
A Method for Identifying
Environmental Stimuli and Genes
Responsible for
Genotype-by-Environment
Interactions From a Large-Scale
Multi-Environment Data Set
Akio Onogi1*†, Daisuke Sekine2,3, Akito Kaga3, Satoshi Nakano4, Tetsuya Yamada3,
Jianming Yu5 and Seishi Ninomiya6

1Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan, 2Institute of Vegetable and Floriculture
Science, National Agriculture and Food Research Organization, Tsukuba, Japan, 3Institute of Crop Science, National Agriculture
and Food Research Organization, Tsukuba, Japan, 4Institute for Agro-Environmental Sciences, National Agriculture and Food
Research Organization, Tsukuba, Japan, 5Department of Agronomy, Iowa State University, Ames, IA, United States, 6Graduate
School of Agricultural and Life Science, The University of Tokyo, Nishitokyo, Japan

It has not been fully understood in real fields what environment stimuli cause the genotype-
by-environment (G × E) interactions, when they occur, and what genes react to them.
Large-scale multi-environment data sets are attractive data sources for these purposes
because they potentially experienced various environmental conditions. Here we
developed a data-driven approach termed Environmental Covariate Search Affecting
Genetic Correlations (ECGC) to identify environmental stimuli and genes responsible for
the G × E interactions from large-scale multi-environment data sets. ECGC was applied to
a soybean (Glycine max) data set that consisted of 25,158 records collected at 52
environments. ECGC illustrated what meteorological factors shaped the G × E
interactions in six traits including yield, flowering time, and protein content and when
these factors were involved in the interactions. For example, it illustrated the relevance of
precipitation around sowing dates and hours of sunshine just before maturity to the
interactions observed for yield. Moreover, genome-wide association mapping on the
sensitivities to the identified stimuli discovered candidate and known genes responsible for
the G × E interactions. Our results demonstrate the capability of data-driven approaches to
bring novel insights on the G × E interactions observed in fields.

Keywords: genotype-by-environment interactions, genetic correlation, genome-wide association, historical data,
multi-environmental trial, environmental covariate

INTRODUCTION

Genotype-by-environment (G × E) interactions have been one of main interests in plant research for
decades (Mather and Jones, 1958; van Eeuwijk et al., 2005; Des Marais et al., 2013). However,
understanding the interactions in fields is not an easy task because a number of players including
environmental stimuli and genes can be involved in at various growth stages. Thus, it has been a great
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challenge to depict comprehensive landscapes on how genes and
environment stimuli cause the G × E interactions together in
fields. So far, studies have successfully used environmental stimuli
in statistical models to map quantitative trait loci (QTLs) and/or
predict crop phenotypes (Malosetti et al., 2013; Jarquin et al.,
2014; Li et al., 2018; Millet et al., 2019; Guo et al., 2020). These
studies show the usefulness of a reaction norm approach where
phenotypes/genotypic values are regressed on quantitative
indices of environment stimuli to model the sensitivity of
genotypes (or phenotype plasticity). An important point of
this approach is, however, that the sensitivity of genotypes (or
phenotype plasticity) is not necessary associated with the
observed G × E interactions (see Model description in
Materials and Methods and Interpretation of ECGC in Results
and Discussion). Methods to identify environmental stimuli and
genes directly related to the G × E interactions have been lacked.

Here, we propose a novel method termed Environmental
Covariate Search Affecting Genetic Correlations (ECGC) to
reveal quantitative environmental stimuli (referred to as
environmental covariates) and genetic architecture
underpinning the G × E interactions using large-scale multi-
environment data sets. ECGC searches environmental
covariates whose similarity matrices between environments
are significantly correlated with genetic correlation matrices
between environments which can be regarded as indicators of
the G × E interactions (Hayes et al., 2016). This proposed
method is able to identify the environmental stimuli and
genes directly related to the observed G × E interactions.
Moreover, because genetic correlations between environments
can be estimated using mixed models, ECGC is robust to
missing records and unbalanced data structure that often
characterize multi-environment data. Here we applied the
proposed method to a large-scale multi-environment data of
soybean (Glycine max). The traits were days to flowering (DTF),
days to maturity (DTM), stem length (SL, cm), protein content
of seeds (PR, %), yield (YI, kg/a) and seed weight (SW, g/100
seeds).

MATERIALS AND METHODS

Model Description
As described above, ECGC searches environmental covariates
whose similarity matrices between environments are
correlated with genetic correlation matrices between
environments. Here it will be illustrated how the similarity
of environmental covariates is associated with genetic
correlation between environments.

For the jth environment, the phenotype adjusted for variations
due to years and management conditions, ~yj, is decomposed as

~yj � uj + ej

where uj and ej are the additive genetic effect and residual,
respectively. Note that ~yj and uj include all adjusted phenotypes
and additive genetic effects of genotypes evaluated at the
environment. uj and ej are assumed to follow multivariate
normal distributions (MVN) as uj ∼ MVN( 0, Gσ2uj ) and

ej ∼ MVN( 0, Iσ2ej ), respectively, where G is the genomic
relationship matrix and I is the identity matrix. After scaling
with the genetic standard deviation (σuj), the additive genetic
effect is assumed to be further decomposed into two components,
one affected by an environmental covariate, xj, and the other is
free of it, as

uj � σuj(βxj + ~uj)
where β is the slopes of varieties that represent the sensitivity to
the environmental covariate, and ~uj is the residual genetic effects.
Here β is assumed to be β ∼ MVN( 0, Gσ2β ) which means
~uj ∼ MVN[ 0, Gσ2

~uj ] where σ2
~uj
� σ2uj − x2

jσ
2
β. Then the

genetic covariance of the additive genetic effects between
environments j and k can be represented as

cov(uj, uk ) � cov[ σuj(βxj + ~uj), σuk(βxk + ~uk) ]
� σujσuj[xjxkGσ

2
β + xjcov( β, ~uk )

+ xkcov( ~uj, β ) + cov( ~uj, ~uk )]
� Gσujσuj[xjxkσ

2
β + xjσk, β + xkσj, β + σj, k]

by letting cov( β, ~uk ) � Gσk, β and cov( ~uj, ~uk ) � Gσj, k.
Thus, the genetic covariance between environments j and k,
σujk, is

σujk � σujσuj[xjxkσ
2
β + xjσk, β + xkσj, β + σj, k]

and the genetic correlation between these environments, Ρj,k, is

Pj,k � xjxkσ
2
β + xjσk, β + xkσj, β + σj, k (1)

Equation 1 illustrates how the similarity of environmental
covariates (xjxk) is related to genetic correlation between
environments (Pj,k). Genetic correlations between
environments poses information of relative magnitudes of
genotypic values among varieties that change across
environments, i.e., G × E interactions. Thus, ECGC searches
the environment covariates that are associated with the G × E
interactions by scanning corj,k(Pj,k, xjxk) where corj,k
means taking correlations across all combinations of
environments. The squared corj,k(Pj,k, xjxk) (i.e., r2)
represents the proportion of the variance of xjxkσ2β in the
variance of Pj,k. The significantly detected environmental
covariates will be able to be used for various purposes. Here
we focus on revealing genes underlying the G × E interactions.
To this end, GWA mapping was conducted on the slopes (β)
associated with the detected environmental covariates as the
final step of ECGC.

Data Analysis Overview
To apply ECGC to real data, five steps are required.

(1). Calculation of environmental covariates (xj).
(2). Calculation of similarities of environmental covariates

between environments (xjxk).
(3). Estimation of genetic correlation between environments (Pj,k).
(4). Scanning environmental covariates associated with genetic

correlation based on corj,k(Pj,k, xjxk).
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(5). Estimation of slopes (β) which representing the sensitivity of
varieties to the environmental covariates detected in Step 4 and
conduct GWA mapping on the slopes.

These steps correspond with Figures 1B–F. In the following
sections whose titles start as “ECGC step”, we explain how these
steps were conducted in our analyses using a large-scale multi-
environment data of soybean. Preceding to these steps, we also
conducted model development and fitting for each
environment-trait combination to calculate the phenotypes
adjusted with fixed effects (~yj). This step may not be always

necessary for ECGC, but required for our data. This step is
referred to as Step 0.

Multi-Environment Data of Soybean
The data set used in this study consisted of 25,158 records of 624
varieties evaluated at 41 fields (Supplementary Data S1). This
data set was extracted as described below from a historical data of
soybean including 72,829 records of 6,106 varieties evaluated at
440 fields over 55 years in Japan (from 1961 to 2015). The
overview of this historical data is provided in Supplementary
Methods S1. In nine fields, multiple management conditions

FIGURE 1 | Illustration of the framework of ECGC. (A) Forty-one fields and 52 environments were analysed in this study. The blue points indicate fields where
multiple management conditions were regarded as different environments. E and L denote early and late sowing, and D and S denote dense and sparse plant densities,
respectively. (B) Calculation of environmental covariates representing each environment. Precipitation is illustrated as a meteorological factor. The whole growth periods
of plants were divided into 30 stages (10 from sowing to flowering and 20 from flowering to maturity), and the meteorological values within each stage were
averaged. These averaged values were again averaged across all plants at the environment, thus creating 30 environmental covariates (red and blue boxes in the upper-
right triangle). The environmental covariates were then averaged across all spans within the 30 stages (1st to 2nd stages, 1st to 3rd stages, etc.), thus generating 435
additional covariates (pale-blue boxes in the triangle). In total, 465 (30 + 435) environmental covariates for each trait-meteorological factor combination were generated.
Because 14 meteorological factors were considered, 465 × 14 � 6,510 environmental covariates were generated for each trait. (C) Calculation of the similarity matrix of
environmental covariates between environments. The figure illustrates the similarity matrix of precipitation at the 1st to 3rd growth stage, as an example. For each
environmental covariate, values were extracted from the 52 environments and a 52 × 52 similarity matrix was calculated using the linear kernel. (D) Estimation of genetic
correlations between environments. Using mixed models and genome-wide SNPs, genetic correlations were estimated for the 52 environments in a pairwise manner (E)
Calculation of the Pearson correlation coefficient (r) of off-diagonal elements between the similarity and genetic correlation matrices. r was calculated for all similarity
matrices, and −log10 p values are presented as heat maps. (F)Genome-wide association mapping for uncovering genetic architecture. For the environmental covariates
significantly detected in (E), slopes were estimated for each variety by regressing the additive genetic effects estimated using mixed models on the environmental
covariates. Genome-wide association mapping was conducted on the slopes.
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(e.g., early or late sowing dates) were consistently conducted in
multiple years. For these fields, different management conditions
were defined as different environments as described later. As a
result, a total of 52 environments were defined from 41 fields
(Supplementary Table S2, Figure 1A). Thus, in this study,
“environments” denote the combinations of fields (locations)
and management conditions.

DNA Extraction and SNP Genotyping
Seeds of varieties included in the historical data were collected
from the breeding centres and NARO genebank (as many seeds as
possible). The seeds were sown in pots and grown until the first
trifoliate leaves emerged in greenhouses. Total genomic DNAwas
extracted from the first trifoliate leaves of one plant using a
method based on guanidine hydrochloride and proteinase K
(Khosla et al., 1999), with modifications. Among the ∼2,000
varieties with extracted DNA, 573 varieties were genotyped
using the Axiom SNP custom array (ThermoFisher, MA,
United States), which was designed for Japanese soybean
varieties. These 573 varieties consisted mainly of breeding
lines that had been evaluated until later generations (typically
F8 or later) as promising lines. In addition, from the ∼2,000
varieties, 149 varieties that were registered as major varieties by
the Ministry of Agriculture, Forestry and Fisheries and 187
varieties included in the soybean core collection (Kaga et al.,
2012) were also genotyped using the array. The 573 varieties were
selected to avoid overlap with the 336 (149 + 187) varieties.
Among the SNPs genotyped, SNPs that showed high genotyping
quality (i.e., SNPs termed “PolyHighResolution” in the Axiom
genotyping system) and could be mapped to the Williams 82
genome assembly version 2.0 (Wm82.a2.v1/Glyma 2.0) were
extracted (138,555 SNPs) (Supplementary Table S1). The
average call rate of SNPs was 0.998 (SD ± 0.003). Missing
genotypes were imputed using Beagle 4.1 (08Jun17.d8b)
(Browning and Browning, 2016).

Extraction of Phenotypic Records
The varieties that had SNP genotypes from the Axiom custom
array were subjected to subsequent analyses. Because the names
of varieties usually change with the advancement of generations,
the variety names were integrated using the names at the last
generations. Among the 440 fields included in the historical data,
41 fields were selected for analyses because of the number of
records and balanced geological locations across Japan
(Figure 1A). For each field, phenotypic values that were out of
the mean ± 3SD (standard deviation) range were treated as
missing values.

The following six traits were selected for analyses: DTF (days),
DTM (days), SL (cm), PR (%), YI (kg/a), and SW (g/100 seeds).
These traits were selected because of their importance for
breeding and the number of phenotyped records. In Japanese
soybean breeding, to unify the measuring methods of traits,
regulations on trait measurement were established in 1954 by
a committee where theMinistry of Agriculture and Forestry at the
time took the leading role. Although these regulations seem to
have undergone several minor updates to date, trait definitions
were largely common across the study period. Briefly, DTF was

defined as the date when 40–50% of the buds of the strains
reached flowering. DTM was the date when 80–90% of the pods
of the strains showed variety-unique colours at maturity. SL was
the length of the main culm between the ground surface and the
growth point. PR was mainly measured using near-infrared
spectroscopy, but there seemed to be some variations in the
measuring methods and used machines. YI and SW were defined
as the weight with 15%moisture, although there also seemed to be
some variations in the moisture percentage among stations
and years.

Records that had at least one observation for these six traits
were extracted for subsequent analyses. As a result, the extracted
records consisted of 25,158 records of 624 varieties evaluated at
41 fields (Supplementary Data S1). The summaries of the
extracted phenotypic data and used varieties are presented in
Supplementary Tables S2, S3, respectively.

Meteorological Factors
Meteorological information was taken from MeteoCropDB ver.
1.0 (Kuwagata et al., 2011). The database was designed to help the
utilisation of crop growth models and provides daily values at
each weather station of the Japan Meteorological Agency (JMA).
Meteorological information for each environment was taken
from the nearest JMA station. In this study, 13 meteorological
factors, i.e., mean temperature (°C), maximum temperature (°C),
minimum temperature (°C), precipitation (mm), vapour pressure
(hPa), vapour pressure deficit (hPa), relative humidity (%),
minimum relative humidity (%), wind speed (m/s), maximum
wind speed (m/s), hours of sunshine (h), solar radiation (W/m2)
and potential evapotranspiration (mm), were used. Among these
factors, wind speed and maximum wind speed were adjusted as
observed at 2.5 m of altitude by the developer of the database
from the original values of the JMA. Solar radiation was estimated
by the database developer from the observations of the JMA
regarding hours of sunshine. Potential evapotranspiration was
also estimated by the developer based on mean temperature,
vapour pressure, wind speed, solar radiation and air pressure. The
values of the other factors were according to the observations of
the JMA. In addition to these factors, photoperiod (h) was
calculated for each environment. For simplicity, daily length
was also considered as a meteorological factor. The values of
these meteorological factors are included in Supplementary Data
S1, together with the phenotype records.

ECGC Step 0: Developing Mixed Models at
Each Environment
Single-trait mixed models were fitted to the records at each
environment. This process had two purposes; the first was to
eliminate variations attributable to years and management
conditions from phenotypic values, that is, to create ~yj. The
adjusted phenotypes ~yj were then used for estimating genetic
correlations between environments (ECGC Step 3). The second
was to estimate the additive genetic effects of varieties at each
environment. The additive genetic effects were then used to
estimate the slopes of genetic effects on environmental
covariates (ECGC Step 5).
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The year effects were added as fixed effects in the mixed
models. The conditions of three management methods (plant
density, fertiliser and sowing date) were modelled in various
ways. In nine fields (F04, F07, F08, F09, F22, F24, F25, F27, and
F34), multiple management conditions were consistently
conducted in multiple years. For these fields, different
conditions were defined as different environments resulting in
a total of 52 environments (Supplementary Table S2,
Figure 1A).

In most fields, however, the management conditions often
varied across years. When the effects of management
conditions were indistinguishable from those of year
effects, the effects were absorbed to the year effects and not
modelled. Otherwise, the effects were added in the mixed
models. The modelling schemes varied according to the
environments and management methods. Although the
conditions of plant density, fertilizer, and sowing date are
intrinsically continuous variables, when the number of
conditions at an environment was few, these conditions
were regarded as categorical variables and the effects were
modelled as fixed effects. Otherwise, the conditions were
regarded as continuous and the effects were model using
basis functions (e.g., B-splines, Hastie et al., 2009). In each
case, the interactions between genotypes and management
were also considered. Variance components were estimated
using REML implemented in airemlf90 (Misztal et al., 2002),
and model selection was conducted using the AICs provided
by the programme. The covariance structure of additive
genetic effects among varieties (i.e., genomic relationship
matrix) was defined using the genome-wide SNPs
(VanRaden, 2008). The A.mat function provided by the R
package, rrBLUP (ver. 4.6.1) (Endelman, 2011; R Core Team,
2020), was used for calculation (Supplementary Data S2).
Thus, the mixed models applied here were the so-called
genomic or genome-enabled BLUP (GBLUP) (de los
Campos et al., 2013). The details of this procedure are
described for each environment in the Supplementary
Methods S2. Narrow-sense SNP heritability estimated by
the selected models are presented in Supplementary Table S4.

ECGC Step 1: Calculation of Environmental
Covariates
Environmental covariates were calculated for each environment,
i.e., combination of fields and management conditions. Because
trials had been conducted for multiple years at each field
(Supplementary Table S1), in principle, environmental
covariates were calculated by averaging meteorological values
across years. The details are explained below.

Even on the same calendar day, the growth stages of plants can
vary depending on the sowing date and growth speed, which
depend on the environmental conditions (e.g., temperature) and
genotypes. Thus, a meteorological event (e.g., high or low
temperature) on a calendar day can have different effects on
plants with different growth stages. To consider the difference in
growth stage, the growth period between the sowing dates and
days of flowering was divided into 10 equal-sized stages (on

average 5.5 ± 1.2 days per stage), and the period between the days
of flowering and days of maturity was divided into 20 equal-sized
stages (3.8 ± 0.5 days per stage). For each variety at each
environment and year, the daily meteorological values within
stages were averaged (Figure 1B).

Meteorological values representing each environment were
then obtained by averaging the above-mentioned meteorological
values of all plants included in the environment, yielding 30
values for the 30 growth stages for each environment (Figure 1B,
Supplementary Tables S5–S10). In addition, meteorological
values were averaged across stages, e.g., averages across the 1st
to 2nd stages, across the 1st to 3rd stages, etc. This procedure was
inspired by the joint genomic regression analysis (Li et al., 2018).
As a result, 435 (30 × 29/2) additional representative values were
generated, resulting in 465 values for each environment
(Figure 1B). That is, 465 × 14 (meteorological factors) � 6,510
environmental covariates were generated.

Three issues were notable in this procedure. First, the number
of stages will depend on the prior knowledge or assumptions on
growth stages. For soybean, typically five and eight growth stages
are assumed for the vegetative and reproductive phases (Fehr and
Caviness, 1977). The number of stages used here (30) were
determined to be able to discriminate these known growth
stages. If a crop experiences more growth stages, setting a
larger number will facilitate interpretation. Second, although
the growth stages of plants can be represented using
cumulative temperature and/or photoperiod, we avoided using
these indices, to simplify the procedures as much as possible.
Lastly, although equal-sized stages were used here, unequal-sized
stages also can be used. In particular, because environments
during anthesis are important for plant growth, finer stages
during anthesis may bring more precise information on G × E
interactions.

ECGC Step 2: Calculation of Similarities of
Environmental Covariates Between
Environments
For each environmental covariate (i.e., combination of growth
stage and meteorological factor), 52 representative values
corresponding to 52 environments were used to calculate the
similarity between environments (Figure 1C). The similarity was
defined using a linear kernel. That is, the similarity between the
jth and kth environments were calculated as xjxk where xj and xk
indicate the deviations (i.e., differences from the mean of the
environmental covariate) of the environmental covariate values at
environments j and k, respectively. As a result, a 52 × 52 similarity
matrix was obtained for each environmental covariate. Total 465
growth stages × 14 meteorological factors � 6,510 similarity
matrices were obtained for each trait.

ECGC Step 3: Estimation of Genetic
Correlation Between Environments
Genetic correlations between environments were estimated
bivariate mixed models in a pairwise manner. The model can
be written as
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[ ~yj
~yk
] � [Zj 0

0 Zk
][ uj

uk
] + [ ej

ek
] (2)

where Zj and Zk are the design matrices. Here it is assumed that

[ uj
uk

] ∼ MVN( 0, Σ2
ujk

⊗ G ) and

[ ej
ek

] ∼ MVN( 0, Σ2
ejk

⊗ I ) where Σ2
ujk

and Σ2
ejk

are the

genetic and residual covariance matrices, respectively and ⊗
denotes the Kronecker product. To fit this model, first, the
records at each environment (i.e., records in ~yj and ~yk) were
matched to each other. Records were matched according to the
varieties and evaluation years. That is, same varieties evaluated at
the same year were matched to each other. When multiple
records could be matched (i.e., when a variety was evaluated
at an environment multiple times in a single year), matching was
determined randomly. As a result of matching, the phenotypic
data consisting of 25,158 records was arranged to a matrix of
7,887 by 52 (Supplementary Data S3, S4). Note that most
records did not match to any other records. Thus, the
resulting 7,887 by 52 matrix was sparse: the non-missing
proportion was at most 25,158/(7,887 × 52) � 0.061. Because
PR was absent in 22 environments, the matrix for PR becomes
7,887 by 30 (Supplementary Data S3, S4).

Subsequently, for each trait, genetic correlations between
environments were estimated in a pairwise manner. First, the
bivariate mixed model (Eq. 2) was fitted to all pairs of
environments (52 × 51/2 � 1,326 pairs), to estimate the
genetic covariances between environments (Σ2

ujk
). The diagonal

elements of the covariance matrix (i.e., genetic variances) were
estimated by averaging the estimates of these bivariate model
analyses, which were duplicated 51 times. This pairwise manner
of estimation of covariance matrices can be interpreted as a
pseudo-likelihood-based approach (Fieuws and Verbeke,
2006). The resulting genetic covariance matrix was then set as
a positive definite using the nearPD function of the Matrix
package (ver. 1.2-18) of R, and a genetic correlation matrix
was calculated by standardising the covariance matrix
(Figure 1D, Supplementary Tables S11–S16).

It is notable that genetic correlations between environment
can be estimated using methods other than the pairwise
estimation described here (e.g., standard multivariate models
or factor analytic models). But the pairwise estimation will be
one of the easiest methods to conduct in particular when the
number of environments is great.

ECGC Step 4: Scanning Environmental
Covariates Associated With the Genetic
Correlation
Now we have the 6,510 (465 growth stages × 14 meteorological
factors) similarity matrices of environmental covariates and six
(number of traits) genetic correlation matrices. The sizes of both
kind matrices were 52 (number of environments) × 52 for the
traits except for PR where the sizes were 30 × 30. The Pearson’s
product moment correlation coefficients between the upper (or

lower) triangle off-diagonals of the similarity matrices and genetic
correlation matrices were then calculated (Figure 1E) using the
cor.test function of the R package stats (ver. 4.0.3). p values of the
coefficients were also calculated using the function. The
significance of the coefficients was judged after Bonferroni
correction of the p values. Considering the number of
environmental covariates (6,510) and traits (6), the threshold
of significance was set at 0.05/(6,510 × 6) � 1.28e–6.

Even after Bonferroni correction, 10,397 environmental
covariate/trait combinations remained significant. This was
attributed to redundancy in the environmental covariates. For
example, a value at the 10th to 12th growth stages was often
highly correlated with a value at the 9th to 13th growth stages. To
eliminate this redundancy, environmental covariates were
clustered using the hierarchical clustering implemented in the
hclust function of R. Similarities were defined based on Euclidean
distance, and complete-linkage clustering was used. The number
of clusters was determined using the gap statistic (Tibshirani
et al., 2001). The clustering results are presented in
Supplementary Figure S1. When multiple environmental
covariates were significant at a cluster, the combination with
the highest r2 was selected, resulting in 555 significant
environmental covariate/trait combinations (Supplementary
Table S17).

ECGC Step 5: Estimation of Slopes and
GWA Mapping on the Slopes
For each significant environmental covariate/trait combination,
the additive genetic effects of the 624 varieties at each
environment were regressed on the environmental covariates,
and the slopes (β) were calculated for each variety (Figure 1F,
Supplementary Methods S3, Supplementary Table S17). The
additive genetic effects were estimated using single-trait mixed
models, as described in “ECGC Step 0: Developing mixed models
at each environment”. The additive genetic effects were scaled
with the additive genetic variance (σuj), and the meteorological
values were standardised before this regression analysis.
Considering these slopes as phenotypic values, GWA mapping
was conducted (Figure 1F) using the GWAS function of the
rrBLUP package (ver. 4.6.1). The genomic relationship matrix
was calculated using the A.mat function of the package. No
principal components were included in the models because p
values did not inflate (Supplementary Figure S2). SNPs with
minor allele frequencies >0.05 were subjected to the statistical
tests. This conservative threshold (0.05) was adopted to prevent
false positives. This GWA mapping involved more than 6.40e+7
statistical tests (on average, 115,312 SNPs × 555 environmental
covariate/trait combinations); thus, the application of strict
multiple testing correction, such as Bonferroni correction, is
unrealistic. Instead, we applied a method that controlled the
false discovery rate (FDR) (Storey and Tibshirani, 2003). The
threshold of significance was calculated using an R script
implemented in the GWAS function of rrBLUP, with
modifications. The threshold for FDR <0.05 was 9.086278e−06
(5.041614 in the −log10p expression). The distribution of the p
values is shown in Supplementary Figure S2. By grouping
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significant SNPs that were less than 100 k bp apart from each
other into the same regions, 1,486 regions were detected for 270
environmental covariate/trait combinations with overlaps
(Supplementary Table S19).

To verify the validity of these associations, subsampling analyses
were conducted for these 270 combinations. Specifically, 500 (80%)
varieties were randomly selected from the 624 varieties and subjected
to GWA mapping. Random sampling was adopted because the aim
of this subsampling is to perturbate the genetic structure whichmight
produce false positives. This procedure was repeated 10 times. Then
replicationswhere the regions detected using the full data also showed
significant associations were counted (threshold −log10p � 5.041614;
Supplementary Table S19). Regions with counts>4were regarded as
reliable results. As a result, 948 regions were remained for 179
environmental covariate/trait combinations. These regions were
found to be constituted with 39 regions by removing overlaps
between combinations (Supplementary Table S19).

Orthologs of Arabidopsis thaliana mapped in the detected
regions were extracted from JBrowse provided by Phytozome
ver.12.1 (https://phytozome.jgi.doe.gov/jbrowse/index.html?
data�genomes/Gmax). Gene ontology of these orthologs were
surveyed with overrepresentation analyses provided by
PANTHER ver.16.0 (http://pantherdb.org/) using Arabidopsis
genes as a reference.

Simulation Analyses
Simulation analyses were conducted to assess the performance to
ECGC to detect environment covariates. As illustrated in Eq. 1,
the detection power of ECGC depends on the proportion of the
variance of xjxkσ2β to that of Pj,k (i.e., r2) and the number of
environments denoted asM. The detection power was expected to
increase as r2 and M increase. For the sake of simplification,
σj, β � 0 and σ2uj � 1 for any environment j, and σ2β � 1
throughout the simulations. Consequently, Pj,k � xjxk + σj, k.
The genetic correlation matrices between environments were
simulated as follows.

(1). Assign values for r2 and M from grids 0.01, 0.018, 0.025,
0.035, 0.053, 0.075, 0.1, and 0.15, and 5, 10, 15, 20, 30, 40, 50,
and 60, respectively.

(2). Generate xj from the standard normal distribution for all j
(1≤ j≤M), and calculate the variance of xjxk (1≤ j< k≤M).

(3). Determine the variance of σj, k according to r2 and the
variance of xjxk.

(4). Generate σj, k from the LKJ distribution using the R package
rethinking (ver. 2.13) (McElreath, 2020). Parameter η of the
distribution was arbitrary set to four. Scale σj, k according to
the variance of σj, k.

(5). Generate a symmetric matrix by adding xjxk to σj, k. Here
xjxj (i.e., diagonal elements) is set to the average of
xjxj (1≤ j≤M).

(6). Convert the symmetric matrix of (5) to the correlation
matrix.

For each combination of r2 and M, the genetic correlation
matrix was simulated 2000 times. For each simulated matrix, 99
additional environment covariates that were not associated with

the correlation matrix were also simulated as true negatives. Then
the Pearson correlation between Pj,k and xjxk was tested for these
simulated environmental covariates. The performance of ECGC
was assessed using the ROC curves drawn by the R package
ROCR (ver. 1.0-11) (Sing et al., 2005).

RESULTS AND DISCUSSION

Interpretation of ECGC
Eq. 1 shows that environmental covariates (xjxk) are associated
with G × E interactions (Pj,k) when σ2β (variance of genotype
sensitivity or phenotype plasticity) is not zero and the term
xjσk, β + xkσj, β + σj, k does not conceal xjxkσ2β. This fact
implies that σ2β itself is not an evidence that the environmental
covariate is associated with G × E interactions; even when σ2β
significantly deviates from zero, the effect of σ2β on the genetic
correlation can be concealed by the term xjσk, β + xkσj, β + σj, k.
That is, non-zero σ2β is a necessity condition for the association
rather than a sufficient condition. On the other hand, significant
correlations between Pj,k and xjxk can be the direct evidence of
association between the environmental covariate and G × E
interactions because, when the term xjσk, β + xkσj, β + σj, k
conceals xjxkσ2β , xjxk is no longer correlated with Pj,k. This
fact also implies that statistical testing on σ2β is not an alternative
of ECGC. Both approaches (ECGC and testing on σ2β) have
different roles (detecting environment covariates associated
with G × E interactions and genotype sensitivity/phenotype
plasticity, respectively).

Detection of Environmental Covariates
The multi-environment data set used here consisted of 25,158
records of 624 varieties that were evaluated from 1961 to 2015 at
41 fields. The included varieties consisted of cultivars and
breeding lines developed in Japan for the sake of food
production, such as tofu (Supplementary Table S3). Among
the 41 fields, in nine fields, multiple management conditions
(early/late sowing dates and sparse/dense plant densities) were
consistently conducted in multiple years. For these fields,
different management conditions were defined as different
environments as described in Materials and Methods. As a
result, a total of 52 environments were defined from 41 fields
(Figure 1A and Supplementary Table S2).

The steps of ECGC are shown in Figures 1B–F. In the first
step, environmental covariates representing each environment
were calculated (Figure 1B). Here, we considered 14
meteorological factors as the environmental stimuli (Materials
and Methods). We divided the whole growth period of a plant,
from sowing to maturity, into 30 stages; this was achieved by
dividing the growth period (from sowing to flowering) into 10
stages, and the period from flowering to maturity into 20 stages
(Figure 1B). For each meteorological factor (e.g., daily mean
temperature), the meteorological values within each stage were
averaged, yielding 30 values for each plant. These values were
then averaged across plants evaluated at the environment for all
the years, thus yielding 30 values for each environment
(Supplementary Tables S5–S10). Subsequently, the values
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FIGURE 2 | Associations of environmental covariates with genetic correlations between environments. The heat maps represent the −log10 p values of correlation
coefficients of off-diagonal elements between the similarity matrix of each environmental covariate and the genetic correlation matrix. The diagonal elements of the
triangles correspond with the 1st to 30th growth stages, from the lower left to the upper right. The off-diagonal elements correspond to the growth periods that span
multiple stages, where the x and y axes denote the start and end of the periods, respectively. The broken lines indicate flowering time. Abbreviations: YI, yield; SW,
seed weight; DTF, days to flowering; DTM, days to maturity; SL, stem length; PR, protein content; T, mean temperature; Tmax, maximum temperature; Tmin, minimum
temperature; Pr, precipitation; e, vapour pressure; VPD, vapour pressure deficit; N, hours of sunshine; Sd, solar radiation; EP, potential evapotranspiration; Ph,
photoperiod.
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were further averaged across the 30 stages, i.e. across the 1st to
2nd stages, the 1st to 3rd stages, etc. This procedure yielded 465
(30 + 30 × 29/2) environmental covariates for each
trait−meteorological factor combination. Thus, total 465 × 14
(meteorological factors) � 6,510 environmental covariates were
generated.

In the second step, for each environmental covariate (e.g.,
precipitation at the 1st to 3rd stages), values were extracted from
the 52 environments, and the linear kernel (i.e., the similarity
matrix) between environments was calculated (Figure 1C). In the
third step, genetic correlations of additive genetic effects between
environments were estimated using mixed models for each trait
(Figure 1D, Supplementary Tables S11–S16, Supplementary
Figure S3). Estimated genetic correlations suggest strong G × E
interactions particularly for traits other than SW
(Supplementary Figure S3). In the fourth step, the genetic
correlation matrices were compared with the linear kernels
(i.e., similarity matrices) of the environmental covariates
(Figure 1E). Stronger associations between these matrices
indicated that the environmental covariate affected the G × E
interactions with greater magnitude. These associations were
measured using the Pearson’s moment product correlation
coefficient (r) between the off-diagonal elements of the
matrices. Figure 2 shows the distributions of the −log10 p
values of r calculated for 10 meteorological factors (the
complete results are presented in Supplementary Figure S4).
Generally, YI and SW, and DTT, DTM and SL shared similar p
values patterns, whereas PR exhibited unique patterns. A total of
555 environmental covariates were significantly detected for the
six traits (p < 0.05 after Bonferroni correction, Supplementary
Table S17).

For YI, three regions in Figure 2 showed high −log10 p values.
The first region was detected around the 2nd to 22nd growth
stages (upper-left part of the triangles in Figure 2) of the
temperature-related environmental covariates, such as mean
temperature, minimum temperature and vapour pressure. The
highest −log10 p values of these meteorological factors were
observed at the 2nd to 22nd growth stages (r2 � 0.036,
−log10P � 11.554), the 4th to 17th stages (r2 � 0.033,
−log10P � 10.677) and the 2nd to 19th stages (r2 � 0.039,
−log10P � 12.460), respectively. The 22nd growth stage
corresponded on average to 30.4–34.2 days before maturity.
According to the well-known system used to stage soybean
development (Fehr and Caviness, 1977), this period largely
corresponds to the R5 soybean growth stage (Egli, 2010).
Because the R5 stage is defined as the beginning of seed filling
(Fehr and Caviness, 1977), it is likely that the temperature-related
covariates affect the G × E interactions on YI by modifying the
upper limit of the number of seeds. The second region was a
period around sowing in relation to precipitation. The highest
−log10 p value was 10.888 at the 1st to 3rd stages (r2 � 0.034).
This stage corresponds to a period from sowing to, on average,
16.5 days after sowing. Soybeans are vulnerable to waterlogging,
and, in particular, waterlogging around germination has a severe
impact on YI (Kokubun, 2013). In addition, genetic variations
exist in root development in flood conditions (Sakazono et al.,
2014). Thus, our results are reasonable and clearly suggest the

importance of precipitation around germination for the G × E
interactions regarding YI. The third region was a period just
before maturity in relation to hours of sunshine and solar
radiation. The highest −log10 p value was 11.682 observed for
hours of sunshine at the 26th to 29th stages (r2 � 0.037). During
this period, these meteorological factors also showed a high
−log10 p value for SW; the highest value for SW around this
period was 11.101 for hours of sunshine at the 29th to 30th stage
(r2 � 0.035).

The highest −log10 p value for SW was observed in relation to
potential evapotranspiration at the 8th to 10th stages (r2 � 0.050,
−log10P � 15.715). Potential evapotranspiration (or potential
evaporation) can be regarded as the upper limit of
evapotranspiration from a crop field (Kuwagata et al., 2011),
which can reflect photosynthesis activity. The other
meteorological factors detected, i.e., mean temperature and
maximum temperature (highest r2 � 0.032 and 0.036 at the 5th

stage; −log10P � 10.199 and 11.570, respectively) and vapour
pressure deficit (r2 � 0.029 at the 9th stage, −log10P � 9.261619),
also suggest the relevance of photosynthesis. The influence of
these factors started before flowering, when seed filling has not
started. Thus, it is likely that these factors affected SW indirectly
via the modification of the number of seeds, because soybean
shows compensation effects between SW and seed number.

For DTF, the significant environmental covariates included
mean temperature at the 6th stage (r2 � 0.140, −log10P � 44.930),
minimum temperature at the 6th stage (r2 � 0.127,
−log10P � 40.286), maximum temperature at the 5th to 14th
stages (r2 � 0.146, −log10P � 46.602) and vapour pressure at the
6th stage (r2 � 0.145, −log10P � 46.353). Photoperiod before
flowering was also a significant covariate (r2 � 0.106 at the 4th to
5th stages, −log10P � 33.286). These results are reasonable
considering that temperature and photoperiod are the main
determinants of soybean flowering time (Sinclair et al., 1991).
The results obtained for DTM and SL were close to those obtained
for DTF, suggesting that the influence of meteorological factors
on the G × E interactions for DTM and SL occurred via those of
DTF. In other words, if DTF does not show a G × E interaction,
DTM and SL will also not show. Finally, the results obtained for
SL are reasonable, because the varieties commonly cultivated in
Japan exhibit the determinate stem type, in which the
prolongation of the stem ends shortly after flowering begins
(Bernard, 1972).

The p value patterns of PR were different from those of the
other traits. Meteorological factors generally exert their effects
after flowering, around the 21st to 27th stages, as observed for
mean temperature (highest −logP � 6.854 at the 27th stage, r2 �
0.062), maximum temperature (−logP � 5.544 at the 27th stage,
r2 � 0.049), minimum temperature (−logP � 6.207 at the 27th
stage, r2 � 0.056), vapor pressure (at the 21st stage,
−log10P � 8.330, r2 � 0.076), solar radiation (−logP � 8.605 at
the 21st to 24th stages, r2 � 0.079) and potential
evapotranspiration (−logP � 8.658 at the 21st to 22nd stages,
r2 � 0.079). The 21st to 27th stages occurred on average
38–64.6 days after flowering, when the accumulation of protein
is past its rapidest growth period (20–40 days after flowering), but
is still ongoing (Gayler and Sykes, 1981). The meteorological
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factors detected potentially affected the G × E interactions of PR
via the photosynthetic activity at this stage, which is essential for
nitrogen fixation.

Simulation Results
To assess the validity of these detected environmental covariates,
the detective power of ECGC was verified with simulations. As
illustrated in the Methods, the performance of ECGC is affected
by r2 and the number of environment M. The receiver operating
characteristic (ROC) curves obtained under different
combinations of r2 and M are shown in Figure 3. As
expected, the performance of ECGC gained as r2 and M
increased. In Figures 4A,B, observed r2 values for each trait
are shown for comparison with Figure 3. The r2 values of the
detected environmental covariates were greater than 0.053 for PR
(M � 30) and greater than 0.018 for the other traits (M � 52)
(Figure 4B). The ROC curves under the corresponding
combinations of r2 and M in simulation results (0.053 and 30,
and 0.018 and 50, respectively) suggest that ECGC detected the

environmental covariates with reasonable accuracy under these r2

and M values.

Association Mapping on Genotype
Sensitivity
In the final step of ECGC, the genetic architecture underpinning the
sensitiveness of the varieties to the detected environmental covariates
was examined using association mapping (Figure 1F). For the
environmental covariates detected in the fourth step, slopes were
estimated for each variety by regressing the additive genetic effects at
each environment on the environmental covariates (Supplementary
Table S18). The slope represented the sensitivity of the variety to the
changes in the environmental covariates, and genome-wide
association (GWA) mapping was conducted on the slopes. By
pruning with false discovery rate (FDR) < 0.05 and subsampling
analyses, 39 chromosomal regions were significantly detected for
traits except for SW (Supplementary Figures S5–S10 and
Supplementary Table S19). DTF shared one and two regions

FIGURE 3 | Receiver operating characteristic (ROC) curves in simulation analyses. The titles of the plots denote the number of environments (M). The ROC
curves of different r2 values are drawn with different colours. The x and y axes are the false positive rate and the true positive rate, respectively. In these
simulations, 99 true negatives were simulated for each true positive. Thus, the coordinate (x, y) � (1, 0.01) means that one true positive is detected with 0.99
false positives.
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with DTM and SL, respectively, and these three traits shared one
region (Figure 5A) which is located at near the known flowering gene
(E2) (Watanabe et al., 2011). On the other hand, YI and PR shared no
regions with each other, and nor with DTF, DTM, and SL
(Figure 5A). These results suggest that major genes responsible
for the G × E interactions triggered by meteorological factors are
generally not pleiotropic. This suggestion can be confirmed by the
distributions of the meteorological factor/growth stage combinations
where significant associations were detected (Figure 5B and
Supplementary Figure S11). For DTF, DTM, and SL, significant
associations were generally detected for the temperature-related
factors and photoperiod before flowering. For YI, associations
were significantly detected for precipitation around sowing, hours
of sunshine during maturity, and potential evapotranspiration and
vapor pressure deficit (i.e., factors related to photosynthesis) around
flowering. For PR, significant associations were mainly detected for
temperature-related factors during maturity. That is, the major genes
responsible for these traits affect the sensitivities to different
meteorological stimuli occurred at different growth stages.

GWA mapping of ECGC could narrow down a genomic
region that was suggested to be responsible for the G × E
interactions by QTL mapping. Three close regions on
chromosome 12 spanning 17.86–18.85 Mbp were detected for

the slopes of YI for precipitation at the 1st to 3rd stages (Figures
6A,B, Supplementary Table S19). These regions include the QTL
(14.39–35.1 Mbp) for hypoxia tolerance of Japanese soybean
breeds (Van Nguyen et al., 2017), which is related to root
extension under flood conditions. Gene ontology analyses
revealed that two orthologs of Glyma.12G142900
(18.503–18.505 Mbp) in Arabidopsis thaliana (AT4G27280 and
AT5G54490) are involved in cell response to hypoxia. In addition,
the gene (Glyma.12G142900) was reported to show higher
expression on root tissues (Phytozome 12, accessed on March
30, 2021), suggesting the gene is a plausible candidate.

Strong associations were observed on multiple adjacent
regions on chromosome 10 spanning 44.46–46.61 Mbp for
various meteorological factors, including temperature-related
covariates and photoperiod (Figures 6C,D, Supplementary
Table S19, and Supplementary Figure S9). These regions
were also detected for DTM and SL, reflecting the similar
tendencies of the G × E interactions (Supplementary Figures
S7, S10). These regions included E2 (45.29–45.32 Mbp), which is
an analogous gene of GIGANTEA of Arabidopsis and a major
gene for flowering time in soybean (Watanabe et al., 2011). These
regions also included two orthologs (Glyma.10G180600 and
Glyma.10G209600) of Arabidopsis flowering genes (CRY2 and

FIGURE 4 | Observed r2 values of off-diagonals between the similarity matrix of environmental covariates and the genetic correlation matrix. (A) Histograms for all
environmental covariates. (B)Histograms for the environmental covariates significantly detected. Abbreviations: YI, yield; SW, seed weight; DTF, days to flowering; DTM,
days to maturity; SL, stem length; PR, protein content.
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ELF6, respectively). Known flowering genes of soybean
responsible for photosensitivity, such as E1 (Xia et al., 2012),
E3 (Watanabe et al., 2009), and E4 (Liu et al., 2008), were not

detected for any of the environmental covariates. It is notable that
association mapping using slopes can detect genes with
effects that vary according to environmental covariates.

FIGURE 5 | Summary of chromosomal regions detected by genome-wide association mapping. (A) Number of chromosomal regions significantly detected by
association mapping for each trait. (B)Distributions of meteorological factor/growth stage combinations where significant associations were detected. Red dots indicate
the combinations with significant associations. See Supplementary Figure S11 for the other traits and meteorological factors. The diagonal elements of the triangles
correspond with the 1st to 30th growth stages, from the lower left to the upper right. The off-diagonal elements correspond to the growth periods that spanmultiple
stages, where the x and y axes denote the start and end of the periods, respectively. The broken lines indicate flowering time. Abbreviations: T, mean temperature; Tmax,
maximum temperature; Tmin, minimum temperature; Pr, precipitation; e, vapour pressure; VPD, vapour pressure deficit; N, hours of sunshine; EP, potential
evapotranspiration; Ph, photoperiod.

FIGURE 6 | Examples of the genome-wide association mapping results. (A) Slopes of YI for precipitation at the 1st to 3rd growth stages. The x and y axes are the
environmental covariates and the additive genetic effects, respectively. Both axes are standardised. (B) Manhattan and QQ plots of the association analysis of the slopes
illustrated in (A). The horizontal dashed line indicates the false discovery rate (0.05) threshold. The x and y axes of theQQplot are the expected and observed−log10 p values,
respectively. (C) Slopes of days to flowering for maximum temperature at the 5th to 14th growth stages. (D)Manhattan and QQ plots for the slopes illustrated in (D).
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Because the loss-of-function alleles of E1 (Tsubokura et al., 2014)
were strictly used at higher latitudes (Supplementary Methods
S4 and Supplementary Table S20), the effects at lower latitudes
could not be estimated. Thus, these effects would not be reflected
in the slopes. Conversely, E3 and E4 were probably not involved
in the G × E interactions because of constant gene effects across
environments. Additional analyses that examined the allele
effects of these flowering genes using sommer (Covarrubias-
Pazaran, 2016) showed that the E2 gene effect was the most
variable across environments (Supplementary Methods S5 and
Supplementary Figure S12).

Insights on Selection History
The slopes provide insights on how the G × E interactions were
involved in the selection of modern varieties. For example, for YI,
varieties with positive slopes for an environmental covariate are
expected to be more preferred at environments with greater
environmental covariates. In other words, if a trait is
directionally preferred, it is expected that the environmental
covariates will be correlated with the averages of slopes of the
varieties evaluated at each environment. In fact, the correlations
were positive for YI and SW (Figures 7A–C) and often significant
(p < 0.05 after Bonferroni correction, Supplementary Table S21).

The negative correlations found for PR are attributable to the
trade-off between YI and PR (i.e., a higher yield tends to lower
PR). These results clearly suggest that varieties that exhibit high
YI under the detected environmental covariates have been
selected by breeders, intendedly or unintendedly. Conversely,
for DTF, DTM, and SL, the correlations were more moderate, and
no significant correlation was found. This result is reasonable
because these traits were not directionally preferred. Rather, a
characteristic U-shaped trend was found for temperature-related
environmental covariates and photoperiod (Figure 7D). For
DTF, this tendency indicates that a longer DTF is acceptable
in lower latitudes (more temperate climates), whereas a shorter
DTF is preferred in higher latitudes (less temperate climates).
These results are coherent because early flowering is required in
cold climates to avoid frost damage.

Advantages of ECGC
The base model of ECGC is a conventional model for reaction
norm where the genotypic value is divided into a component
representing sensitivity to environmental covariates and a
component free from them (van Eeuwijk et al., 2005; Hayes
et al., 2016). The novelty of ECGC is to associate similarity
matrices of environmental covariates with the genetic

FIGURE 7 | Correlations between environmental covariates and the averages of the slopes of the varieties evaluated at each environment. Positive/negative
correlations indicate directional selection for the environmental covariates. (A) Weighted averages of slopes for each trait. YI, yield; SW, seed weight; DTF, days to
flowering; DTM, days to maturity; SL, stem length; PR, protein content. (B) Examples of correlations between the environmental covariates and the averages of the
slopes observed for yield. The environment covariates that showed strong associations with the G × E interactions are shown. The red lines are the linear regression
lines. (C) Example of correlations between the environmental covariates and the averages of the slopes observed for protein content. The environment covariates that
showed the highest correlation with the G × E interactions are shown. (D) Examples of correlations between the environmental covariates and the averages of the slopes
observed for days to flowering. The two environment covariates that exhibited the highest associations with the G × E interactions and photoperiod at the 4th to 5th
stages are shown. The red lines were drawn using the local polynomial regression provided by the R package KernSmooth (ver. 2.23-17) (Wand and Jones, 1995).
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correlation matrix, and the idea of ECGC can be derived by
extending the base model as described in Materials and Methods.
This approach brings the following advantages. First, the
environmental covariate search by ECGC is directly related to
the G × E interactions whereas the search based on the variance of
slopes (sensitivities of genotypes) is not necessarily related to the G
× E interactions. Second, because of the properties of mixedmodels
used for estimating genetic correlations between environments,
ECGC is applicable to data with missing values and/or unbalanced
structure. Genetic correlations between environments can be
estimated using mixed models and genomic relationship
matrices even when varieties are not overlapped between
environments. Estimation of genetic correlation without
overlapped records can be found in, for example, estimation of
between-sex genetic correlation (Crews and Kemp, 2001). Lastly,
genetic covariances/correlations between multiple environments
can be estimated in pairwise manner (Fieuws and Verbeke, 2006)
and parallelized, which enables ECGC to be scalable with the
number of environments. The last two advantages are particularly
useful in analysis of large-scale multi-environment data sets and/or
historical data sets.

CONCLUSION

Owing to these advantages, our proposed ECGCwas applicable to
the large-scale multi-environment data set of soybean, and able to
depict comprehensive landscapes on how environment stimuli
are involved in the G × E interactions for agronomic traits
evaluated in real fields. Moreover, candidate QTLs/genes
responsible for the interactions were detected. ECGC also
provided interesting insights on how the G × E interactions
are related to the selection of modern Japanese varieties. Thus, it
can be concluded that ECGC will be a promising approach to
understand the G × E interactions and to reveal the gene-by-
environment stimuli interactions.
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