that are unfa-
vorable for anti-cancer immunity (132). However, activation of

FIGURE 2 | Biology of immunotherapy-relevant human DC subsets. Depicted are major DC functions relevant for pathogen recognition and DC activation, T
cell priming, and anti-cancer immunity.
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pDCs leads to an upregulation of these proteins, turning pDCs
into professional APCs that efficiently prime both, CD4+ and
CD8+ T cells (108, 110, 131, 133). The strong release of type I
IFN by pDCs leads to an IL-12 independent TH1 polarization
characterized by strong secretion of IFN-γ and IL-10 (110, 134–
136). Despite low antigen uptake and limited phagocytosis, pDCs
isolated from blood, tonsils, and spleen were shown to efficiently
cross-present antigens to CD8+ T cells (113, 120, 127, 137). More-
over, several studies reported that pDCs are able to prime potent
melanoma-specific CD8+ T cells, which produce IFN-γ and are
able to locate to melanoma lesions (108, 120, 138, 139). Finally,
pre-clinical mouse models showed that pDCs are able to induce a
tumor-specific T cell response in vivo, leading to control of tumor
growth (138, 140).

NATURALLY CIRCULATING DC-BASED IMMUNOTHERAPY
Due to the low occurrence of naturally circulating DCs in blood,
conclusive clinical evidence on their usability for immunotherapy
is lacking. In 2006, a small-scale study by Davis et al. reported on
a vaccine that employed Flt3 ligand (Flt3L)-mobilized naturally
circulating DCs (53). The treatment was safe and strong immune
responses were detected in several patients. However, the purity
of the employed DCs was generally low and, as it turned out, the
administration of Flt3L induced the expansion of regulatory T
cells in melanoma patients (53, 141).

Encouraged by the promising pre-clinical data, we initiated the
first clinical trial on a cellular vaccine based on purified pDC in
2008 at RadboudUMC in the Netherlands (142). PDCs were iso-
lated from leukapheresis products using MACS separation kits
and cultured overnight in IL-3. On the next morning, pDCs were
activated with a conventional Frühsommer-meningoencephalitis
(FSME; English: tick-borne encephalitis) vaccine, which has the
benefit of sustained secretion of T cell stimulatory cytokines due to
natural triggering of TLRs (143). Subsequently, pDCs were loaded
with TAA peptides, and injected intranodally.

Initial tests revealed only mild side effects of pDC vaccinations
and the toxicity was even lower as compared to moDC vaccina-
tions (142). Further, pDCs were able to activate the innate immune
system, indicated by a systemic type I IFN signature. PDCs were
also shown to efficiently migrate to efferent lymph nodes and
FSME-specific adaptive immune responses were detected in 14
of 15 enrolled patients. The potent stimulatory capacities of pDCs
were reflected in the cancer-specific immune response, as 7 of 15
patients showed increased frequencies of gp100-specific T cells
after vaccination. Strikingly, TAA-specific T cell clones with high
avidity could be identified after vaccination, indicating the induc-
tion of a strong functional response. Nevertheless, the overall
magnitude of the induced melanoma-specific immune response
appeared to be limited compared to previous moDC vaccina-
tion trials, as the total frequency of specific T cells in blood of
pDC-vaccine patients was rather low (65, 93). Further analysis of
skin-infiltrating lymphocytes obtained from delayed-type hyper-
sensitivity reactions against tumor antigens – a sensitive assay to
analyze functionality, migration, and specificity of anti-cancer T
cells – showed positive responses in only 2 out of 15 tested patients
(142, 144). Despite this, the overall survival of patients treated with
pDCs was greatly increased in comparison to matched controls

treated with standard chemotherapy. However, assumptions on
clinical efficacy have to be taken with caution, as the study was
primarily designed to assess the safety and toxicity of pDC-based
immunotherapy.

Nevertheless, the prominent survival benefit of vaccinated
patients is especially interesting in respect to the low frequency
of TAA-specific T cells. Two explanations for this phenomenon
are likely: (I) T cells induced by pDCs might be more potent and
functional as compared to moDC primed T cells. This could be
due to different cytokine secretion patterns, differential expres-
sion of co-stimulatory molecules, improved migratory capacities,
or prolonged survival. (II) Alternatively, instead of – or in addition
to – inducing T cell responses, the focus of pDC-mediated anti-
cancer immunity might lie on the activation of NK cells and the
innate immune system. Evidence for this comes from the lasting
type I IFN signature induced in vaccinated patients (142). Strik-
ingly, various studies report on pDC-dependent, IFN-α-mediated
activation of natural DC subsets in arteriosclerosis, autoimmunity,
and infections (145–147). Furthermore, it could be shown that
type I IFNs are able to activate NK cells, induce IFN-γ secretion,
and enhance cytotoxicity (148, 149). However, in comparison to
subjects that underwent recombinant IFN-α therapy, patients vac-
cinated with pDCs showed longer overall survival indicating that
the observed clinical benefits were not induced by type I IFNs alone
(150–152). Interestingly, it was shown that contact-dependent
interactions between pDCs and lymph node DCs greatly enhance
Ag presentation and priming of anti-herpes simplex virus CTLs
(153). The authors identified CD2–CD2L and CD40–CD40L as
key mediators of this effect. PDCs can thus activate other DC
subsets, for instance mDCs, to potentiate the immune response.
However, this synergy not only acts in one direction: mDCs were
shown to mature pDCs and enhance their Ag presentation capa-
bilities during bacterial exposure (116, 154). Interestingly, in one
scenario pDCs only act as APCs without instructing T cells with
polarizing cytokines (116). Together, these results show that nat-
ural DCs of various subsets cooperate with each other to enhance
the immune response and that the roles in this regulatory network
are variable and depending on the stimulus. However, the studies
also indicate a hierarchical organization within natural DC syner-
gies, with one DC subset orchestrating and polarizing the immune
response, and the other merely acting as “zombie” APC without
instructive capabilities (116).

Strikingly, mouse experiments demonstrated that injection of a
mixture of ex vivo activated and antigen-loaded mDCs and pDCs
induces a superior immune response against tumors (155). More-
over, therapeutic efficiency, as assessed by overall survival and
tumor burden, was greatly improved when mice received simul-
taneous injections of both subsets compared to injections of one
subset alone (155). The observed synergistic effect was mainly
based on enhanced antigen presentation by mDCs induced by
contact-dependent interactions with pDCs. These observations
might explain why patients in our pDC vaccination trial showed
significantly increased overall survival despite low frequencies of
vaccination-specific CTLs (142, 155). Injected pDCs might have
activated mDCs present at the site of injection leading to the induc-
tion of a TH1 and CTL response. As the in situ activated mDCs then
would present naturally processed melanoma antigens expressed
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at the site of the tumor, the subsequently induced anti-cancer
immune response would not be fully detectable when examining
the vaccine-specific T cell response only.

Subsequent to the pDC-based vaccine, we conducted a phase
I trial vaccinating metastatic melanoma patients with ex vivo
activated and antigen-loaded autologous blood CD1c+ mDCs.
Preliminary results confirm the safety and feasibility of mDC-
based vaccines and could identify clinical responses in a number
of patients (manuscript in preparation). Considering the results
of these studies and the synergistic effects of pDCs and mDCs
observed in mice and in in vitro models, the next step would be to
initialize a human vaccination trial using a cocktail of activated and
antigen-loaded mDCs and pDCs. Once injected in, e.g., the lymph
node, these natural DC subsets might synergize and potentiate the
T cell response.

Importantly, before clinical trials can exploit the synergy
between mDCs and pDCs a number of questions need to be
addressed: first: what ratio of mDCs and pDCs should be cho-
sen and should one DC subset dominate the immune response?
How should both DC subsets be activated in vitro? How does
the simultaneous secretion of two different T cell polarizing

cytokines (IFN-α by pDCs, IL-12 by mDCs) influence naive
T cell priming? And what impact does this have on other
immune cells? In addition, does the synergy between mDCs and
pDCs also help to induce tumor-specific antibodies by B-cells?
Does it increase the anti-cancer activity of the innate immune
system?

In vitro studies and pre-clinical mouse models suggest answers
to some of these questions. Mouse models, for instance, indicate
that activated pDCs need to be cocultured with immature mDCs to
induce maximal expression of IL-12 as well as co-stimulatory mol-
ecules CD40, CD80, and CD86 (Table 1) (155). This was cell–cell
contact-dependent and also crucial for the induction of a supe-
rior CD8+ T cell response. Secretion of IFN-α by pDCs did not
influence the secretion of IL-12 by mDCs, indicating that mDCs
retain their strong TH1 polarizing capacities when administered
together with pDCs. In vitro studies on human DCs, however, are
not as conclusive and report on both, impaired and increased pro-
duction of IL-12 by mDCs when cultured in IFN-α supplemented
media (156–159). The induction of CD8+ T cells, however, seems
to be augmented by the combined effect of IFN-α and IL-12 as
comprehensive and lasting immune responses including effector

Table 1 | Controversial effect of IL-12 and IFN-α on immune activation andT cell priming.

Species Experimental setup Observation Reference

Mouse Isolated pDCs were activated and cocultured

with immature mDCs. This mixture or single

DC subsets were then injected in

tumor-bearing mice

The coculture of pDCs and mDCs induced strong expression of co-stimulatory

molecules CD40, CD80, and CD86 on mDCs and led to superior secretion of

IL-12 by mDCs. This process appeared to be contact-dependent. The induced T

cell response was superior when both subsets were injected together and

also led to improved tumor control

(155)

Human Coculture of irradiated allogeneic moDCs and

naive CD4+ T cells in αCD3-coated wells

Addition of type I IFNs to the cocultures led to decreased IL-12p40 production

by DCs and the induction of IL-10 producing T cells

(156)

Human PDCs and mDCs were isolated from blood and

cocultured with cytokines. Subsequently, DCs

were cultured with allogeneic, naive CD4+

T cells

IFN-α induced mDC maturation leading to IL-10 but not IL-12 production. IFN-α

matured mDCs further induced IL-10 producing T cells

(157)

Human/

mouse

MoDCs were activated in

cytokine-supplemented media

The presence of type I IFNs at low levels augmented the production of IL-12p70 (158)

Human MoDCs were activated using TLR ligands.

IFN-α was added at different stages and

secretion of IL-12 was measured

The presence of IFN-α during maturation increased the secretion of IL-12p70 by

moDCs. When added after maturation IFN-α inhibited the secretion of IL-12p70

(159)

Human/

mouse

Naive CD4+ T cells were activated in

cytokine-supplemented media

In contrast to IL-12, IFN-α was not sufficient to induce stable T-bet expression

and thus TH1 differentiation. However, no significant reduction in TH1 induction

could be observed when both cytokines were administered together

(162)

Human Naive CD8+ T cells were cultured and activated

in αCD3/αCD28-coated plates. The media was

supplemented with polarizing cytokines

Whereas IL-12 induced fast-dividing, IFN-γ secreting effector memory T cells,

IFN-α primed slowly dividing central memory T cells. For a comprehensive T

cell response, both cytokines were necessary

(161)

Human/

mouse

Naive CD8+ T cells were cultured and activated

via αCD3/αCD28-coated beats. The media was

supplemented with polarizing cytokines

Priming of naive CD8+ T cells in IFN-α-supplemented media induced stem

cell-like memory T cells with increased ability to respond to homeostatic

cytokines, increased persistence upon adoptive transfer, and reduced effector

functions. These T cells were able to mount robust recall responses and

showed superior ability to contain tumor progression after adoptive transfer

(160)
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and memory T cells could only be detected when T cells were
cocultured with both cytokines (160, 161).

Although many studies report synergistic effects of IFN-α and
IL-12 on T cell priming and immune activation, it is hard to predict
how these and other factors integrate in the complex microen-
vironment found in neoplastic lesions of melanoma patients.
Following initial clinical trials focusing on safety and feasibility,
future studies thus need to explore the interactions between DC
subsets in patients and improve various vaccination parameters.

CONCLUDING REMARKS
Although randomized clinical trials are needed to further prove the
clinical efficacy of vaccination with natural blood DCs, DC therapy
has major advantages over treatment with FDA-approved check-
point inhibitors like ipilimumab, as DC therapy with natural DC
is less costly and associated with only very mild side effects. Before
anti-cancer therapy with natural DCs can be implemented as stan-
dard therapy for melanoma, some issues still need to be overcome.
First, DC vaccination, in particular DC vaccination with natural
DCs, is currently performed only in a limited number of medical
centers. However, the isolation technique with magnetic beads is
FDA-approved for stem cell isolation and common practice, thus
enabling robust standardization for use in multiple centers in the
future. In addition, as it is not feasible yet to perform mRNA elec-
troporation on these rare cells, antigen loading still depends on
HLA-binding tumor-peptides, thus excluding patients that do not
have the matching HLA-phenotype. Efforts are made to enable
peptide-loading for a broader HLA-repertoire, including MHC
class II epitopes, to induce broader immune responses and enable
inclusion of more patients.

As the field of moDC vaccinations appears to have reached
some level of maturity, naturally circulating DC-based vaccina-
tions are just at the beginning of their clinical development.
However, the lessons learned from moDC-based vaccination trials
will surely contribute to accelerate the development of mDC/pDC-
based vaccines, hopefully leading to highly efficient DC-based
immunotherapies and benefits for an increasing number of cancer
patients.
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