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Abstract

The olfactory system faces the difficult task of identifying an enormous variety of odors inde-

pendent of their intensity. Primacy coding, where the odor identity is encoded by the recep-

tor types that respond earliest, might provide a compact and informative representation that

can be interpreted efficiently by the brain. In this paper, we analyze the information transmit-

ted by a simple model of primacy coding using numerical simulations and statistical descrip-

tions. We show that the encoded information depends strongly on the number of receptor

types included in the primacy representation, but only weakly on the size of the receptor

repertoire. The representation is independent of the odor intensity and the transmitted infor-

mation is useful to perform typical olfactory tasks with close to experimentally measured

performance. Interestingly, we find situations in which a smaller receptor repertoire is

advantageous for discriminating odors. The model also suggests that overly sensitive recep-

tor types could dominate the entire response and make the whole array useless, which

allows us to predict how receptor arrays need to adapt to stay useful during environmental

changes. Taken together, we show that primacy coding is more useful than simple binary

and normalized coding, essentially because the sparsity of the odor representations is inde-

pendent of the odor statistics, in contrast to the alternatives. Primacy coding thus provides

an efficient odor representation that is independent of the odor intensity and might thus help

to identify odors in the olfactory cortex.

Author summary

Humans can identify odors independent of their intensity. Experimental data suggest that

this is accomplished by representing the odor identity by the earliest responding receptor

types. Using theoretical modeling, we here show that such a primacy code outperforms

alternative encodings and allows discriminating odors with close to experimentally mea-

sured performance. This performance depends strongly on the number of receptors con-

sidered in the primacy code, but the receptor repertoire size is less important. The model
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also suggests a strong evolutionary pressure on the receptor sensitivities, which could

explain observed receptor copy number adaptations. By predicting psycho-physical exper-

iments, the model will thus contribute to our understanding of the olfactory system.

Introduction

The olfactory system identifies and discriminates odors for solving vital tasks like navigating

the environment, identifying food, and engaging in social interactions. These tasks are compli-

cated by the enormous variety of odors, which vary in composition and in the concentrations

of their individual molecules. In particular, the olfactory system needs to separately recognize

the odor identity (what is there?) and the odor intensity (how much is there?). For instance,

the identity is required to decide whether to approach or avoid an odor source, whereas the

intensity information is important for localizing it. It is not understood how these two odor

properties are separated and how odors are discriminated reliably.

Odors are comprised of chemicals that bind to and excite olfactory receptors in the nose

in mammals and on antenna in insects. Each receptor responds to a wide range of odors and

each odor activates many receptor types. The resulting combinatorial code allows to distin-

guish odor identities [1–3], but also depends on the odor intensity, since receptors respond

stronger to more concentrated molecules [4]. To separate these two properties, the neural sig-

nals are processed in the olfactory bulb (antennal lobe in insects) and then forwarded to the

olfactory cortex, where odors are identified by comparing to memorized patterns. Indeed,

experiments indicate that the olfactory cortex receives a concentration-invariant code [5, 6],

which allows to identify odors irrespective of their intensity. Consequently, the olfactory bulb

can be thought of as a signal processor that removes statistical redundancies in the input to

provide a more useful representation to the olfactory cortex. However, so far it is not clear

what processing the olfactory bulb performs and how this affects odor representations.

The olfactory bulb contains neural clusters called glomeruli, which each receive input from

a specific receptor type [7–9]. Each glomerulus excites associated projection neurons, which

project into the olfactory cortex. Additionally, the glomeruli are connected by local neurons

[10, 11], which inhibit the projection neurons [12–18]. These local neurons could mediate a

global normalization resulting in an intensity-invariant representation of the odor identity [19,

20]. However, we showed that simple normalized representations still depend strongly on the

number of ligands in a mixture and might thus not be optimal for solving olfactory tasks [21].

An alternative to these normalized representations is rank coding, where the order in which

the receptors are excited is used to encode the odor identity robustly and independently of

the odor intensity [22]. Indeed, experiments suggests that odors are encoded robustly by the

receptor types that respond within a given time window after sniff onset [23–25]. In particular,

the odor identity could be robustly encoded by a fixed number of the receptors that respond

first, which is known as primacy coding [24, 26]. So far, it is unclear how efficient and useful

primacy coding is and how it compares to alternative schemes.

In this paper, we consider a simple model of primacy coding and investigate how well it

represents complex odors. In particular, we identify how much information is transmitted to

the cortex and how well this information can be used to perform typical olfactory tasks, like

identifying the addition of a target odor to a background or discriminating odor mixtures.

Our statistical approach allows linking parameters of the primacy code to results from typical

psychophysical experiments. We show that primacy coding provides a robust and compact

representation of the odor identity over a wide range of odors, independent of the odor
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intensity, and that it outperforms other simple coding schemes. However, this good perfor-

mance of the olfactory system hinges on tuned receptor sensitivities, which suggests that there

is a strong selective pressure to adjust the sensitivities on evolutionary and shorter timescales.

Results

We describe odors by concentration vectors c ¼ ðc1; c2; . . . ; cNL
Þ, which determine the concen-

trations ci� 0 of all ligands that can be detected by the olfactory receptors. The number NL of

possible ligands is at least NL = 2300 [27] although the actual number is likely much larger

[28]. Typical odors contain only tens to hundreds of ligands, implying that most ci are zero.

In experiments, the olfactory system is typically characterized by presenting odors with par-

ticular statistics, e.g., by choosing mixtures from a given ligand library. Although such experi-

ments allow to characterize the olfactory system in a part of odor space, we ultimately want to

understand how the system performs in its natural environment. Unfortunately, the statistics

of natural odors are difficult to measure [29], so we here consider a broad class of odor distri-

butions to approximate natural odor statistics [30]. In particular, we consider a situation in

which each ligand i has a probability pi to appear in an odor. For simplicity, we neglect correla-

tions in their appearance, so the mean number s of ligands in an odor is s = ∑i pi. To model the

broad distribution of ligand concentrations, we choose the concentration ci of ligand i from a

log-normal distribution with mean μi and standard deviation σi if the ligand is present. Conse-

quently, the mean concentration of a ligand in any odor reads hcii = pi μi and the associated

variance is var ðciÞ ¼ ðpi � p2
i Þm

2
i þ pis2

i . For simplicity, we consider ligands with equal statis-

tics in this paper, so the distribution Penv(c) of odors is characterized by the three parameters

pi = p, μi = μ, and σi = σ. Using these broad odor statistics and more specific ones will allow us

to analyze the performance of olfactory models in natural environments and in typical psycho-

physical experiments, respectively.

Simple model of primacy coding

Odors are detected by an array of receptors in the nasal cavity in mammals and on the antenna

in insects. The receptor array consists of NR different receptor types, which each are expressed

many times. Typical numbers are NR� 50 in flies [7], NR� 300 in humans [31], and NR�

1000 in mice [32]. The excitations of all receptors of the same type are accumulated in an asso-

ciated glomerulus in the olfactory bulb in mammals and the antennal lobe in insects [33].

Since this convergence of the neural information mainly improves the signal-to-noise ratio, we

here capture the excitation of the receptors at the level of glomeruli; see Fig 1A. The excitation

en of glomerulus n can be approximated by a linear function of the odor c [4, 34],

en ¼
XNL

i¼1

Snici ; ð1Þ

where Sni denotes the effective sensitivity of glomerulus n to ligand i. Note that Sni is propor-

tional to the copy number of receptor type n if the response from all individual receptors is

summed [30].

The sensitivity matrix Sni could in principle be determined by measuring the response of

each glomerulus to each possible ligand. However, because the numbers of receptor and ligand

types are large, this is challenging and only parts of the sensitivity matrix have been measured,

e.g., in humans [35] and flies [36]. Using these data, we showed that the measured matrix ele-

ments are well described by a log-normal distribution with a standard deviation λ� 1 of the

underlying normal distribution [30]. Motivated by these observations, we here consider
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random sensitivity matrices, where each element Sni is chosen independently from the

same log-normal distribution, which is parameterized by its mean hSnii ¼ �S and variance

var ðSniÞ ¼ �S2ðel2

� 1Þ with λ = 1 [30]. Since these receptor sensitivities are broadly distrib-

uted, they might not include specific receptors related to innate behavior [37], but they can col-

lectively discriminate concentration differences of several orders of magnitude [30].

The odor representation on the level of glomeruli excitations en depends strongly on the

odor intensity, which is quantified by the total concentration ctot = ∑i ci. This dependency com-

plicates the extraction of the odor identity, which is determined by the ligands which are pres-

ent and their relative concentrations. A concentration-invariant representation could be

achieved by normalizing the excitations by their mean [16], which leads to an efficient neural

representation on the level of projection neurons [21]. However, recent experimental data sug-

gest an alternative encoding based on the timing of the glomeruli excitation [24]. The key idea

of this primacy coding is that the set of receptor types that are excited first is independent of

the total concentration ctot and thus provides a concentration-invariant representation.

In our simple model of primacy coding, odors are encoded by the identity of the NC glo-

meruli that respond first. For simplicity, we here neglect the order in which they respond, in

contrast to rank coding [22], and we also consider the simple situation where ligands binding

to receptors only affect the magnitude of the receptor output, but not the signaling dynamics.

In this case, receptors that respond first are also the ones with the largest excitation, so that the

primacy code is given by the identity of the NC glomeruli with the largest excitation, which is

known as the primacy set [38].

The primacy set can be represented by a binary activity vector a ¼ ða1; a2; . . . ; aNR
Þ, where

an = 1 implies that glomerulus n belongs to the primacy set and is active, while an = 0 denotes

an inactive glomerulus not belonging to the primacy set. Since the active glomeruli have the

highest excitation, they can be identified using an excitation threshold γ; see Fig 1B. Conse-

quently, the activities are given by

an ¼

(
1 en > gðeÞ

0 en � gðeÞ :
ð2Þ

Physiologically, the activities an could be encoded by projection neurons in insects and

mitral and tufted cells in mammals. These neurons receive excitatory input from one glomeru-

lus [39] and are inhibited by a local network of granule cells [20, 33]. These granule cells

basically integrate the activity of all glomeruli [40] and could inhibit the glomeruli once a

threshold is reached. Taken together, this would implement primacy coding since only the

Fig 1. Simple model of primacy coding. (A) Schematic picture of the signal processing in the olfactory bulb: An odor comprised of many ligands excites the

olfactory receptors and the signals from all receptors of the same type are accumulated in respective glomeruli. Under primacy coding, the glomeruli with the

strongest (earliest) excitations encode the odor composition, whereas the odor intensity could be encoded separately. (B) Excitations of NR = 16 glomeruli for an

arbitrary odor. The NC = 4 glomeruli with the highest excitations, above the threshold γ, form the primacy set (orange bars).

https://doi.org/10.1371/journal.pcbi.1007188.g001
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glomeruli that respond earliest would be activated. For simplicity, we consider the case where

the number NC of active glomeruli is fixed and does not depend on the odor c. The associated

constraint

NC ¼
XNR

n¼1

an ð3Þ

determines the threshold γ. Note that the activity pattern a is sparse since only a fraction

NC/NR of all glomeruli is activated. Moreover, a is independent of �S and ctot, implying concen-

tration-invariance. This is because multiplying the concentration vector c by a factor changes

the excitations en and the threshold γ by the same factor, so that a given by Eq (2) is unaffected.

In essence, only relative excitations are relevant for our model of primacy coding.

In the binary representation given by Eq (2), each receptor type can at most contribute 1

bit of information to the odor representation. This worst-case scenario corresponds to large

processing noise, such that intermediate excitations cannot be identified in the downstream

processing. In fact, the concentration range over which receptors are sensitive is typically small

compared to the expected range of odorant concentrations [41]. Consequently, receptors will

be activated either very little or very strongly for natural odors, suggesting a binary picture.

Moreover, there is evidence that the identity of active neurons can robustly encode odor iden-

tity and is actually used in the olfactory system [5].

To see whether primacy coding encodes odor information efficiently [42], we quantify the

amount of information I that can be learned about the odor c by observing the binary activity

pattern a with given sparsity NC/NR. Since our model is deterministic, I is given by the entropy

I ¼ �
X

a

PðaÞ log 2PðaÞ ; ð4Þ

where the probability P(a) of observing an output a depends on the odor environment Penv(c)
as well as the properties of the olfactory system, which in our model are quantified by NC, NR,

and λ. Since further processing in the downstream regions of the brain can only reduce the

amount of information, Eq (4) provides an upper bound for the information that the brain

receives about odors when primacy coding as described by Eqs (1)–(3) is used.

In an optimal receptor array, each output a occurs with equal probability when encounter-

ing odors distributed according to Penv(c) [30]. In our model, only outputs with exactly NC

active receptor types are permissible. The resulting representations would be optimal if each

receptor type was activated with a probability han i = NC/NR and all types were uncorrelated,

cov(an, am) = 0 for n 6¼m. The associated information

ImaxðNC;NRÞ ¼ log 2

NR

NC

� �

�
NC � 1

ln2
þ NC log 2

NR

NC
ð5Þ

provides an upper bound for I given by Eq (4). Here, the approximation on the right hand side

is obtained using Stirling’s formula for large receptor repertoires (NR� NC).

Transmitted information depends weakly on receptor repertoire

We start by analyzing the information I transmitted by the primacy code using numerical

ensemble averages of Eqs (1)–(4); see Methods and Models. Fig 2A shows that I is very close to

the maximal information Imax given by Eq (5), which is obtained when all receptor types have

equal activity and are uncorrelated [30]. This indicates that the primacy code uses the different

receptor types with similar frequency and that correlations between them are negligible. The

expression for Imax implies that the information grows linearly with the primacy dimension
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NC, but only logarithmically with the number NR of receptor types. Consequently, the number

of distinguishable signals, NS = 2I, grows strongly with NC, but the dependence on the reper-

toire size is weaker; see Fig 2B. Given equal NC, our model thus predicts that the transmitted

information in mice is only twice that of flies, although mice possess about 20 times as many

receptor types. However, the number of discriminable signals changes by many orders of mag-

nitudes, since it scales exponentially with I.
The logarithmic scaling of the transmitted information I with the receptor repertoire size

NR could explain why the ability of rats to discriminate odors is not significantly affected when

half the olfactory bulb is removed in lesion experiments [43, 44]. If this operation removes half

the receptor types, our model implies that the transmitted information I is lowered by NC bits;

see Eq (5). This corresponds to a reduction of I by about 10% in rats where NR� 1000; see

Fig 2C. Conversely, the transmitted information decreases by almost 50% in flies, which have a

much smaller receptor repertoire of NR� 50. Our model thus predicts that lesion experiments

have a much more severe effect on the performance of animals with smaller receptor

repertoires.

Taken together, this first analysis already suggests that the primacy code provides a robust

odor representation, which is sparse, concentration-invariant, and depends only weakly on

the details of the receptor array. However, for this representation to be useful to the animal, it

needs to allow solving typical olfactory tasks.

Primacy coding discriminates odors efficiently

Typical olfactory tasks include detecting a ligand in a distracting background, detecting the

addition of a ligand to a mixture, as well as discriminating similar mixtures. All these tasks

involve discriminating odors with common ligands, implying that the associated primacy

sets are correlated. This correlation can be quantified by the expected Hamming distance d
between the primacy sets, which counts the number of glomeruli with different activities. The

probability η that this distance is larger than 0, so that the two odor representations can be dis-

criminated in principle, is given by

ZðdÞ � 1 � 1 �
d

2NC

� �NC

; ð6Þ

see Methods and Models. In particular, discriminating similar odors will be impossible (η = 0)

if their primacy sets are identical (d = 0).

Fig 2. Transmitted information I increases strongly with primacy dimension NC and weakly with receptor repertoire size NR. (A) The maximally

transmitted information Imax (solid lines) given by Eq (5) is compared to numerical estimates of I (dots; n = 107, error smaller than symbol size) obtained from

ensemble averages of Eq (4). Model parameters are NL = 512, μ = σ = 1, s = 16, and λ = 1, implying z� 0.1. (B) Imax as a function of NC for several NR. The right

axis indicates the maximal number of distinguishable signals, NS = 2I. (C) Reduction of Imax when half the receptor types are removed as a function of NC for

various NR.

https://doi.org/10.1371/journal.pcbi.1007188.g002
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Discriminating uncorrelated odors. To build an intuition for this analysis, we start by

considering two uncorrelated odors. In this case, each receptor type has an expected activity of

han i = NC/NR, implying the distance d� = 2NC(1 − NC NR
−1) and Z� � 1 � ðNC=NRÞ

NC . Our

model thus predicts that uncorrelated odors can be discriminated almost surely (η> 99.99%

for NC = 4 and NR = 50). The discriminability increases strongly with NC, while the receptor

repertoire size NR has a much weaker effect in the typical case NC ⪡ NR, similar to the scaling

of the information I discussed above. The value η� marks the upper bound for the discrimina-

bility η, which can be much lower for correlated odors.

Detecting the presence of a target odor in a background. One simple task where odors

are correlated is the detection of a target odor in a distracting background. To understand

when a target can be detected, we analyze how the primacy set a changes when a single ligand

at concentration ct is added to a background ligand at concentration cb. Because of concentra-

tion-invariance, the result only depends on the relative target concentration ct/cb. Fig 3A

shows that the target is easier to detect when it is more concentrated (larger ct/cb) and when

more receptor types participate in the primacy code (larger NC). Conversely, the repertoire

size NR has only a weak influence, similar to the cases discussed above; see Fig 3B. Surprisingly,

however, this figure also shows that dilute odors (small ct/cb) are more difficult to discriminate

with larger receptor repertoires.

The fact that increasing the receptor repertoire size NR can impede the detection of the tar-

get odor can be understood in a simplified statistical model, where we consider ensemble aver-

ages over sensitivity matrices; see Methods and Models. Since the primacy set a corresponds to

the NC receptor types with the largest excitations, a will only change when adding the target

odor shuffles the excitations in the vicinity of the threshold γ. Intuitively, this is more likely

when the associated excitation difference Δe is small. Fig 3C shows that Δe typically increases

with NR, essentially because the distribution of the glomeruli excitation en has a heavy tail, so

that sampling more excitations leads to larger gaps between the largest excitations. These larger

gaps in the excitations reduce the likelihood that adding the target changes the order of the

excitations and thus the primacy set. Consequently, it is more difficult to detect the target

using larger repertoires. Taken together, these arguments suggest that increasing the receptor

repertoire is only beneficial if the primacy dimension Nc is also increased.

Detecting the addition of a ligand to a mixture. So far, we considered simple odors

consisting of single ligands. However, realistic odors are comprised of many different ligands

Fig 3. Detecting a target ligand in a background. (A-B) Probability η that adding a target odor at concentration ct to a background ligand at concentration cb

can be detected using primacy coding as a function of ct/cb for (A) various NC at NR = 300 and (B) various NR at NC = 8. Numerical simulations (dots; sample size:

105) are compared to the theoretical prediction (lines) obtained using the statistical model; see Methods and Models. (C) Distribution of the difference Δe
between the excitations just above and below the threshold for NR = 32 (green line) and NR = 128 (orange line); see Methods and Models. The dotted vertical

lines indicate the mean hΔei, obtained from Eq (13). The inset shows NR = 32 (upper panel) and NR = 128 (lower panel) excitation realizations (vertical bars)

drawn from the same excitation distribution (black lines). The orange bars indicate the primacy set consisting of the NC = 4 largest excitations. (A–C) Remaining

parameters are given in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1007188.g003
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and target odors thus also need to be detected in backgrounds of many distracting ligands.

Not surprisingly, experiments in humans [45] and mice [46] have shown that targets are

more difficult to identify if the background consist of many ligands. In these experiments,

subjects had to indicate whether a known odor is present or not in a presented odor mixture.

The probability pcorrect of giving the correct answer is related to the probability η of obtaining

enough olfactory information by pcorrect ¼ Zþ 1

2
ð1 � ZÞ since there is a 50% chance of choos-

ing the correct answer even if no information is present. In the following, we compare the

experimentally measured values of pcorrect to the ones predicted by our model to restrict its

parameters.

For simplicity, we first ask whether the primacy set changes when a ligand is added to a

background, which is necessary for discriminating the background with the target from the

background without it. This analysis will provide a theoretical upper bound for the perfor-

mance, allowing us to restrict model parameters. In particular, we use ensemble averages over

sensitivity matrices to compute η and pcorrect for the addition of a single ligand to a background

consisting of s ligands, all at the same concentration. Fig 4A and 4B show that these values

decrease both with larger mixture sizes s and smaller primacy dimension NC. Conversely,

whether the receptor repertoire size of humans (NR = 300; Fig 4A) or that of mice (NR = 1000,

Fig 4B) is considered is irrelevant for the theoretical result, while the experimental data (black

symbols and lines) are significantly different. Our model suggest that the superior performance

of mice could be related to a larger primacy dimension NC, although we cannot exclude the

possibility that the decoding in higher regions of the brain is much more efficient in mice than

in humans, e.g., because they were trained better.

A surprising finding of this analysis is that target odors can be detected more reliably when

the background at a given total concentration cb consists of many ligands. This can be seen

by comparing single-ligand backgrounds (Fig 3A) with multi-ligand backgrounds (Fig 4A),

where the effective target concentration is ct/cb = 1/s. Considering NC = 8, we find η� 50%

for ct/cb� 0.2 in the single-ligand case, while the ratio can be much smaller (1/s� 0.01) for

multiple ligands. This puzzling result can again be understood in the simplified statistical

model, which predicts that the variance of the excitations associated with the background odor

is smaller if this odor is comprised of many ligands; see Eq (9) in Methods and Models. This

smaller variance implies smaller Δe, so that adding the target has a higher chance of shuffling

the order of the excitations to change the primacy set. The same logic implies that the target is

easier to detect when the concentrations of the background ligands vary less, which is con-

firmed by S1 Fig. Taken together, numerical results and the statistical model suggest that a

Fig 4. Discrimination of odor mixtures. (A,B) Probability η that adding a ligand to a mixture of s ligands changes the primacy set for various NC. The right axes

display the expected fraction pcorrect of correct responses in the respective go/no-go experiment. Theoretical predictions (colored symbols and lines) are

compared to experimental data (black symbols and lines) for (A) humans (NR = 300, data from [45]) and (B) mice (NR = 1000, data from [46]). (C) Probability η
that changing sB ligands of a mixture of s ligands can be detected using primacy coding as a function of the composition similarity sB/s for various NC at NR = 300,

s = 30, and σ2/μ2 = 0. The inset shows η as a function of sB/s for various s at NC = 8, NR = 300, and σ2/μ2 = 10. (A–C) Remaining parameters are given in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1007188.g004
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target odor is easier to notice if the background odor contains many ligands and small concen-

tration variations.

Discriminating similar mixtures. To consider the discrimination of similar odors that

have common ligands, we next consider odors that each contain s ligands, sharing sB of them.

Such odors are uncorrelated (d = d�) when they do not share any ligands (sB = 0) and they are

identical (d = 0) when they share all ligands (sB = s). Between these two extremes, the expected

distance d of the primacy sets, and thus the discriminability η, of the two odors can be deter-

mined by a numerical ensemble average over sensitivities and by the statistical model; see

Methods and Models. Fig 4C shows that both methods predict that more similar odors are

harder to discriminate. However, the discriminability of odors only depends on their relative

similarity (the fraction of shared ligands) and is independent of the total number of ligands in

the odor, consistent with psychophysical experiments [47]. Note however, that our model pre-

dicts that basically all mixtures should be easily discriminable, in contrast to the experimental

result [47]. This discrepancy might be related to the fact that our model only predicts upper

bounds on the encoded information and neglects the decoding in higher regions of the brain.

Identifying odors in a mixtures. So far, we only discussed how well odors can be discrim-

inated, but in reality it is often necessary to identify individual odors in mixtures. To identify

ligands, a decoder must compare odor representations to stored patterns. For simplicity, we

here only consider a perfect decoder, which associates each representation a with an odor

without any uncertainty. This allows us to derive upper bounds for the performance of odor

identification without specifying a model for the olfactory processing in the brain. In essence,

we use that different odors can only be identified when the associated representations differ,

implying that the size of the coding space, NR
NC

� �
, must be large enough to accommodate all

odors that need to be distinguished.

We start by considering mixtures of s ligands of equal concentration and ask under what

conditions all possible mixtures prepared from a library of NL ligands are distinguishable,

which is the case when NL
s

� �
< NR

NC

� �
. Fig 5A shows that the maximal number Nmax

L of ligands

that could possibly be identified falls off quickly with increasing mixture size s. This analysis

implies that if humans were able to identify NL = 1000 ligands, they could do this for mixtures

of at most s = 6 ligands when the primacy dimension is NC = 8. Note that this is merely an

upper bound for the actual performance, since the calculation assumes that the olfactory sys-

tem is optimized to identify ligands at one particular concentration, whereas natural odors

contain ligands at various relative concentrations.

Fig 5. Identifying individual odors in a mixture. (A) Maximal number of ligands, Nmax
L such that all mixtures of s

ligands can be discriminated using various receptor repertoire sizes NR for NC = 8. (B) Number NS of ligands that

could be distinguished when a ligand of concentration ct is added to a background of s = 3 other ligands at

concentration cb determined from numerical (dots) and analytical (lines) ensemble averages for various NR and

NC = 8. (A,B) Remaining parameters are given in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1007188.g005
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To see how concentration variations affect the odor identification, we next use the previ-

ously calculated mean distances d between odor representations to estimate how well individ-

ual ligands could be detected. In particular, the number of possible ligands that can be

distinguished when they are added at concentration ct to a mixture of s ligands at concentra-

tion cb can be estimated as NR � NC
d=2

� �
, where 1

2
d is the expected number of the NR − NC receptor

types that were inactive for the background mixture and became active when the target was

added. Fig 5B shows that the number of ligands that can be distinguished in this situation

increases strongly with the target concentration
ct
cb

. The shown case of s = 3 indicates that

humans would not be able to identify most ligands if their concentration was half that of the 3

background ligands. Since such concentration fluctuations are very likely to appear in natural

situations and in experiments, this suggests that humans realistically can only identify ligands

in mixtures of very few components, in line with experimental measurements [48, 49].

The discussion of the identification of odors is limited by the simple description of the

decoder in our model. We thus derive upper bounds for the performance, assuming that a

mapping of all possible odor combinations to different representations a is possible. This best-

case scenario likely requires highly optimized sensitivity matrices Sni and the actual perfor-

mance might thus lie well below the bounds derived here. However, in realistic olfactory sys-

tem, the time-course of receptor activation might provide additional information about which

ligands are present. For instance, odors from multiple sources might not fully mix and thus

arrive in distinguishable whiffs [50].

Primacy coding outperforms alternative coding schemes

We showed that primacy coding contains sufficient information to perform typical olfactory

tasks with experimentally measured accuracy. Although this provides some support for pri-

macy coding, alternative encoding schemes might also be consistent with experimental data.

To elucidate this, we next compare primacy coding to two alternatives, which are also based

on the simple model described by Eqs (1) and (2). The first alternative is binary coding, where

glomeruli become active when their excitation exceeds a constant threshold γ [30, 51]. The sec-

ond alternative is normalized coding, where the threshold is proportional to the mean excita-

tion, g ¼ aNR
� 1
P

nen, and the inhibition strength α determines how many glomeruli are active

on average [21].

To see how binary and normalized coding compare to primacy coding, we calculate the

probability η that adding a ligand to a mixture of s ligands can be detected; see Fig 6A. The

binary code strongly depends on the overall concentration of the presented odor (or, equiva-

lently, the imposed threshold γ). This implies that there is only a narrow region of mixture

sizes s where the binary code allows detecting the addition of a ligand. Conversely, the normal-

ized code is concentration-invariant and could thus in principle discriminate odors at all

intensities. However, we showed in Ref. [21] that the encoded information and the discrimina-

bility still depend strongly on the mixtures size s in this model. Consequently, normalized

codes can only discriminate mixtures of realistic sizes when the inhibition strength α is very

low and thus many glomeruli get activated on average.

The example of the normalized code shows that it is not sufficient to study how well differ-

ent coding schemes can solve olfactory tasks, but one also needs to consider how useful this

code is to the downstream decoder. Without modeling the decoder in detail, we here just

propose that sparser codes are preferable since they imply fewer firing neurons, which saves

energy and simplifies the downstream processing. In fact, sparse coding is typical for sensory

information [19, 52]. In our model, the sparsity is given by the fraction hani of activated
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glomeruli and Fig 6B shows this quantity as a function of the mixture size s. Since larger mix-

tures imply a higher odor intensity, this number increases quickly in binary coding and makes

this code inefficient. Conversely, the number of active glomeruli decreases strongly in normal-

ized coding [21], which explains the poor discriminatory performance for large mixtures.

In contrast, primacy coding has a constant sparsity, because it is directly controlled by the

primacy count NC. Taken together, primacy coding outperforms both binary coding and nor-

malized coding essentially because the sparsity of the representation is independent of the

presented odors and can thus be adjusted to be useful and efficient over the whole range of

possible odors.

The three models discussed here differ in how the statistics of the odor c affect the statistics

of the output a. In the binary model, the odor intensity given by the mean concentration ctot

affects the mean excitation heni and therefore the sparsity hani. This clearly prevents the

response from being useful over a wide concentration range. This dependence on the odor

intensity is removed in normalized coding, but the variance of the excitations en still depends

on the odor statistics, e.g. larger mixtures imply smaller variations in en. This is problematic

since it implies the excitations of fewer glomeruli exceed the fixed threshold in normalized

coding, so the sparsity hani and the usefulness decrease [21]. In primacy coding, however, the

mean activity hani ¼
NC
NR

is independent of the odor statistics, so the system is useful in all situa-

tions. In fact, primacy coding can be interpreted as normalized coding with an inhibition

strength α that depends on the non-dimensional width of the concentration distribution; see

Methods and Models. Primacy coding is thus an example for global inhibition with instanta-

neous adaptation, which displays better performance than a simple fixed threshold γ. Taken

together, this simple model comparison indicates that the mean response of the olfactory sys-

tems needs to be controlled and that simple normalization is not sufficient for this.

Overly sensitive receptors degrade the coding efficiency

So far, we calculated the transmitted information and tested the discrimination performance

of primacy coding under the assumption that all receptor types behave similarly. In fact, we

established that the maximal information is achieved when all receptor types are activated

with equal probability NC/NR. However, neither the receptor sensitivities nor the odors them-

selves are distributed equally in realistic situations. Variations in these quantities affect the

Fig 6. Primacy coding outperforms alternative models. Comparison of the primacy code (blue; NC = 8) to a

normalized code (black) and a binary code (gray). In the normalized code, glomeruli are active when their excitation

exceeds α times the mean excitation [21]. Here, α is adjusted such that the mean number of glomeruli activated by a

single ligand assumes the indicated value hNone
C i. In the binary code, glomeruli are active when their excitation exceeds

the fixed threshold γ [30]. (A) Probability η that adding a ligand to a mixture of s ligands can be detected as a function

of s. (B) Representation sparsity, i.e., the mean number of activated glomeruli NRhani, as a function of the mixture size

s. (A, B) We considered fixed ligand concentrations (σ = 0) and the remaining parameters are given in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1007188.g006
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transmitted information and thus the usefulness of the primacy code. For instance, the trans-

mitted information decreases if a single receptor is activated less often than all the others; see

Fig 7A. This effect is small, since in the worst case the receptor is never active and the transmit-

ted information thus corresponds to an array with this receptor removed. Conversely, having a

receptor that is active more often than all others can have a much more severe effect; see Fig

7A. In fact, if the receptor type is more than three times as active, the transmitted information

I is lower than if the receptor type was remove completely; see Methods and Models. This indi-

cates that receptors can shadow the response of other receptors and thus be detrimental to the

overall array when they are overly sensitive.

The effect of varying receptor sensitivities can be studied in our model of primacy coding

by discussing more general sensitivities matrices. We consider Sni ¼ xnSiidni , where each recep-

tor type can have a different sensitivity factor ξn, which modulates the uniform sensitivity

matrix Siidni where each entry is independently chosen from the same log-normal distribution.

The case of homogeneous sensitivities that we discusses so far thus corresponds to ξn = 1 for

n = 1, 2, . . ., NR.

To investigate the effect of heterogeneous sensitivities, we start by varying the sensitivity

factor of one receptor type while keeping all others untouched, i.e., we change ξ1 while keeping

ξn = 1 for n� 2. There are three simple limits that we can discuss immediately. For ξ1 = 0, the

Fig 7. Variations in receptor activities deteriorate the array performance. (A) Information I relative to Imax given by Eq (5) as a function of

the mean activity ha1i of the first receptor type while all others are unchanged for NC = 8. Dotted lines indicate Imax(NC, NR − 1). Inset: Same

data for the activity rescaled by NC/NR. (B) Numerical simulation of I as a function of the sensitivity factor ξ1 of the first receptor type for NR =

16, NC = 4, and ξn = 1 for n� 2. (C) I for log-normally distributed sensitivity factors ξn as a function of var(ξ)/hξi2 for various NC at NR = 20. The

inset shows that the scaled information I/Imax collapses as a function of NR = 10, 20 and NC = 2, 4, 6 for different widths σ/μ of the concentration

distribution. (D) Probability η that adding a ligand to a mixture of s = 10 ligands changes the primacy set as a function of var(ξ)/hξi2 for various

NR and NC. (B–D) Shown are numerical simulations with NL = 512, μ = σ = 1, and λ = 1 as well as s = 16 in (B,C) and s = 10 in (D).

https://doi.org/10.1371/journal.pcbi.1007188.g007
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first receptor type will never become active, the array behaves as if this type was not present,

and the transmitted information is approximately Imax(NC, NR − 1). This value is lower than

the maximally transmitted information Imax(NC, NR) reached for the symmetric case ξ1 = 1.

However, the associated information loss ΔI = Imax(NC, NR) − Imax(NC, NR − 1)� NC/(NR ln 2)

is relatively small in large receptor arrays (NR� NC); see Fig 7B. Conversely, the transmitted

information can be affected much more severely if the sensitivity of the first receptor type is

increased beyond ξ1 = 1 and the receptors will thus be active more often than the others. In the

extreme case of ξ1!1, the first receptor type will always be active and thus not contribute

any information. Since this receptor type would always be part of the primacy set, the informa-

tion transmitted by the remaining receptor types is approximately Imax(NC − 1, NR − 1), which

is smaller than Imax(NC, NR − 1) in the typical case NR� NC. Consequently, an overly active

receptor type can be worse than not having this type at all under primacy coding.

The fact that overly sensitive receptors are detrimental to the transmitted information is

also visible in numerical simulations. Fig 7B shows ensemble averages of the information I
transmitted by receptor arrays as a function of the sensitivity factor ξ1. As qualitatively argued

above, I is maximal for ξ1 = 1 and it is slightly lower for smaller ξ1 since the receptor type is

active less often. In contrast, for ξ1 > 1, I decreases dramatically and falls below the value of ξ1

= 0 for ξ1 ≳ 1.5. These data suggest that it would be better to remove receptor types that exhibit

a 50% higher sensitivity than the other types.

To see whether overly sensitive receptor types are also detrimental when all types have vary-

ing sensitivities, we next considering sensitivity factors ξn distributed according to a lognormal

distribution. Numerical results shown in Fig 7C indicate that the transmitted information

indeed decreases with increasing variance var(ξn) of the sensitivity factors. In fact, a variation

of var(ξn)/hξni2 = 0.5 already implies a reduction of the transmitted information by almost

50% for small concentration variations σ/μ = 1. If the odor concentrations vary more, the

information degradation is less severe, but the same trend is visible. Interestingly, rescaling

the information by the maximal information Imax given in Eq (5) collapses the curves for all

dimensions NC and NR, suggesting that this analysis also holds for realistic receptor repertoire

sizes. Note that the reduced transmitted information also implies poorer odor discrimination

performance; see Fig 7D. Taken together, this provides a strong selective pressure to limit the

variability of the receptor sensitivities so overly sensitive receptors do not dominate the whole

array.

Discussion

We analyzed a simple model of neural representations of olfactory stimuli, where odors are

identified by the NC strongest responding receptor types. This version of primacy coding pro-

vides a sparse representation of the odor identity, which is independent of the odor intensity.

We showed using numerical simulations and a statistical model that the primacy dimension

NC strongly affects the transmitted information and the discriminability of odors. Interest-

ingly, already for small values of NC ≲ 10, the typical olfactory discrimination tasks can be car-

ried out with performances close to experimentally measured ones. Conversely, the number

NR of receptor types does not strongly affect the coding capacity and the discriminability of

similar odors, in accordance with lesion experiments. Our model even indicates that lowering

NR can improve the identification of a target ligand in a background.

The advantage of our simple model is that we can analyze its behavior in depth and explic-

itly link the statistical properties of the olfactory system to data from psycho-physical experi-

ments. In particular, we predict how likely two different odors drawn from a particular

statistics can be distinguished. For instance, our model implies that target odors are easier to
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detect if disturbing backgrounds consist of many ligands. We generally find that representa-

tions are sensitive to the relative concentration of ligands in mixtures and that dilute compo-

nents are basically completely shadowed. Conversely, for fixed ligand concentrations mixtures

can typically be discriminated very well. However, identifying the individual ligands in mix-

ture is only possible for mixtures with few components. In any case, our results suggest that

the primacy code formed in the olfactory bulb is more useful to identify odors in the subse-

quent olfactory cortex than simple alternatives, essentially because the statistics of the repre-

sentations are independent of the odor statistics.

Our model predicts that receptors are only useful if their likelihood to respond to incoming

odors is similar. This is because receptor types that are overly sensitive and respond strongly to

many odors could dominate other types and thus degrade the total information. In fact, having

a receptor type that is 50% more sensitive than others, and thus responds about three times as

often, can lead to less transmitted information than when this type is absent. This observation

is related to the primacy hull discussed in [38], which also predicts strong restrictions on the

receptor sensitivities stemming from primacy coding. Various strategies could play a role in

keeping the activity of the receptor types similar [53]: On timescales as short as a single sniff,

the inhibition strength could be adjusted to regulate the relative importance of receptor excita-

tions [54]. On longer timescales of several weeks, there are changes of the receptor copy num-

ber that directly affect the sensitivity of the glomeruli [55–57] and the processing neurons in

the olfactory bulb [58, 59]. Receptor copy number adaptations influence the signal-to-noise

ratio at the receptor level, so the copy number could be increased to improve the detection of

frequently appearing odors [60]. In contrast, we predict a decrease of the copy number of

overly sensitive receptor types that respond often. Combining the two alternatives, receptor

copy numbers could be controlled such that noise is suppressed sufficiently while ensuring

that single receptor types do not dominate the array. Finally, receptor sensitivities can also be

adjusted by genetic modifications on evolutionary timescales [61, 62]. Moreover, direct feed-

back from higher regions of the brain could modify the processing of olfactory signals, e.g., in

response to the behavioral state [7]. Although our work shows that the activities of the recep-

tors need to be balanced, the actual distribution of the sensitivities matters much less. For

instance, log-uniform distributions, which have been suggested to describe realistic receptor

arrays [51, 63], lead to similar odor discriminability as log-normally distributed sensitivities;

see S2 Fig.

Our results raise the question why mice have 20 times as many receptor types than flies

although the transmitted information under primacy coding is only increased by a factor of 2

(see Eq (5)) and the odor discriminability is hardly affected by the receptor repertoire size (see

Fig 4). The apparent usefulness of large receptor repertoires hints at roles of the olfactory sys-

tem beyond transmitting the maximal information and discriminating average odors. For

instance, having many receptor types might help to hardwire innate olfactory behavior when

receptors are narrowly tuned to odors. In this case, our model would only apply to the fraction

of the receptor types that are broadly tuned and are not connected to innate behavior. Alterna-

tively, having many receptor types might be advantageous to discriminate very similar odor

mixtures, to cover a larger dynamic range in concentrations of individual ligands, or to allow

for a larger variation in average sensitivities, enabling quick adaptation to new environments.

Finally, biophysical constraints of the receptor structure might imply that many receptors are

required to cover a large part of chemical space.

We discussed the simplest version of primacy coding with a minimal receptor model and a

constant primacy dimension NC implemented by a hard threshold. This model neglects the

complex interactions of ligands at the olfactory receptors, which can affect perception [64]. In

particular, antagonistic effects can already provide some normalization at the level of receptors
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[65]. Generally, it is likely that many mechanisms contribute to the overall normalization of

the receptor response [66]. A more realistic model of primacy coding might also consider a

softer threshold, where receptor types with larger excitation are given higher weight in the

downstream interpretation, which is related to rank coding [22]. In this case, information

from fewer glomeruli might be sufficient to identify odors, since the rank carries additional

information. Realistic olfactory systems could also use a timing code, taking into account

more and more receptor types (with decreasing excitation) until an odor is identified confi-

dently. Such a system could explain that the response dynamics in experiments depend on the

task [67, 68]. Generally, a better understanding of the temporal structure of the olfactory code

[8, 69–73] might allow to derive more detailed models. These could rely on attractor dynamics

that are guided by the excitations and thus respond stronger to the early and large excitations

[74, 75].

Methods and models

Numerical simulations

All numerical simulations are based on ensemble averages over sensitivity matrices Sni. The

elements of Sni are drawn independently from a log-normal distribution with var ðSniÞ=�S2 ¼

1:72 corresponding to λ = 1. In Figs 2A and 7B–7D, an additional ensemble average over

odors c is performed using the distribution Penv(c). Here, odors c are chosen by first determin-

ing which of the NL ligands are present using a Bernoulli distribution with probability p = s/NL

and then independently drawing their concentration from a log-normal distribution with

mean μ and standard deviation σ. In all simulations the primacy set a corresponding to c is

given by the NC receptors with the highest excitation calculated from Eq (1). Statistics of a and

the transmitted information I given by Eq (4) are determined by repeating this procedure 105

and 107 times, respectively.

Statistical model

In order to obtain deeper insights into the numerical results, we also develop analytical

approximations using a statistical description of all involved quantities, which is based on

accounting for the means and variances of the respective distributions. For instance, the

statistics of the output a given by Eqs (1)–(3) can be estimated using ensemble averages of

sensitivity matrices for different odors c, similar to our treatment presented in [21] and [30].

In particular, Eq (1) implies that the effects of different ligands are additive. Since the log-

normal distribution describing the sensitivities is narrow (λ = 1), the excitations en are also

well approximated by a log-normal distribution with mean heniS ¼ �S
P

ici and variance and

var SðenÞ ¼ var ðSniÞ
P

ic
2
i [76], whereas correlations are negligible [21]. The probability that

the excitation en exceeds the threshold γ, and the associated receptor type is thus part of the

primacy set, reads

haniS ¼ 1 � G
gðcÞ
heniS

; zðcÞ
� �

ð7Þ

with

Gðx; zÞ ¼
1

2
þ

1

2
erf

zþ log ðxÞ
2z

1
2

 !

ð8Þ

being the cumulative density function of a log-normal distribution with hxi = 1 and

var(x) = exp(2z) − 1. The width of the distribution is determined by the positive parameter
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z ¼ 1

2
ln ð1þ var ðenÞ=heni

2
Þ, which reads

zðcÞ ¼
1

2
ln 1þ el

2

� 1
� � P

ic
2
i

ð
P

iciÞ
2

" #

ð9Þ

for an ensemble average over sensitivities. Note that z is concentration-invariant, since it does

not change when the concentration vector c is multiplied by a constant factor. In the simple case

of ligands that are distributed according to Penv(c), we find hð
P

ic
2
i Þð
P

iciÞ
� 2
ic ¼ s� 1ð1þ s2=m2Þ.

Consequently, the distribution width z is large for broadly distributed sensitivities (large λ), few

ligands in an odor (small s), and wide concentration distributions (large σ/μ).

The constraint Eq (3) implies hani = NC/NR, so that the mean threshold reads

hgi ¼ heniS � G� 1 1 �
NC

NR
; z

� �

; ð10Þ

where G−1 is the inverse function of G defined in Eq (8). Using this expression as an estimate

for γ in Eq (7) results in concentration-invariant activities an, since hγi is proportional to the

excitation heni. This situation is comparable to simple normalized representations resulting

from the threshold γ = αheni, where α is a constant inhibition strength [21]. In fact, primacy

coding can be interpreted as global inhibition with an inhibition threshold depending on the

width of the excitation distribution, a ¼ G� 1ð1 � NCNR
� 1; zÞ.

Inter-excitation intervals. The expected difference between excitations corresponding to

a given odor c can be studied using order statistics, where excitations are re-indexed such that

they are ordered, eð1Þ < eð2Þ < . . . < eðNRÞ
. For simplicity, we consider the case where the exci-

tations en are distributed identically when considering all odors according to Penv(c). Denoting

the cumulative distribution function of the excitations by FðeÞ ¼ G e
heni

; z
� �

and the associated

probability density function by f(e), the probability density function associated with the excita-

tion e(n) at rank n reads [77]

fEðnÞ ðeÞ ¼
NR! f ðeÞ

ðn � 1Þ! ðNR � nÞ!
Fn� 1ðeÞ ½1 � FðeÞ�NR � n : ð11Þ

The joint distribution of E(n) and E(m), 1� n<m� NR, reads [77]

fEðnÞ ;EðmÞ ðen; emÞ ¼
NR! f ðenÞf ðemÞ

ðn � 1Þ!ðm � n � 1Þ!ðNR � mÞ!

�Fn� 1ðenÞ½1 � FðemÞ�
NR � m ½FðemÞ � FðenÞ�

m� n� 1
:

ð12Þ

Consequently, the distribution of the difference Δe = e(n) − e(n−1) of consecutive excitations

is

fDEðDe; nÞ ¼
Z 1

0

fEðn� 1Þ ;EðnÞ
ðy;Deþ yÞ dy : ð13Þ

Hence, the expected difference hΔei =
R
xfΔE(x; NR − NC − 1) dx between the strongest

excited inactive receptor type and the weakest active receptor type can be evaluated.

Discriminability of primacy set. The expected number d of changes in the primacy set a
when a target odor ct is added to some background cb reads

d ¼ NR � ðpon þ poffÞ ; ð14Þ

where pon is the probability that a receptor type that was inactive for cb is turned on by the
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perturbation ct and poff is the probability that a receptor type that was active is turned off. Both

probabilities depend on the excitation thresholds γ(1) and γ(2) associated with the odors cb and

cb + ct, respectively, which can be estimated from Eq (10) using the respective excitation statis-

tics. With this, pon follows from the probability that the excitation was at the value x below γ(1)

and the additional excitation by the target brings the total excitation above γ(2),

pon �
Z gð1Þ

0

1 � G
gð2Þ � x
hetniS

; z
t

� �� �

g
x
hebniS

; z
b

� �

dx ; ð15Þ

where g(e; z) is the probability density function associated with G(e; z) given in Eq (8). Here,

hejniS and zj describe the excitation statistics of the target (j = t) and the background (j = b).

Similarly, we obtain

poff �
Z gð2Þ

gð1Þ

G
gð2Þ � x
hetniS

; z
t

� �

g
x
hebniS

; z
b

� �

dx ; ð16Þ

so we can use Eq (14) to calculate the expected Hamming distance d. Note that γ(1) and γ(2)

depend on NR, so the distance d does not scale trivially with NR, in contrast to the case of nor-

malized representations [21].

We use Eqs (14)–(16) to calculate d when a target ligand with concentration ct is added to a

background ligand at concentration cb. The associated statistics of the excitations obey

hetniS ¼
ct
cb
hebniS var SðetnÞ ¼

ct
cb

� �2

var SðebnÞ ð17Þ

and var SðebnÞ=he
b
ni

2

S follows from chosen values of σ/μ and λ. Similarly, when a ligand with con-

centration c is added to a mixture of s ligands, all at concentration c, we have

hetniS ¼ s� 1hebniS var SðetnÞ ¼ s� 1 var SðebnÞ : ð18Þ

The third case of correlated odors that we discuss in the main text concerns two odor mix-

tures of equal size s sharing sB of the ligands. In this case, the excitation threshold γ is the same

for both odors and we can express the probability pxor that a receptor type is excited by one

mixture but not the other as

pxor ¼
Z g

0

G
g � x
heDn iS

; z
D

� �

1 � G
g � x
heDn iS

; z
D

� �� �

g
x
heBniS

; z
B

� �

dx ; ð19Þ

where the parameters hejniS and zj need to be evaluated for the excitations associated with the

sB ligands that are the same (j = B) and the s − sB ligands that are different (j = D) between the

two mixtures. Taken together, the expected distance reads d = 2NRpxor and we recover d = d�
for unrelated mixtures (sB = 0) and d = 0 for identical mixtures (sB = s).

The calculated distances d between activities can be used to estimate the probability η that

the two involved odors can be discriminated. Assuming that glomeruli are independent, the

distribution of distances between two activities can be modeled as a binomial distribution over

the possible values {0, 2, 4, . . ., 2NC} with a mean equal to d. The probability η that the repre-

sentations differ in at least one glomerulus, i.e. that the distance is larger than 0, then reads

Z � 1 � 1 �
d

2NC

� �NC

; ð20Þ

which reduces to η� 1 − e−d/2 in the limit NC� 1.
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Information transmitted by diverse receptors. In the case where the primacy sets a can

be partitioned into NM groups with all elements within a group appearing with the same prob-

ability, we can write the information I given by Eq (4) as

I ¼ �
XNM

m¼1

pm log 2

pm
Mm

� �

; ð21Þ

where Mm is the number of elements within group m and pm is the probability that group m

appears in the output, such that
P

mMm ¼
NR
NC

� �
and ∑m pm = 1. In the simple case of one

receptor type with deviating statistics, we have NM = 2 with

p1 ¼ ha1i p2 ¼ 1 � ha1i ð22aÞ

M1 ¼
NR � 1

NC � 1

� �

M2 ¼
NR � 1

NC

� �

ð22bÞ

while the remaining activities are hani = (NC − ha1i)/(NR − 1) for n� 2 to obey Eq (3). For p1 =

0, Eq (21) reduces to I = Imax(NC, NR − 1), whereas the maximum I = Imax(NC, NR) is reached

for p1 = NC/NR. The information decreases for larger p1 and eventually reaches values lower

than Imax(NC, NR − 1) when p1 ¼ pmax
1

. For p1 > pmax
1

, it would thus be advantageous to remove

this receptor type. Using n
k

� �
� nk=k! and expanding Eq (21) around p1 = eNR/(NR − 1), we find

pmax
1
�

1

log 1 �
eNC

NR � 1

� �

� 1

þ 1 ¼
eNC

NR
þO

NC

NR

� �2
 !

ð23Þ

in the limit NR� NC of large repertoires, so pmax
1
� e NC=NR.

Supporting information

S1 Fig. Discrimination of odor mixtures with varying ligand concentrations. Probability η
that adding a ligand to a mixture of s ligands changes the primacy set for various NC. (A) η as a

function of s for various widths σ2/μ2 of the ligand concentration distribution at NR = 300 and

NC = 8. (B,C) η as a function of s for various NC at σ2/μ2 = 10. Ensemble averages of the model

(colored symbols) are compared to experimental data (black symbols and lines) for (B)

humans (NR = 300, data from [45]) and (C) mice (NR = 1000, data from [46]). The right axes

display the expected fraction of correct responses in the respective go/no-go experiment. (A–

C) Remaining parameters are given in Fig 2A.

(EPS)

S2 Fig. Log-uniform distributed sensitivities behave similar to log-normal distributed ones

under primacy coding. (A–B) Probability η that adding a ligand at concentration ct to a back-

ground ligand at concentration cb changes the primacy set a as a function of ct/cb for (A) vari-

ous NC at NR = 300 and (B) various NR at NC = 8. (C) Probability η that adding a ligand to a

mixture of s ligands changes the primacy set as a function of s for various NC and NR = 300.

(A–C) Shown are numerical simulations (dots; sample size: 105) for NL = 512, σ/μ = 0, and

var ðSniÞ=�S2 ¼ 7, so the log-uniform distributed sensitivities span about 7 orders of magnitude.

Note that the three panels are similar to Figs 3A, 3B and 4A, respectively, implying that log-

uniform and log-normal distributed Sni behave similarly.

(EPS)
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