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ABSTRACT: The open-access scientific literature contains a wealth
of information for meaningful text mining. However, this information
is not always easy to retrieve. This technical note addresses the
problem by a new flexible method combining in a single workflow
existing resources for literature searches, text mining, and large-scale
prediction of physicochemical and biological properties. The results
are visualized as virtual mass spectra, chromatograms, or images in
styles new to text mining but familiar to analytical chemistry. The
method is demonstrated on comparisons of analytical-chemistry
techniques and semantically enriched searches for proteins and their
activities, but it may also be of general utility in experimental design,
drug discovery, chemical syntheses, business intelligence, and historical studies. The method is realized in shareable scientific
workflows using only freely available data, services, and software that scale to millions of publications and named chemical
entities in the literature.

The scientific literature provides an abundance of
information in the public domain for text mining and

machine learning, including PubMed with 29.1 million titles
and abstracts and Europe PMC1 with 2.25 million full-text
articles that are open access or have CC-BY, CC-BY-NC, or
CC0 licenses. Millions of named entities such as diseases,
genes, proteins, and metabolites are already text-mined and
annotated in the SciLite2 platform. These annotations can be
accessed programmatically from Europe PMC via the recently
introduced Annotations API, which is similar to the web
services used to access bibliographic information.1 These
services can be combined and the searches orchestrated in
scientific workflow systems such as Taverna3−6 or KNIME,7

which also ensures reproducibility and enables open sharing of
literature analyses.
Metabolites, drugs, and other small molecules are annotated

using the Chemical Entities of Biological Interest (ChEBI)
ontology8 containing 99 413 entities (release 169), along with
synonyms, CAS registry numbers, elemental formulas, masses,
and chemical structures in SMILES9 and InChI10 formats.
These structures are used to derive a number of molecular
descriptors. From these descriptors and available experimental
data, machine learning is used to predict important
physicochemical and biological properties, such as aqueous
solubility,11−13 melting point,11,14 vapor pressure,15,16 bioavail-
ability,17,18 developmental toxicity,19,20 and receptor binding.21

This note describes how text mining for chemical entities
can be combined with prediction of their physicochemical
properties to guide the selection of analytical methods, extract
information on proteins and their ligands, or study the history
of a particular subfield of chemistry in semantically enriched
literature searches.

■ EXPERIMENTAL SECTION

The method presented here is a combination of three web-
based services made interoperable through scripts embedded
in a workflow executed on the user’s side. The starting point is
one or a set of literature queries. Each query is used to generate
one API call to the Europe PMC searchPublications RESTful
service. The searches can be restricted to previously tagged22

sections, such as the methods sections, or unrestricted. Each
call returns a list of PubMed identifiers with metadata such as
whether annotations from text mining are available. The
annotated chemical compounds and classes in publications for
which text mining results are available are retrieved using the
recently launched getAnnotations service (Figure 1). After
these searches, molecular information such as mass, elemental
composition, and structures (as SMILES or InChIs) can be
looked up in the ontology from the returned molecular
(ChEBI) identifiers. The returned SMILES can then be used
to predict a number of physicochemical and biological
properties on a computational chemistry server such as
OCHEM.23 Polarities were predicted using ALogPS 3.0 on
OCHEM as the 1-octanol−water-partition coefficient (log P).
Estrogen-receptor and p53-signaling agonists were predicted
using the qualitative consensus estrogen-receptor-α- and p53-
signaling-agonists OCHEM models21 (model IDs 518 and 522,
respectively) developed to answer the Tox21 challenge.24 The
4216 ChEBI compounds that had already been used to train
the models for ER and p53-signaling agonists were removed
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from further analysis. The ChEBI ontology includes 5104
chemical classes with wildcards in their SMILES, individual
elements, isotopes, and even elementary particles. As
physicochemical properties cannot be meaningfully measured
or predicted for such, these ChEBI entities were also excluded,
even though they are annotated in many publications. To
accelerate the workflow, these properties were precomputed
for the 99 413 entities in ChEBI and stored locally in a lookup
table. The ChEBI ontology is updated monthly, whereas
Europe PMC results can change on a daily basis with new
publications and text-mined items. The molecular masses were
extracted from the ChEBI OBO file and added to the lookup
table.
To compare multiple queries, the results were normalized

against the total number of annotations for each comparand.
Visualizations were generated in R. For density plots, a 2D
Gaussian blur was applied with standard deviations 0.125 log P
units (two bins) and 6.25 Da (one bin) to represent the
inherent uncertainties in log P predictions as well as the
difference between calculated monoisotopic masses and
measured masses due to the presence of isotopes, charge
carriers, adducts, or neutral losses. The custom computer code
used in this work is embedded in a KNIME workflow available

on GitHub (https://github.com/magnuspalmblad/
EuropePMC2ChEBI). The R functions used to visualize the
results are also included in the repository.
To demonstrate the methodology, Europe PMC was queried

for “electrospray ionization” (ESI), “atmospheric pressure
chemical ionization” (APCI), “electron impact”, “and gas
chromatography” (GC). Furthermore, tagged methods sec-
tions were searched for “liquid chromatography−mass
spectrometry” (LC-MS). Europe PMC was also searched for
annotations of the estrogen receptor (UniProt P03372) and
the cellular tumor antigen p53 (UniProt P04637).

■ RESULTS

The results from a single literature search can be visualized as a
distribution of one or more derived properties of the chemical
compounds retrieved from the text-mined publications. Figure
2 illustrates this as a familiar “mass spectrum” for all
compounds annotated in publications mentioning LC-MS in
their methods sections but with annotations retrieved from all
sections. In general, any property that can be both measured
and predicted can be stored, visualized, and analyzed similarly,
as a chromatogram, image, or mass spectrum.
It is tempting to generalize the picture by traversing the

ontology, looking at general classes rather than discrete
chemical entities. However, two chemical entities in the
same class (for example, methanol and octadecan-1-ol, both
being primary alcohols) may have very different physicochem-
ical properties. An alternative way to generalize the chemical
entities associated with a particular method or process is to
predict the most relevant properties of these entities using
quantitative structure−property relationships (QSPR). When
looking at multiple properties, the distributions can be
visualized as heatmaps or images. Figure 3 shows the results
from ALogPS 3.0 1-octanol−water-partition-coefficient (log P)
QSPR predictions for all chemically distinct ChEBI entities,
highlighting two classes with very different physicochemical
properties.
Phase diagrams of applicability of analytical methods as

functions of analyte mass and polarity are common in the
literature,25 including in textbooks, where they are used to
compare methods of chromatographic separations or ioniza-
tion in mass spectrometry. These diagrams are drawn from
subjective experience rather than an objective metric. With the
annotations in Europe PMC, it is now feasible to look at a large

Figure 1. Schematic of analysis. In principle, all analysis in this note
can be done by connecting three web services or applications:
searchPublications and getAnnotations from Europe PMC and the
OCHEM ALogPS prediction model. The service calls can be
orchestrated by a single scientific workflow in workflow managers
such as Taverna or KNIME.

Figure 2. Distribution of integer masses of ChEBI compounds in publications with “liquid chromatography−mass spectrometry” in their methods
sections visualized as an integer mass spectrum. The truncated base peak at mass 18 (18 491 occurrences) is dominated by ammonium ions and
water. The second most abundant mass at 180 (14 497 occurrences) represents the hexoses. This simple analysis makes no distinctions among
solvent, reagents, analytes, adducts, and neutral losses. However, analytes dominate at larger masses, and there are even discernible peaks for the
anticancer drugs paclitaxel and docetaxel at 853 and 861 and the antibiotics sirolimus, colistin, cyclosporin A, and vancomycin at masses 913, 1150,
1201, and 1448, respectively. This is an actual mass spectrum, with mass rather than mass-to-charge ratio on the abscissa.
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body of the scientific literature and find actual correlations
between analytical methods and analytes. Three common
ionization methods for mass spectrometry were compared in a
tripartite search for ESI, APCI, and electron impact (now
called electron ionization), which retrieved 1 238 516, 116 868,
and 267 712 ChEBI annotations from 36 844, 2567, and 5930
papers, respectively. The relative distributions are displayed in
Figure 4. Electron impact (blue) follows the same distribution
in polarity and mass as is observed for gas chromatography.
This is unsurprising, as GC is most commonly interfaced to
MS using this ionization method. Atmospheric-pressure
chemical ionization has a distinct “sweet spot” at masses
between 500 and 600 Da and 1-octanol−water-partition
coefficients between 106.5 and 108.5. Electrospray dominates
elsewhere in the mass−polarity space. The true phase diagram
of ionization-method applicability is different from the
rectangular diagrams found in the textbooks. However, it is
important to consider that application depends on more than
applicability, such as popularity and availability of particular
instrumentation in the laboratories where published work is
carried out. For example, LC-ESI-MS instrumentation is
ubiquitous and versatile and provides appropriate choices of
columns and mobile phases, which may explain why this
combination has been so broadly applied to different types of
analytes. Peptides and proteins are outside ChEBI’s domain.
As ChEBI contains fewer than 2000 peptides, and very few
proteins, peptidomics, and proteomics data would not be
efficiently captured even if the peptides were explicitly listed in
the papers.

In addition to physicochemical properties and properties
important in drug discovery, specific biological functions or
interactions can be predicted by similar machine-learning
techniques. From 78 630 predictions, 11 203 ChEBI com-
pounds were predicted to be active estrogen-receptor (ER)
agonists (numeric prediction <0.5; 0.323 ± 0.132, where 0
represents active, and 1 represents inactive) and 67 427 were
predicted to be inactive (>0.5, 0.749 ± 0.111) with an 87.4%
reported accuracy. A p53-signaling model predicted 28 718 out
of 78 309 returned ChEBI compounds to be active (0.337 ±
0.114) and the remaining 49 591 to be inactive (0.722 ±
0.134) with 79.5% accuracy. The training of these predictors
was performed using drugs and druglike compounds, whereas
ChEBI contains many compounds that are neither. The results
should therefore not be seen as reflecting poorly on any of the
models, but as a useful way to indicate correlations between a
particular topic or search term (e.g., an enzyme or receptor)
and the small molecules coappearing in the literature with that
enzyme or receptor.
The predicted most likely estrogen receptor (ER) agonists,

not counting compounds used to train the model, were
norgestrel (CHEBI: 7630), 17-ethynyl-13-methyl-
7 ,8 ,9 ,11 ,12 ,14 ,15 ,16-octahydro-6H - cyc lopenta[a] -
phenanthrene-3,17-diol (CHEBI: 125402), (13S,17R)-17-
ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6H-
cyclopenta[a]phenanthrene-3,17-diol (CHEBI: 91483), 1-
(2,4-dihydroxyphenyl)-3-(3,4-dihydroxyphenyl)-2-propen-1-
one (CHEBI: 92312), (8R,9S,13S,14R,17R)-17-ethynyl-13-
methyl-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]-
phenanthrene-3,17-diol (CHEBI: 94792), and resveratrol
(CHEBI: 27881). Several of these belong to the estrogen
(CHEBI: 50114) class or are known ER agonists (resvera-

Figure 3. Prediction of 1-octanol−water-partition coefficients and
masses for 90 056 ChEBI compounds. The instances of some ChEBI
classes are clustered in the mass−log P space (e.g., the amino
trisaccharides, CHEBI: 59266, magenta), whereas others, such as the
alkanes (CHEBI: 18310, cyan), chart a predictable course through
this mass−log P space. Although the ontological hierarchy provides a
solid framework for systematically aggregating data on related
compounds in a given context, it is important to remember the
chemical diversity within an ontological class limits the representative-
ness of averages collated by traversing the ontology for all instances of
this class in the literature on a particular topic. The crosses indicate
the averages (or centers of mass) of the amino trisaccharides and
alkanes in this map.

Figure 4. Normalized RGB plot31 of the application of atmospheric-
pressure chemical ionization−ionization (red), electrospray ioniza-
tion−ionization (green), and electron impact (blue) from 1 623 096
named-entity recognitions in the scientific literature. Electron impact
(now electron ionization) dominates for small compounds at the
upper limit of log P, whereas APCI is the most popular ionization
method for analytes near 500−600 Da and log P values of 6.5−8.5. A
gray or white color indicates no preference among the three ionization
methods, but this is only observed for ubiquitous solvents such as
water.
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trol26), although (levo)norgestrel has relatively low affinity for
the receptor.27 The most likely p53-signaling agonists
(excluding those in the training set) included more surprises,
with C60 fullerene (CHEBI: 33128), quinacrine mustard
(CHEBI: 37595), acridine half-mustard (CHEBI: 132980),
pallidol (CHEBI: 27881), 2,2′,3′,4,4′,5,5′-heptachloro-3-bi-
phenylol (CHEBI: 79726), 2,2′,3,3′,4′,5,5′-heptachloro-4-
biphenylol (CHEBI: 34194), and 6-[[(6-methyl-9-indolo[3,2-
b]quinoxalinyl)amino]methylidene]-1-cyclohexa-2,4-dienone
(CHEBI: 94089) predicted to be the most likely active
agonists, whereas known p53-signaling agonists in ChEBI (but
not in the training set) such as piplartine−piperlongumine
(CHEBI: 8241), 2,2-bis(hydroxymethyl)-1-azabicyclo[2.2.2]-
octan-3-one (CHEBI: 94995), and the tripeptide acetylleucyl−
leucyl−norleucinal (CHEBI: 2423) either failed prediction or
were predicted to be inactive. These simple observations
already suggest the ER predictions may be more accurate or at
least more specific in the ChEBI domain than the p53-signaling
predictions, despite the latter having a higher reported
prediction accuracy. More relevantly, the 10 predicted most
likely agonists returned by the Europe PMC literature searches
for the estrogen receptor and cellular tumor antigen p53 are
shown in Table 1. The list for the former included the

estrogens (CHEBI: 50114) 17β-estradiol, estradiol, and
estrone, as well as the xenoestrogen (CHEBI: 76988)
dienestrol and the androgen (CHEBI: 50113) testosterone;
the list for the latter included the antineoplastic agents
(CHEBI: 35610) torin 1, nocodazole, and irinotecan but also
the fluorochromes (CHEBI: 51217) methylene blue, pibenzi-

mol, ethidium, thionine, and 2′-(4-ethoxyphenyl)-5-(4-meth-
ylpiperazin-1-yl)-2,5′-bibenzimidazole (a pibenzimol deriva-
tive). Although these fluorochromes all bind to DNA, and
several have been investigated for use in photodynamic
anticancer therapy,28,29 they are most often used for staining,
also in the context of p53-signaling studies. Nevertheless, these
results clearly demonstrate the feasibility of semantically
enhanced literature searches combining named-entity recog-
nition of proteins and their ligands from a small-molecule
ontology with large-scale QSPR predictions.

■ DISCUSSION

The inspiration for the method described here was to
demonstrate the power of combining existing resources and
web services for novel purposes. The number of ways in which
literature databases, ontologies, text-mined annotations, and
QSPR modeling can complement each other is inexhaustible.
Multiple ontologies can be combined, such as protein entities
in UniProt (enzymes and receptors), small molecules in ChEBI
(as demonstrated here), and also chemical-method ontologies
like CHMO.30 Entities from any of the supported ontologies
can be used in the initial search query in Europe PMC. Much
of the chemistry data and software is proprietary, and the free
software and services that exist typically only support single
queries or a small number of queries. Here, gratis data,
software, and services that are scalable to millions of queries or
predictions were used exclusively, meaning anyone with an
Internet connection can repeat or modify the analyses using
the workflow provided in the GitHub repository.
In these demonstrations, no distinction was made between

proper analytes and reagents used in the analysis. Automati-
cally tagging these requires AI-hard natural-language under-
standing. The shortcut can be defended by the safe assumption
that for almost any analytical method or literature search, the
number of reported analytes will be much larger than the
number of different additives and derivatizing agents used in
the method. Comparing techniques for analysis or synthesis
using text mining and molecular-property calculations not only
summarizes what has been done but inspire selection of
existing methods or development of new methods that are fit-
for-purpose. The examples here were primarily chosen as
positive controls, to check that the resulting visualizations are
reasonable and informative.
In principle, all analyses here could just as easily be

performed on a larger set of compounds, provided these would
be annotated in the literature. Annotating PubMed with
PubChem, containing 97 million compounds as of March
2019, is an obvious next step. Some differences are expected, as
the coverage of PubChem and ChEBI differ (by design).
Compared with PubChem, ChEBI is heavily influenced by
endogenous metabolites and other large, water-soluble
molecules, resulting in the average ChEBI compound being
significantly larger (∼440 vs ∼370 Da) and more polar (log P
∼2.27 vs ∼2.89) than the average of the 97 million PubChem
compounds calculated using the ALogPS 3.0 model. None of
these differences should pose any technical difficulties, except
for the most computationally expensive models.

■ CONCLUSIONS

This note describes a novel method integrating existing
resources for literature searches, text mining, and computa-
tional chemistry. The method has potential applicability in

Table 1. Most Likely ER and p53-Signaling Agonists As
Predicted by OCHEM Matching the Respective Protein in a
Europe PMC Search

top ER agonists in {UNIPROT_PUBS:P03372}

ChEBI ID ChEBI name
number
prediction

16469 17β-estradiol 2.67 × 10−03

23965 estradiol 3.23 × 10−03

34025 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane 1.13 × 10−02

57545 2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-
chromen-7-olate luteolin-7-olate(1−)

1.20 × 10−02

17347 testosterone 1.97 × 10−02

31669 hexestrol 2.17 × 10−02

3908 coumestrol 3.18 × 10−02

1156 2-hydroxyestrone 3.80 × 10−02

4518 dienestrol 3.87 × 10−02

17263 estrone 4.17 × 10−02

top p53-signaling agonists in {UNIPROT_PUBS:P04637}

ChEBI ID ChEBI name
number
prediction

51739 acridine orange 1.37 × 10−02

6872 methylene blue 1.86 × 10−02

52082 pibenzimol 2.07 × 10−02

84327 torin 1 2.43 × 10−02

4883 ethidium bromide 3.09 × 10−02

42478 ethidium 3.09 × 10−02

52295 thionine 3.30 × 10−02

34892 nocodazole 3.83 × 10−02

51232 2′-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-
yl)-2,5′-bibenzimidazole

3.87 × 10−02

80630 irinotecan 4.67 × 10−02
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experimental design, drug development, omics-data integra-
tion, and historical studies of scientific fields. It may also be
used for business intelligence, characterizing strengths and
weaknesses, and identifying potential opportunities by
comparing products from competing vendors. Linking mean-
ingful categories, functions, or quantitative properties to text-
mined items semantically enhances the literature searches, and
their aggregation and visualization provide in a single picture
an overview of an analytical technique or methodology.
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