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Synchronization Analysis of 
Master-Slave Probabilistic  
Boolean Networks
Jianquan Lu1,2, Jie Zhong1, Lulu Li3, Daniel W. C. Ho4 & Jinde Cao1,5

In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks 
(PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined 
by a series of possible logical functions with certain probability at each discrete time point. In this 
paper, we firstly define the synchronization of master-slave PBNs with probability one, and then 
we investigate synchronization with probability one. By resorting to new approach called semi-
tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on 
the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization 
with probability one. Further, we study the synchronization of master-slave PBNs in probability. 
Synchronization in probability implies that for any initial states, the master BN can be synchronized 
by the slave BN with certain probability, while synchronization with probability one implies that 
master BN can be synchronized by the slave BN with probability one. Based on the equivalent 
algebraic form, some efficient conditions are derived to guarantee synchronization in probability. 
Finally, several numerical examples are presented to show the effectiveness of the main results.

Recently, researches on the behavior and close relationships of all the RNAs, DNAs, proteins, and cells in 
a genetic regulatory network have been a new hot topic1,2. Boolean networks (BNs) were originally intro-
duced to model large-scale genetic regulatory networks3–5, and then they have become a powerful and 
appropriate tool to model long-term behavior of genes. On one hand, BNs can be a convenient model to 
describe lots of phenomena whose describing variables display only two operation values (active/inactive, 
on/off, …). For example, each gene in a cell behaves just like a switch, switching either on “active” or on 
“inactive”, which can also be expressed by 1 and 0. Meanwhile, each gene is activated or inhibited by a 
series of Boolean functions. Great attention has been paid to the study of BNs, such as investigation of 
topological structure of BNs, including the fixed point, cycles, attractors and transient time6–8. On the 
other hand, the algebraic state representation for BNs, developed by Cheng and co-authors, allows to con-
vert BNs into the framework of linear state-space models9–11. Cheng and his group develop a new matrix 
product, called semi-tenor product (STP) of matrices, which presents a new way to multiply two matrices 
with arbitrary dimensions9. By resorting to STP, a Boolean function can be converted into an algebraic 
form, and then a BN (Boolean network) can be expressed as a discrete algebraic dynamic10. This original 
set-up opens new perspectives on systematical analysis of many problems about BNs. And, indeed, using 
this approach, many problems concerning BNs like stabilization12, controllability13–17, observability18, 
optimal control19, and synchronization20,21, just quote a few, have been widely investigated.

It should be noted that one main drawback of the algebraic state expression of BNs is its computational 
complexity. The algebraic state representation converts a BN with n state-variables into a state-space of 
size 2n. Thus, any algorithm based on this approach has an exponential time-complexity. Moreover, many 
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problems like determining fixed points and observability of Boolean control networks have already been 
proved to be NP-hard. Hence, the computational complexity is intrinsic and also independent of the 
models adopted to describe BNs.

It is a curious phenomenon of some real-world systems that they can evolve in perfect synchroni-
zation. Synchronization is an important property, which makes two coupled systems oscillate in typi-
cal collective behavior. In recent years, synchronization problem of dynamic systems have drawn great 
attention, sucn as synchronization of complex networks22–24, consensus in multi-agent systems25,26, syn-
chronization of Kauffman networks27, cooperation of networks28–31 and so on. Since BNs can provide 
general features of living organism, and well illustrate genetic regulatory networks, the synchronization 
problem has been extended to BNs. The researches on synchronization of BNs can provide lots of useful 
information on the evolution of biological systems whose corresponding subsystem influences with each 
other. For example, investigation on synchronized BNs is beneficial to better understand synchronization 
between two coupled lasers32. Hence, studying the synchronization problem of BN is of both theoretical 
and practical importance. In the past few years, Some necessary and sufficient criteria of complete syn-
chronization for two deterministic BNs has been obtained33, then Li et al. generalized the synchroniza-
tion problem of BNs with time delays34. In35, Li studied synchronization of coupled large-scale BNs. In36, 
Zhong et al. have investigated synchronization of master-slave BNs with impulsive effects.

In9,13,37, the target state of nodes in BNs is predicted by deterministic Boolean functions. Deterministic 
BNs always follow a static transition mechanism supervised by binary logical functions, and ultimately 
reach a limit set, from which the system cannot move. However, the stochastic feature of genetic regu-
lation and micro array data used to infer the structure of networks may have errors because of external 
noise in the complex measurement processes. Hence, the stochastic factor is an important feature, and 
BNs with stochastic factor is more practical and favorable to such situations, resulting in the develop-
ment of probabilistic Boolean networks (PBNs). In38, Shmulevich et al. firstly proposed PBNs model, 
which deals with the problem of uncertainty. A PBN can be regarded as a collection of BNs, in which 
the state of each node chooses its transition rule according to some probabilistic rules at discrete time 
point. And the transition rule for updating each node is randomly chosen among several possible rules 
with a given probability distribution. Hence, a PBN allows the model to have more flexibility, which is 
the basic idea of PBNs.

Recently, PBNs have been widely applied to infer functional connectivity between brain regions and 
to investigate the connectivity abnormality in Parkinson’s Disease39. Some fundamental and interesting 
results on PBNs have been obtained, such as optimal control problem in context-sensitive PBNs40, con-
trollability of PBNs with forbidden states17, steady-state probability distribution of PBNs41. Due to its 
rule-based and uncertainties properties, PBNs seem more practical to model genetic regulatory networks 
than usual deterministic BNs. And phenomenon of coupling is very common in real world systems. 
Hence, it is meaningful and challenging to study the synchronization problem of PBNs, and there has 
been no result investigating on synchronization of PBNs, to the best our knowledge. Thus, motivated by 
the above discussions, in this paper, we aim to investigate the synchronization problem of PBNs coupled 
in the master-slave configuration, in which the master BN is a deterministic BN while the slave BN is 
a PBN. In this paper, we firstly investigate synchronization of master-slave PBNs with probability one, 
then investigate synchronization in probability. New approaches based on STP are proposed to derive 
necessary and sufficient conditions for synchronization.

Notation: The following standard notations will be used in this paper. Throughout this paper, n m×  
denotes the set of real matrices of order n ×  m, and + denotes the positive integers. 1n denotes the 
n-dimensional column vector with all entries being 1, and Ik is the identity matrix of order k. k

jδ  is the 
j-th column of identity matrix Ik, and Δ k denotes the set of all k columns of Ik. In particular, when k =  2, 
we use 2Δ = Δ

Δ . Let Colj(A) (Rowj) be the j-th column (j-th row) of matrix A, and Col(A) (Row(A)) be 
the set of columns (rows) of matrix A. A k ×  p matrix A is called a logical matrix if ACol k( ) ⊆ Δ , and 
the set of all k ×  p logical matrices is denoted by ×ℒk p.

Preliminaries
Given two integers k n, ∈ +, with k ≤  n, we use [k, n] to denote the set of integers {k, k +  1, …, n}. A 
k ×  p logical matrix [ ]k

i
k
i

k
i p1 2δ δ δ, , …,  can be simply written as δk[i1, i2, …, ip], for suitable indices 

i i i k[1 ]p1 2, , …, ∈ , . We consider Boolean vectors, taking values in {0 1} = ,  with usual operations 
(sum + , product ·, and negation ¬). A k ×  p matrix A is called a Boolean matrix if Aij ∈   for each i ∈  [1, k] 
and j ∈  [1, p]. Let ⊗  denotes the Kronecker product of matrices.

Firstly, we introduce a bijective correspondence between Boolean vectors X ∈   and vectors x ∈  Δ , 
which is defined by the relationship:

x X
X 1( )=
¬

. ( )

Then, we introduce semi-tensor product (STP) “” between matrices (and in particular, vectors) as 
follows10: given two matrices, L1 ∈  n m×  , L2 ∈  p q× , we set
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L L L I L I

c m pl c m 2
c m c p1 2 1 2 ( )( )= ⊗ ⊗ ,

= . . . ( , ), ( )

/ /

where l.c.m.(m, p) denotes the least common multiple of m and p.
As we can see, STP of matrices is an extension of standard matrix product, by this meaning if m =  p, 

then we can get L1  L2 =  L1 L2. Note that if x1 ∈  Δ n1 and x2 ∈  Δ n2, then x1  x2 ∈  Δ n1n2. Throughout this 
paper, we sometimes just omit “” for convenience. By resorting to STP, we can present a bijective cor-
respondence between n  and Δ 2n. It can be obtained in following way: given X X X X[ ]n

T n
1 2 = , , …, ∈ , 

where “T ” represents the transpose, we set

x
X

X
X

X
X

X 3
n

n

1

1

2

2
  =




¬









¬





…



¬





.

( )

Thus, we can obtain that

=







…
… ¬
… ¬ ¬

¬ ¬ … ¬ ¬







∈ Δ .

( )

−

−

−

−

 

x

X X X X
X X X X
X X X X

X X X X 4

n n

n n

n n

n n

1 2 1

1 2 1

1 2 1

1 2 1

2n

Example 1 Consider two matrices A 1 2
3 4= 




, B

1 1 1
2 2 2
3 3 3

=















. Then, according to Eq. (2), we can obtain 

the STP of matrices A and B as follows:

A B A I B I
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2
3 0 0 4 0 0
0 3 0 0 4 0
0 0 3 0 0 4

1 0 1 0 1 0
0 1 0 1 0 1
2 0 2 0 2 0
0 2 0 2 0 2
3 0 3 0 3 0
0 3 0 3 0 3

1 4 1 4 1 4
6 1 6 1 6 1
2 6 2 6 2 6
3 8 3 8 3 8

12 3 12 3 12 3
6 12 6 12 6 12 5

3 2 = ( ⊗ )( ⊗ )

=





















































=



























.

( )

Definition 1 An mn ×  mn matrix W[m,n] is called a swap matrix, if it is constructed in following way: 
label its columns by (11, 12, …, 1n, …, m1, m2, …, mn) and similarly label its rows by (11, 21, …, m1, 
…, 1n, 2n, …, mn). Then its element in the position ((I, J), (i, j)) is assigned as

w
I i and J j
otherwise

1
0 6I J i j i j

I Jδ= =





, = = ,
, . ( )

( , ),( , ) ,
,

If σ1 ∈  Δ m and σ2 ∈  Δ n, then σ1  σ2 =  W[m,n](σ2  σ1). If m =  n, we denote W[m,n] by W[n] for convenience.
Example 2 According to Definition 1, we can construct the swap matrix W[3,2] and obtain the matrix 

W[3,2] as following:

W

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1 7

[3 2] =



























.

( )

,

By resorting to STP and the bijective correspondence between n  and Δ 2n, we can acquire an alge-
braic representation of logical functions. To do so, we have to identify the Boolean vectors 1 and 0 with 
the vectors 2

1δ  and 2
2δ . That is to say, we consider a Boolean variable X ∈   as a vector x ∈  Δ , thus a 

Boolean function of n variables f : n →  is equivalent with a map f : n
2 2(Δ ) → Δ . Then, using STP, 
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we can simply express a series of Boolean variables and obtain its equivalent algebraic form of a logical 
function.

Lemma 19 Let f : n
2 2(Δ ) → Δ  be a Boolean function. Then there exists a unique matrix ∈ ×ℒF 2 2n 

such that f Fn n1 2 1 2   σ σ σ σ σ σ( , , …, ) = 
, for every n

n
1 2 2σ σ σ( , , …, ) ∈ (Δ ) . F is called the 

structure matrix of the logical function f.
Example 3 Consider the following two logical functions f x x x x1 2 1 2( , ) = ∨  and g x x x x1 2 1 2( , ) = (¬ ) ∨ . 

Then, according to Lemma 1 and the Truth Table 1, we can obtain its corresponding structure matrices Mf 
and Mg satisfying:

f x x M x x

x x

g x x M x x

x x1 1 1 0
0 0 0 1

1 0 1 1
0 1 0 0 8

f g1 2 1 2

1 2

1 2 1 2

1 2







( ) ( )
( , ) =

= ,

( , ) =

= .
( )

Lemma 29

	 (a) If σ ∈  Δ n, then A I An σ σ= ( ⊗ )  for every A.
	 (b) If σ ∈  Δ 2n, then σ  σ =  Φ nσ, where   δΦ = , + , ⋅ + , …, ( − ) ⋅ + − ,[1 2 2 2 2 3 2 2 2 2 1n

n n n n n
2n  

.2 ]n2

	 (c) The dummy matrix is defined as δ= , , ,E : [1 2 1 2]d 2 . Then for any two logical variables u, v, we have 
Eduv =  v, or EdW[2]uv =  u.

	 (d) Let X ∈  Δ m and Y ∈  Δ n be two arbitrary columns. Then, according to the definition of swap matrix, 
we have W X Y Y Xm n[ ]  =, , W Y X X Yn m[ ]  =, .

Results and Methods
Matrix expression of master-slave probabilistic Boolean networks (PBNs).  Recall that two 
BNs coupled in master-slave configuration, and each network has n nodes, which can be described as:

x t f x t x t

x t f x t x t

y t g x t x t y t y t

y t g x t x t y t y t

1

1

1

1 9

n

n n n

t
n n

n n
t

n n

1 1 1

1

1 1 1 1

1 1
n

1 ( )

( )











( + ) = ( ( ), …, ( ))

( + ) = ( ( ), …, ( ))

( + ) = ( ), …, ( ), ( ), …, ( )

( + ) = ( ), …, ( ), ( ), …, ( ) ( )

σ

σ

( )

( )





where xi is the i-th node of master BN, and yi is the j-th node of slave BN, respectively. f :i
n → , 

i ∈  [1, n],  →g :i
n2 , i ∈  [1, n] are logical functions; σ → = , , …,+N W: {1 2i i  i} can be regarded 

as switching signals; t =  0, 1, 2, …, and here we simply denote =N : 2n. We simply denote 
x t x t x tn1( ) = ( ( ), …, ( )) and y t y t y tn1( )( ) = ( ), …, ( )  to be the states of the master BN and the slave 
BN at time instant t, respectively. Moreover, we can observe that the state evolution of the master-slave 
BNs depends on the following initial states: x 0j ( ) ∈ , j n[1 ]∈ ,  and y 0j ( ) ∈ , j n[1 ]∈ , .

The master-slave BNs (9) becomes a master-salve PBNs if the probability of gi being gi
j is pi

j, denoted 
as  { }g g j w pr i i

j
i i

j= ∈ = , i n[1 ]∈ , , ∈ ,j [1  i]. That is { }g g g gi i i i
w1 2 i∈ , , …,  and p 1j

n
i
j

1∑ == , 
i n[1 ]∈ , . In this section, we assume that the slave PBN is independent, that is g1, g2, …, gn are inde-
pendent from each other, i.e.   { } { }{ }g g g g g g g gr i i

j
l l

k
r i i

j
r l l

k= , = = = ⋅ = .
Using the matrix  to denote the index set of possible models38,

a b ¬a a ∨ b (¬a )∨ b

1 1 0 1 1

1 0 0 1 0

0 1 1 1 1

0 0 1 0 1

Table 1.   Truth table.
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=











 ( )−

�
�

� � � �
�
�

� � � �
�

� � � �
�

K
W

W

W W W W

1 1 1 1
1 1 1 2

1 1 1
1 1 2 1

1 1 2

10

n

n

n n1 2 1

where = ∏ = j
n

1 j. Thus,  is a  ×  n matrix.
Remark 1 If there are some identical switching signals, assuming that t t1 2σ σ( ) = ( ) and t tn3σ σ( ), …, ( ) 

are pairwise distinct, then we can denote =⁎  1 ∏ =j
n

3 j. Hence, in the following sequel, we assume that 
the switching signals t tn1σ σ( ), …, ( ) are pairwise distinct.

Each row of matrix  represents a possible network with probability 
P Kp i p{network is selected}i r j

n
i1

ij= = ∏ = , where ij is the ij-th entry in matrix . Now define 
x t x ti

n
i1( ) = ( )= , and y t y ti

n
i1( ) = ( )= , which is a bijective mapping pointed by D. Cheng9,10. For each 

logical functions , ∈ ,f i n[1 ]i , we can find its corresponding structure matrix Fi. Thus, using Lemma 1, 
for the master logical functions, we can obtain its algebraic form:

( + ) = ( ). ( )x t F x t1 11i i

Multiplying Eq.  (11) yields x t Fx t1( + ) = ( ), where = ⊗ ( ), ⊗ ( ), …, ⊗= = =F F F[ Col Coli
n

i i
n

i i
n

1 1 1 2 1 
( )FCol ]n i .

Then, for each logical functions gi
ij, i n[1 ]∈ , , we can find its structure matrix Li

ij. Thus, using 
Lemma 1, for the slave logical functions, we have

y t L x t y t1 12i i
ij( + ) = ( ) ( ). ( )

Multiplying Eq.  (12) yields that y t L x t y t i1 [1 ]i( + ) = ( ) ( ), ∈ , , where 
= ⊗ ( ), …, ⊗ ( )= =

 L L L[ Col Col ]i i
n

i i
n

n i1 1 1
ij ij .

Thus, for master-slave PBNs (9), we obtain the following equivalent algebraic expression:


x t Fx t
y t L x t y t i

1
1 [1 ] 13i







( + ) = ( )

( + ) = ( ) ( ), ∈ , . ( )

In fact, the master-slave PBNs (9) can be regarded as a whole system. Let z t x t y t N2( ) = ( ) ( ) ∈ Δ  
be the state of the whole system. Then for the master-slave PBNs (9), we can obtain following dynamics 
of the whole system:



z t x t y t
Fx t L x t y t
F I L x t y t

z t i

1 1 1

[1 ] 14

i

N i N

i

( + ) = ( + ) ( + )

= ( ) ( ) ( )

= ( ⊗ )Φ ( ) ( )

Ψ ( ), ∈ , . ( )

Hence, the overall expected value of z(t +  1) satisfies:


Ez t p Ez t LEz t1

15i
i i

1
∑( + ) = Ψ ( )= ( ).

( )=

Δ

Remark 2 According to Eq.  (14), we know that the state z(t +  1) is updated by the logical function Ψ i 
with a certain probability, i.e. pi. And actually, z(t +  1) has  number of choices to update its states. Unlike 
deterministic BNs, PBNs do not have accurate state evolutional process, and all the possible state evolutional 
processes exist with some certain probabilities.

Remark 3 According to Eq. (14) and Eq. (15), we can obtain that the pq-th entry of matrix Li is equal 
to  pi i i pq1∑ (Ψ )= , i.e. L ppq i i i pq1= ∑ (Ψ )= . Since Ψ ∈ ×ℒi N N2 2, then we can obtain the following equation: 

L 1j
N

ij
2

∑ = , which means the sum of column entries is unitary.
Remark 4 According to Eq. (15), we can observe that if the master BN is a PBN and the slave BN is a 

deterministic BN, we can still obtain an algebraic equation similar to Eq. (15). However, due to the coupling 
property between master BN and slave BN (slave BN is also affected by master BN), the slave BN is also a 
PBN. Thus, in order to investigate synchronization for this kind of system, we only need to check whether 
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z(t) (state of the whole system) can reach the set of synchronized states with probability one. Hence, sim-
ilar methods for synchronization of deterministic BNs can be used to investigate synchronization of these 
systems.

Example 4 Consider the following master-slave PBNs:











( + ) = ( )

( + ) = ( )

( + ) = ( )

( + ) = ( ( ), ( ), ( ), ( )) ( )
σ ( )

x t x t
x t x t
y t x t

y t g x t x t y t y t

1
1
1

1 16
t

1 1

2 2

1 1

2 2 1 2 1 2

where the switching signal on logical function g2 is t : {1 2}σ ( ) → ,+  and








= ( )

= ( ) ∧ ( ) ∨ ¬ ( ) ∧ ( ) ∧ ( ( ) ∧ ¬ ( )) . ( )

g x t

g x t x t x t x t y t y t[ ] { [ ]} 17

2
1

2

2
2

1 2 1 2 1 2

Here, the probabilities of g2 being g2
1 and g2

2 are  g g 0 4r 2 2
1( )= = .  and  g g 0 6r 2 2

2( )= = . . Denote 
x t x t x t1 2( ) = ( ) ( ) and y t y t y t1 2( ) = ( ) ( ). By resorting to STP and Lemma 1, we can obtain its equivalent 
algebraic form as follows:

x t Fx t
y t L x t y t i

1
1 1 2 18i







( + ) = ( )

( + ) = ( ) ( ), = , , ( )

where the probabilities of Li being L1 and L2 are  L L 0 4r i 1( = ) = .  and  L L 0 6r i 2( = ) = . , and

F
L
L

[1 2 3 4]
[1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4]
[1 1 1 1 2 2 2 2 3 3 3 3 4 3 4 4] 19

4

1 4

2 4

δ
δ
δ









= , , ,
= , , , , , , , , , , , , , , ,
= , , , , , , , , , , , , , , , . ( )

Further, denote z t x t y t( ) = ( ) ( ), we can obtain the whole system as follows: z t z t i1 1 2i( + ) = Ψ ( ), = , , 
where

[1 1 1 1 6 6 6 6 11 11 11 11 16 16 16 16]
[1 1 1 1 6 6 6 6 11 11 11 11 16 15 16 16] 20

1 16

2 16

δ
δ






Ψ = , , , , , , , , , , , , , , ,
Ψ = , , , , , , , , , , , , , , , . ( )

The state transition digraph of system (16) is shown in Fig.  1. Hence, we can obtain that the overall 
expected value of z(t +  1) satisfies:

Ez t LEz t1 21( + ) = ( ), ( )

where

δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

= , , , , , , , , , ,

, , , . + . , , . ( )⁎ ⁎

[
]

L

0 4 0 6 22
16
1

16
1

16
1

16
1

16
6

16
6

16
6

16
6

16
11

16
11

16
11

16
11

16
16

16
15

16
16

16
16

16
16

Synchronization of master-slave PBNs with probability one.  In the following sebsection, we 
firstly define the definition of synchronization of the master-slave PBNs (9) with probability one as 
follows.

Definition 2 Consider the master-slave PBNs (9). System (9) is said to be synchronized with probability 
one if for any initial state x 0j( ) ∈ Δ, j n[1 ]∈ ,  and ( ) ∈ Δy 0j

, j n[1 ]∈ , , there exists a positive integer 
k, such that t ≥  k satisfies

( ) = ( )| ∈ , = . ( ) x t y t i n{ [1 ]} 1 23r i i

Remark 5 If the master-slave PBNs (9) can be synchronized with probability one, then there must exist 
an integer k such that for t ≥  k, ( ) = ( ) = x t y t{ } 1r . By this meaning, the slave BN has only one deter-
ministic trajectory after finite steps, which is exactly the same as the trajectory of master BN, i.e. x(t) =  y(t) 
for t ≥  k. Denote x t y t N

iδ( ) = ( ) = , according to z t x t y t( ) = ( ) ( ), we have z t
N

i N i1
2δ( ) = ( − ) + . Thus, let 

{ }i N: [1 ]
N

i N i1
2δΞ = ∈ ,( − ) +  be the set of synchronized states about z(t). Let 

= ( − ) + ∈ ,i N i i N{ 1 : [1 ]}S  be the index set of Ξ .
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Remark 6 In33,34, Li et al. have investigated the complete synchronization of BNs coupled in drive-response 
configuration. In those models, the drive BN and response BN are both deterministic BN, which implies that 
the trajectory of drive BN will coincide with that of response BN after finite steps. Since the stochastic factor 
is an important feature in real world, BNs with stochastic factor is more practical and favorable. Here, we 
consider that the master BN is a deterministic BN, while the slave BN is a probabilistic BN. Due to the fact 
that the master BN is a deterministic BN which means there will be only one trajectory, the slave BN must 
have only one trajectory coinciding with master BN after finite steps. Thus, the main difference between syn-
chronization with probability one and general synchronization is that there will be some possible trajectories 
at the beginning of a period time but only one deterministic trajectory after finite steps.

According to Eq. (9), we observe that the master BN is a deterministic BN. Thus, the trajectory will 
enter into a cycle after finite steps starting from any state. Let = = , >k i F F j imin{ : }i j

0  be the tran-
sient period of system and T >  0 be the smallest positive number satisfying F Fk k T0 0= + . Thus, we can 
obtain the following proposition.

Proposition 1 Starting from any state, the trajectory of master BN (9) will enter into a cycle after k0 
steps.

Example 5 Consider the following master BN with 3 nodes:

x t x t x t
x t x t
x t x t

1
1
1 24

1 2 3

2 1

3 2










( + ) = ( ) ∧ ( )

( + ) = ¬ ( )

( + ) = ( ). ( )

Denote x t x t x t x t1 2 3 ( ) = ( ) ( ) ( ), it is easy to calculate that x t Lx t1( + ) = ( ), where L follows 
immediately as L =  δ8[3, 7, 8, 8, 1, 5, 6, 6]. Thus, it is easy to check that k0 =  2 and L2 =  L7, i.e. T =  5, which 
implies that the trajectory of BN will enter a cycle after 2 steps. The dynamic graph of system (24) is shown 
in Fig. 2, from which we can see that each state will enter a cycle with length 5 after 2 step.

Based on Proposition 1, we can obtain the following necessary and sufficient condition for synchro-
nization of master-slave PBNs (9) with probability one.

Theorem 1 Consider the master-slave PBNs (9). System (9) can be synchronized with probability one if 
and only if the following conditions hold:

Figure 1.  State transition digraph of system (16), where the positive number beside each arrow is the 
probability under which state transfers to its next state. 
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	  • For k k k T[ ]0 0∈ , + ,

Col L ; 25k( ) ⊆ Ξ ( )

	 •  

L L 26k k T0 0= . ( )+

Proof. According to Eq. (15), we can obtain that

Ez t L z 0 27t( ) = ( ). ( )

(Necessity) If the master-slave PBNs (9) can be synchronized with probability one, then there must exist 
an integer k, such that for t ≥  k satisfying ( ) = ( ) = x t y t{ } 1r . Since the trajectory of master BN will 
enter into a cycle after k0 iterations, we only need to consider whether the limit set of slave BN can be 
coincided with that of master BN or not. For any initial state x(0), based on Proposition 1, the trajectory 
of master BN will reach a cycle: ( ), ( ), …, ( )+ +F x F x F x{ 0 0 0 }k k k T10 0 0 . Denote F x 0k

N
i0 0δ( ) = , 

F x F x0 0k
N
i k T

N
iT0 1 0δ δ( ) = , …, ( ) =+ + . Since F Fk k T0 0= + , we have F x F x0 0k T k0 0( ) = ( )+ , i.e. iT =  i0. 

Since the master-slave PBNs (9) can be synchronized with probability one from any initial states x(0), 
y(0), we can obtain that the trajectory of slave BN also reach the same cycle: δ δ δ, , …, +{ }N

i
N
i

N
i T0 1 0 . By this 

meaning, we have δ( ) = = y k{ } 1r N
i

0
0 , δ δ( + ) = = , …, ( + ) = = y k y k T{ 1 } 1 { } 1r N

i
r N

i
0 0

T1 . 
Thus, it is equivalent to





{ }

{ }

z k

z k T

1

1 28

r N
i N i

r N
i N i

0
1

0
1T T

2
0 0

2

δ

δ











( ) = ∈ Ξ = ,

( + ) = ∈ Ξ = . ( )

( − ) +

( − ) +



According to Eq.  (27), this implies that ( ) ∈ Ξ, ∈ , +L z k k k TCol{ 0 } [ ]k
0 0 . Since the initial state 

z(0) is arbitrary, we can derive that ( ) ⊆ Ξ, ∈ , +L k k k TCol [ ]k
0 0 . As F Fk T k0 0=+ , for any initial states 

x(0), y(0), we have z k z k T0 0( ) = ( + ) which implies that L Lk k T0 0= + . The necessity is proved.
(Sufficiency) Assuming that conditions (25) and (26) hold, we prove that under these conditions the 

master BN can be synchronized by the slave BN with probability one. Suppose that 
z 0

N
j

N
j

N
jx y

2
0 0δ δ δ( ) = = ( ) ( ), j N[1 ]2∈ , , j j N[1 ]x y0 0, ∈ ,( ) ( )

. If (25) holds, after k0 steps, we have 
( ) ∈ Ξ = , …, ( + ) ∈ Ξ = z k z k T{ } 1 { } 1r r0 0 . Since the set Ξ  is synchronized set, one has









( ) = ( ) = ,

( + ) = ( + ) = . ( )






x k y k

x k T y k T

{ } 1

{ } 1 29

r

r

0 0

0 0

If (26) holds, we obtain that z k z k T0 0( ) = ( + ), which means that z k z k T{ }0 0( ), …, ( + )  is a 
cycle. By this meaning, the trajectory of system (14) enter into a cycle. This together with (29) yields that 
the master BN can be synchronized by the slave BN with probability one, as the index j is arbitrary. This 
completes the proof.

Figure 2.  The dynamic graph of system (24). 
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Remark 7 According to Theorem 1, we observe that condition (25) guarantees that the master BN can 
be synchronized by slave BN for states in limit set with probability one. And condition (26) guarantees that 
the slave BN has the same cycles or fixed points with probability one after k0 steps. Thus, condition (26) is 
a necessary condition to guarantee synchronization. Even for some systems satisfying condition (25), it can 
not reach synchronization.

Remark 8 According to Proposition 1, we can conclude that the trajectory of master BN will enter into 
a cycle after k0 steps. To investigate the synchronization with probability one, we only need to consider the 
following time sequence k0, k0 +  1, …, k0 +  T, because the matrix F satisfies F Fk k T0 0= + . Since the set Ξ  is 
the set of synchronized states, condition (25) implies that the slave BN can reach synchronization with 
probability one at time sequence k0, k0 +  1, …, k0 +  T, but can not guarantee synchronization after time 
k0 +  T. However, due to the fact that F Fk k T0 0= + , the slave BN also need to guarantee a periodic trajectory 
with the same length as the trajectory of master BN if the slave BN wants to reach synchronization. Thus, 
condition (26) guarantees that the periodic trajectory of slave BN coincides with that of master BN.

According to Theorem 1, we can easily obtain following corollary to check whether a given master-slave 
PBN can be synchronized with probability one or not.

Corollary 1 Consider the master-slave PBNs (9). System (9) can be synchronized with probability one 
if and only if the following conditions hold:

	 • For ∈ , +k k k T[ ]0 0 , Ω ∈ ×ℒk
N N2, where matrix Ω k is the matrix obtained from Lk by deleting the 

rows with index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]};
	 • L Lk k T0 0= + .

Theorem 2 Consider the master-slave PBNs (9). The master-slave PBNs can be synchronized with prob-
ability one, if following two conditions hold:

	 (1) there exists a positive number 0 <  k ≤  k0 +  T, such that Col Lk( ) ⊆ Ξ;
	 (2) Colj(L) ∈  Ξ , j ∈ S.

Proof. For any initial states x(0), y(0), according to Eq.  (15) and after k iterations, we have 
Ez k L z L x y0 0 0k k( ) = ( ) = ( ) ( ). Suppose that condition (1) holds, then we have Ez(k) ∈  Ξ , which 
implies that ( ) ∈ Ξ = z k{ } 1r . Then for the next step, we have Ez k Lz k1( + ) = ( ). The facts that 
z(k) ∈  Ξ  and condition (2) holds means that Ez(k +  1) ∈  Ξ , which further implies that ( + ) = z k{ 1 } 1r . 
Thus using mathematical iteration, we obtain that τ( + ) ∈ Ξ = z k{ } 1r , τ ∈ +. By this meaning, for 
any initial states x(0), y(0), we have ( ) = ( ) = x t y t{ } 1r , t ≥  k. Thus, it implies that the master-slave 
PBNs (9) can be synchronized with probability one.

Corollary 2 Consider the master-slave PBNs (9). The master-slave PBNs can be synchronized with 
probability one, if following two conditions hold:

	 (1) there exists a positive number 0 <  k ≤  k0 +  T, such that ϒ ∈ ×ℒk
N N2, where matrix ϒ k is the matrix 

obtained from Lk by deleting the rows with index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]};
	 (2) Λ ∈ ×ℒN N, where matrix Λ  is the matrix obtained from L by deleting the column and rows with 

index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}.

Synchronization of master-slave PBNs (9) in probability.  In the above section, we have investi-
gated synchronization of master-slave PBNs (9) with probability one. Since the master BN is a determin-
istic BN, synchronization with probability one implies that the slave BN has deterministic trajectories 
coinciding with trajectories of master BN after finite steps. As we can see, this condition is relative strict 
in some real-world systems. If the slave BN has some trajectories coinciding with trajectories of master 
BN with some certain probability, what happens? Thus in following section, we will investigate synchro-
nization of master-slave PBNs (9) in probability, which implies that the master BN can be synchronized 
by the slave BN with some certain probability. Now, we firstly define the definition of synchronization 
in probability as follows.

Definition 3 Consider the master-slave PBNs (9). System (9) is said to be synchronized in probability if 
for any initial state x 0j( ) ∈ Δ, j n[1 ]∈ ,  and ( ) ∈ Δy 0j

, j n[1 ]∈ , , there exists a positive integer k, such 
that t ≥  k satisfies

< ( ) = ( )| ∈ , < . ( ) x t y t i n0 { [1 ]} 1 30r i i

Remark 9 In Definition 2, we have presented the definition of synchronization with probability one. 
Since the master BN is a deterministic BN, under this definition of synchronization, the slave BN must have 
a deterministic set of trajectories after some finite steps. Moreover, the set of trajectories have to coincide 
with that of master BN. However, since the slave BN is a probabilistic BN, the slave BN may have lots of 
possible trajectories, among which there may exists one possible trajectory coinciding with the trajectory of 
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master BN. The main concern of synchronization in probability is that whether there exists one possible 
trajectory coinciding with the trajectory of master BN or not. The main difference between synchronization 
with probability one and synchronization in probability is that whether there exists one deterministic tra-
jectory or one possible trajectory which coincides with the trajectory of master BN.

Here, we still let { }i N: [1 ]
N

i N i1
2δΞ = ∈ ,( − ) +  be the set of synchronized states about z(t). Let 

= ( − ) + ∈ ,i N i i N{ 1 : [1 ]}S  be the index set of Ξ  and denote 
α δ αΘ = ∗ ∈ , , < <( − ) +{ }i N: [1 ] 0 1

N
i N i1
2 . Based on Theorem 1, we have the following algebraic 

criterion for synchronization in probability.
Theorem 3 Consider the master-slave PBNs (9). System (9) can be synchronized in probability if and 

only if the following conditions hold:
	 • For k k k T[ ]0 0∈ , + ,

Col 31k( ) ⊆ Θ, ( )

where ℒk is the matrix obtained from Lk by substituting zeros in the rows with index 
∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]};

	 •  

Col 32k T0( )Λ ⊆ Θ, ( ),

where k T
k k T

0
0 0Λ = Γ +Γ,

+ , k0Γ  and k T0Γ +  are matrices obtained from Lk0 and Lk T0+  by substituting zeros 
in the rows with index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}.

Proof. (Sufficiency) Assuming that conditions (31) and (32) hold, we prove that under these condi-
tions, the master BN can be synchronized in probability by the slave BN. It should be noted that for any 
initial state, the trajectory of master BN will enter into some cycle after k0 steps, i.e. x k x k T0 0( ) = ( + ). 
Moreover, the master BN is a deterministic BN. Thus, we only need to check whether the master BN can 
be synchronized in probability by slave BN at the limit states: ( ), …, ( + )x k x k T{ }0 0 . Suppose that 
z 0

N
j

N
j

N
jx y

2
0 0δ δ δ( ) = = ( ) ( ), j N j N j N[1 ] [1 ] [1 ]x y

2
0 0∈ , , ∈ , , ∈ ,( ) ( )

. According to Eq. (27), we have 
Ez k L z L Ez k T L z L T0 Col 0 Colk

j
k k T

j
k

0 0
0 0 0 0( ) = ( ) = ( ), …, ( + ) = ( ) = ( + )+ . If condition (31) 

holds, it means that for each matrix L Lk k T0 0, …, + , there is only one entry having a positive number in 
each column with index ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}S . It implies that for any j N[1 ]2∈ ,  and 
after k0 steps, we have < ( ) ∈ Ξ < , …, < ( + ) ∈ Ξ < z k z k T0 { } 1 0 { } 1r r0 0 . Thus, it implies that









< ( ) = ( ) < ,

< ( + ) = ( + ) < . ( )






x k y k

x k T y k T

0 { } 1

0 { } 1 33

r

r

0 0

0 0

Moreover, it should be noted that the master BN is a deterministic BN. Hence, it will reach a cycle 
after k0 steps, i.e. x k x k T0 0( ) = ( + ). Condition (32) means that for each column of matrices Lk0 and 
Lk T0+ , the index ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}S  is the same. Then, if condition (32) holds, 
according to Eq. (27), we have

Ez k T L z L z Ez k0 0 34k T k
0 0

0 0( + ) = ( ) = ( ) = ( ). ( )+

By this meaning, the slave BN can reach cycle coinciding with that of master BN with certain prob-
ability, i.e. < ( ) = ( ) = ( + ) = ( + ) < x k y k y k T x k T0 { } 1r 0 0 0 0 . Thus, the master BN can be syn-
chronized in probability by slave BN at the limit states: ( ), …, ( + )x k x k T{ }0 0 . Hence, the master-slave 
PBNs (9) can be synchronized in probability.

(Necessity) If the master-slave PBNs (9) can be synchronized in probability, we prove that conditions 
(31) and (32) hold. Note that the master BN is a deterministic BN. Hence, it has exact trajectories. 
According to Proposition 1, we know that the trajectory will enter into certain cycle after k0 steps. Due 
to the fact that 0 <  α <  1, there must also exist some positive number in the rows with index 
= ( − ) + ≠ ∈ , i N j i j N{ 1 : [1 ]}. Thus, for ∈ , +k k k T[ ]0 0 , we must have 
< ( ) ∈ Ξ < , …, < ( + ) ∈ Ξ < z k z k T0 { } 1 0 { } 1r r0 0 , the probability can not be equal to 1. By 

this meaning, we have following equations:









< ( ) = ( ) < ,

< ( + ) = ( + ) < . ( )






x k y k

x k T y k T

0 { } 1

0 { } 1 35

r

r

0 0

0 0



www.nature.com/scientificreports/

1 1Scientific Reports | 5:13437 | DOI: 10.1038/srep13437

It implies that for any initial states x(0), y(0), we have









< ( ) ∈ Ξ < ,

< ( + ) ∈ Ξ < . ( )






z k

z k T

0 { } 1

0 { } 1 36

r

r

0

0

Thus, based on the equations of Ez k L z Ez k T L z0 0k k T
0 0

0 0( ) = ( ), …, ( + ) = ( )+ , we derive that 
there exist some entries having positive number in each column with index ∈ ( − ) + ∈ ,p i N i i N{ 1 : [1 ]} 
for each matrix L Lk k T0 0, …, + . Moreover, since master BN is a deterministic BN which implies that each 
state x k x k T0 0( ), …, ( + ) is deterministic, there is only one entry having positive number in each 
column with index ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}S  for each matrix L Lk k T0 0, …, + . It implies that 
for k k k T[ ]0 0∈ , + , Col( k ) ⊆ Θ , where k  is the matrix obtained from Lk by substituting zeros in the 
rows with index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}.

Now, we prove condition (32) holds, provided the master-slave PBNs (9) can be synchronized in 
probability. Note that for any initial state x(0), we can always find k0 such that x k x k T0 0( ) = ( + ). Thus, 
if the master-slave PBNs (9) can be synchronized in probability, it implies that 
< ( ) = ( ) = ( + ) = ( + ) < x k y k x k T y k T0 { } 1r 0 0 0 0 . Thus, we have

< ( + ) = ( ) < . ( ) z k T z k0 { } 1 37r 0 0

Let k0  and k T0 +  be the matrices obtained from Lk0 and Lk T0+  by substituting zeros in the rows with 
index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}. Since Col k0( ) ⊆ Θ and Col k T0( ) ⊆ Θ+ , it implies 
that for each column of matrices Lk0 and Lk T0+ , the index ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}S  must 
be the same. By this meaning, we derive Col k T0( )Λ ⊆ Θ, , where k T

k k T
0

0 0Λ = Γ + Γ,
+ , k0Γ  and k T0Γ +  

are matrices obtain from Lk0 and Lk T0+  by substituting zeros in the rows with index 
∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}. This completes the proof.
Remark 10 Due to the fact that the trajectory of master BN will enter into a cycle after k0 steps, we also 

only need to consider the time sequence k0, k0 +  1, …, k0 +  T. Since the set 
α δ αΘ = ∗ ∈ , , < <( − ) +{ }i N: [1 ] 0 1

N
i N i1
2 , if condition (31) holds, we can derive that 

< ( ) ∈ Ξ < , …, < ( + ) ∈ Ξ < z k z k T0 { } 1 0 { } 1r r0 0  as 0 <  α <  1. Thus, we can conclude that at 
the time sequence k0, k0 +  1, …, k0 +  T, the master-slave PBNs can reach synchronization in probability. 
Moreover, since k T

k k T
0

0 0Λ = Γ + Γ,
+ , condition (32) implies that the slave BN can generate one possible 

periodic trajectory with the same length as the trajectory of master BN. So, condition (32) guarantees that 
the master-slave PBNs can reach synchronization in probability after time k0 +  T.

Theorem 4 Consider the master-slave PBNs (9). The master-slave PBNs (9) can be synchronized in 
probability, if following two conditions hold:

(1)	 there exists a positive number 0 <  k ≤  k0 +  T, such that Col(ℒk) ⊆ Θ , where ℒk is the matrix obtained 
from Lk by substituting zeros in the rows with index p i N j i j N{ 1 : [1 ]}∈ = ( − ) + ≠ ∈ , ;

(2)	 Colj(ℒ) ∈  Θ , ∈ = ( − ) + ∈ ,j i N i i N{ 1 : [1 ]}S , where  is the matrix obtained from L by substi-
tuting zeros in the rows with index ∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}.

Proof. Suppose that there exists a positive number 0 <  k ≤  k0 +  T, such that Col( k ) ⊆ Θ , where k  is 
the matrix obtained from Lk by substituting zeros in the rows with index 
∈ = ( − ) + ≠ ∈ ,p i N j i j N{ 1 : [1 ]}. Then one can conclude that for each column of matrix Lk, 

there is only one entry having positive number with certain index p i N i i N{ 1 : [1 ]}∈ = ( − ) + ∈ ,S . 
Then according to Eq.  (27), for any initial state z(0), we have < ( ) ∈ Ξ < z k0 { } 1r , which implies 
< ( ) = ( ) < x k y k0 { } 1r . Suppose that there are μ possible states for z(k), denote





 { }

{ }
{ }
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δ
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



( ) = ∈ Ξ = ,

( ) = ∉ Ξ = ,

( ) = ∉ Ξ = ,
( )μ

μ



where ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}1 S , p2, …, pμ ∈  , 0 <  a1, a2, …, aμ. Considering the next step 
t =  k +  1, we have



www.nature.com/scientificreports/

1 2Scientific Reports | 5:13437 | DOI: 10.1038/srep13437

Ez k LEz k

a L a a

a Col L a Col L a Col L

1

39

N
p

N
p

N

p

p p p

1 2

1 2

2
1

2
2

2

1 2

δ δ δ

( + ) = ( )

= + + +

= ( ) + ( ) + + ( ). ( )

μ

μ

μ

μ





Since Colj() ∈  Θ , ∈ = ( − ) + ∈ ,j i N i i N{ 1 : [1 ]}S  and ∈ = ( − ) + ∈ ,p i N i i N{ 1 : [1 ]}1 S , 
we can derive that < ( + ) ∈ Ξ < z k0 { 1 } 1r , which implies that < ( + ) = ( + ) < x k y k0 { 1 1 } 1r . 
Thus, using mathematical iteration, we can obtain that  x t y t0 { } 1r< ( ) = ( ) < , t ≥  k. Hence, the 
master-slave PBNs (9) can be synchronized in probability.

Numerical Simulation
In this section, we present two numerical examples to demonstrate the applications of our main results.

Example 6 Let us consider the following two PBNs with 2 nodes coupled in the master-slave configuration:

( )
( )
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( + ) = ( ), ( ), ( ), ( )

( + ) = ( ), ( ), ( ), ( ) ( )

σ
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( )

x t x t x t
x t x t x t

y t g x t x t y t y t

y t g x t x t y t y t

1
1

1

1 40

t

t
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2 1 2

1 1 1 2 1 2
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where the switching signal is given by t : {1 2}σ ( ) → ,+  and

g x t x t

g FALSE

g FALSE

g x t x t 41

1
1

1 2

2
1

1
2

2
2

1 2








= ( ) ∧ ( )

= ,






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=

= ( ) ∧ ( ). ( )

Moreover, the probability for g1
1, g2

1, g1
2 and g2

2 are  { }g g g g 0 4r 1 1
1

2 2
1= , = = . , 

 { }g g g g 0 6r 1 1
2

2 2
2= , = = . . The possible model index of matrix  is listed as follows:

 1 1
2 2 42( )= ( )

Thus, there are 2 possible BNs for the slave BN to be chosen with some certain probability. One of the 
possible BN has the probability 0.4, while the other possible BN has the probability 0.6.

Our objective is to check whether these master-slave PBNs (40) can be synchronized with probability one 
or not. Denote x t x t x t1 2( ) = ( ) ( ) and y t y t y t1 2( ) = ( ) ( ). By resorting to STP and Lemma 1, we can 
obtain its algebraic form of system (40) as follows:

x t Fx t
y t L x t y t i

1
1 1 2 43i







( + ) = ( )

( + ) = ( ) ( ), = , , ( )

where the probabilities of Li being L1 and L2 are respectively  L L 0 4r i 1( = ) = .  and  L L 0 6r i 2( = ) = . , 
and

F
L
L

[2 3 4 4]
[2 4 4 4 2 4 4 4 2 4 4 4 2 4 4 4]
[3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4] 44
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1 4

2 4
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= , , ,
= , , , , , , , , , , , , , , ,
= , , , , , , , , , , , , , , , . ( )

Since the master-slave PBNs can be regarded as a whole system, we can obtain the following dynamics 
of whole system by letting z t x t y t( ) = ( ) ( ): z t z t i1 [1 2]i( + ) = Ψ ( ), ∈ , , where

[6 8 8 8 10 12 12 12 14 16 16 16 14 16 16 16]
[7 8 8 8 11 12 12 12 15 16 16 16 15 16 16 16] 45

1 16

2 16

δ
δ






Ψ = , , , , , , , , , , , , , , , ,
Ψ = , , , , , , , , , , , , , , , . ( )

Hence, we can obtain the overall expected value of z(t +  1) satisfies:

( + ) = ( . ∗ Ψ + . ∗ Ψ ) ( )= ( ), ( )
ΔEz t Ez t LEz t1 0 4 0 6 461 2

where
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The state transition digraph of system (40) is shown in Fig. 3.
To apply Theorem 1, we firstly calculate the transient period of master BN k0 and the smallest positive 

number T >  0 satisfying F Fk k T0 0= + . According to Proposition 1, we can firstly obtain the transient period 
of master BN, i.e. k0 =  3, and the smallest positive number T =  1 satisfying F3 =  F4. Then, according to 
Theorem 1, we can obtain that Col L { }

3
16
16δ( ) =  and L3 =  L4, which implies that conditions (25) and (26) 

hold. Thus, this master-slave PBNs (40) can be synchronized with probability one. From Fig. 3, we observe 
that all the possible trajectories of system (40) starting from any initial state z(0) ∈   4  will eventually enter 
into the synchronized state (0, 0, 0, 0) at the third time step, and it will never escape.

Example 7 Now, we present another example to illustrate synchronization of master-slave PBNs in 
probability. Let us consider the following two PBNs with 2 nodes coupled in the master-slave configuration:
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where the switching signal is given by t : {1 2}σ ( ) → ,+  and
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Figure 3.  State transition digraph of system (40), where the synchronized state is filled with red colour. 
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Here, we let the probabilities be  { }g g g g 0 4r 1 1
1

2 2
1= , = = .  and  { }g g g g 0 6r 1 1

2
2 2

2= , = = . . Thus, 
we can obtain the following possible model index of matrix , which is listed as follows:

 1 1
2 2 51( )= ( )

Hence, the slave BN has 2 possible BNs to be chosen. One of the possible BN has the probability 0.4, while 
the other possible BN has the probability 0.6.

In order to check whether these two PBNs (48) can be synchronized in probability or not, we need to use 
Theorem 3. Denote x t x t x t1 2( ) = ( ) ( ) and y t y t y t1 2( ) = ( ) ( ). By resorting to STP, we can obtain the 
following equivalent algebraic form of system (48):
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where the probability of Li being L1 and L2 is  L L 0 4r i 1( = ) = .  and  L L 0 6r i 2( = ) = . , and
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To better illustrate dynamic of the master-slave PBNs, the state transition digraph of system (48) is 
shown in Fig. 4.

Since the master BN is a deterministic BN, then we can firstly obtain the transient period of master BN 
k0 and the smallest positive number T >  0 satisfying F Fk k T0 0= + , which are k0 =  1 and T =  3. In order to 
check whether these two PBNs (48) can be synchronized in probability or not, we need to check whether 
conditions (31) and (32) hold or not. Firstly, we need to calculate matrices L L Lk k k T10 0 0, , …,+ + , i.e. L, L2, 
L3, L4. since ℒk is the matrix obtained from Lk by substituting zeros in the rows with index 
∈ = ( − ) + ≠ ∈ ,p i j i j{ 1 4 : [1 4]}, it is easy to check that for k =  1, 2, 3, 4, Col(ℒk) ⊆ Θ . Secondly, 

since Λ 1,3 =  Γ  +  Γ 4, Γ  and Γ 4 are matrices obtained from L and L4 by substituting zeros in the rows with 
index ∈ = ( − ) + ≠ ∈ ,p i j i j{ 1 4 : [1 4]}, one can conclude that Col(Λ 1,3) ⊆ Θ . Thus, according to 
Theorem 4, this master-slave PBNs (48) can be synchronized in probability.
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In Figs 5 and 6, the row index having positive number of each column Li, i =  1, 2, 3, 4 are plotted. And 
Fig. 7 plots the row index having positive number of each column of L +  L4. From Figs 5 and 6, we can draw 
a conclusion that for each column of matrices L, L2, L3, L4 and (L +  L4), there is only one index 

Figure 4.  State transition digraph of system (48), where the synchronized states are filled with blue 
colour. The red dash line implies that state transfer to its next states with probability 0.4, while the black 
solid line implies that state transfer to its next states with probability 0.6.
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Figure 5.  The row index for each column of matrices L and L2 in system (48). Each point corresponds to 
the row index, in which has a positive number in corresponding matrices L and L2.
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∈ Ξ = ( − ) + ∈ , = , , ,p i i i{ 1 4 : [1 4]} {1 6 11 16} having a positive number. Thus, it implies that con-
ditions (31) and (32) hold in the same way, which well illustrate our main results.

Conclusions
In this paper, both synchronization of master-slave PBNs with probability one and synchronization in 
probability have been investigated. One restriction in this paper is that master BN is a deterministic BN, 
while slave BN is a probabilistic BN. Slave BN is determined by a series of possible logical functions 
with certain probability at each time point. The definitions of synchronization with probability one and 
synchronization in probability are firstly presented in this paper. Due to the fact that the master BN is 
a deterministic BN while the slave BN is a probabilistic BN, this paper considers two different cases: 
synchronization with probability one and synchronization in probability. The main concern of synchro-
nization in probability is that whether there exists one possible trajectory coinciding with the trajectory 
of master BN or not. The main difference between synchronization with probability one and synchroni-
zation in probability is that whether there exists one deterministic trajectory or one possible trajectory 
which coincides with the trajectory of master BN. Based on STP and its equivalent algebraic form, several 
necessary and sufficient conditions for two types of synchronization are derived. According to obtained 
necessary and sufficient conditions, we derive some effective conditions to judge whether some given 
master-slave PBNs can be synchronized with probability one or not. And then, some effective conditions 
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Figure 6.  The row index for each column of matrices L3 and L4 in system (48). Each point corresponds to 
the row index, in which has a positive number in corresponding matrices L3 and L4.
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are also obtained to judge whether some given master-slave PBNs can be synchronized in probability or 
not. Moreover, the main results are well illustrated by numerical examples.

Unfortunately, determining whether the master-slave PBN can be synchronized or not is still NP-hard. 
Some interesting and meaningful topics that deserve further research include the following: to investigate 
synchronization problem with different (or time-varying) delays, to investigate the feedback controller 
based on switching signals, and so on.
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