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IntroductIon

The antimetabolite 5‑fluorouracil (5‑FU)‑based combination 
therapies have been standard treatments for many patients 
diagnosed with gastrointestinal cancer in the past decades. 
However, resistance to 5‑FU together with its usage has 
become a common issue, and this has been recognized as a 
cause of cancer therapy failure. The resistance to anticancer 
drugs can be attributed to a wide variety of mechanisms 
including tumor cell heterogeneity, drug efflux, and other 
periods of tumor microenvironment stress‑induced genetic 
or epigenetic alterations as a cellular response to drug 
exposure.[1,2] Among these mechanisms, the adaptation of 
tumor cell to anticancer drug‑induced microenvironment 
stresses is a vital cause of chemotherapy resistance.

Macroautophagy (hereafter denoted simply as autophagy) 
is a cell survival pathway involving the degradation of 

cytoplasmic constituents, and the recycling of adenosine 
triphosphate and essential building blocks for the 
maintenance of cellular biosynthesis during nutrient 
deprivation or metabolic stress.[3] For tumor cells, autophagy 
is a “double‑edged sword” since it can be either protective 
or damaging, and the effects may change during tumor 
progression.[4,5] The dual role of autophagy in tumor 
development remains unclear. Current evidence supports the 
idea that autophagy eliminates damaged organelles and recycle 
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macromolecules, thus functioning as a tumor suppressive 
mechanism, particularly during malignant transformation 
and carcinogenesis.[6‑8] However, in established tumors, 
cancer cells may need autophagy for cytoprotection to 
cope with their hostile microenvironments such as nutrient 
deprivation, hypoxia, the absence of growth factors, and the 
presence of chemotherapy or some targeted therapy mediated 
resistances to anticancer therapies.[9,10] Consequently, the 
combination of autophagy inhibitors with chemotherapy 
drug has become more attractive in cancer therapy. Most 
studies have indicated that 5‑FU‑treatment‑induced 
autophagy of cancer cells in vivo,[11‑13] and inhibiting 
autophagy potentiated the anticancer effects of 5‑FU. 
Inhibitory effect of chloroquine (CQ) and its derivative 
hydroxychloroquine (HCQ) on autophagy in preclinical 
models and their safety in clinical trials have been approved 
by the Food and Drug Administration (FDA); it might be 
possible to treat certain cancer types without the need for 
phase I studies.

Here, the association between autophagy and 5‑FU 
chemotherapy in various gastrointestinal cancer is 
summarized, the mechanisms of autophagy in 5‑FU 
chemotherapy are reviewed, and the emerging questions 
of their promising potential as therapeutic targets for the 
treatment of gastrointestinal cancer are also highlighted.

autophagy paradox In therapeutIc purposes In 
cancer

The pioneer work by Liang et al. embraced the discovery 
that one copy of the Beclin-1 gene is deleted in some 
specimens of human breast, ovarian, and prostate tumors[14] 
suggesting that autophagy may play an anti‑tumor role in 
tumorigenesis. During the following two decades, a large 
number of autophagy‑related genes were found at a reduced 
expression level or even totally lost in certain types of cancer 
cells,[15‑20] supporting the conclusion that basal autophagy may 
act as a cellular housekeeper to eliminate damaged organelles 
and recycle macromolecules, and thus protect against cell 
transformation in the early phase of tumorigenesis. Later, as 
tumors grew, existing evidence highlighted an indispensable 
role for autophagy in tumorigenesis.[21] In solid tumors, prior 
to angiogenesis, autophagy defection induces long‑term and 
chronic inflammation in cancer cells undergoing a continuous 
low‑level of necrosis. Alternatively, autophagy‑competent 
cancer cells could survive this nutrient‑limited and low 
oxygen microenvironment by activating autophagic pathways 
with both no death and no proliferation. This ability to cope 
with stress is also useful to cancer cells that disseminate 
and metastasize.[22] Hence, the paradox leads to a similar 
contradictory response of autophagy in tumor following 
anticancer treatments. On one hand, autophagy is activated 
as a protective mechanism to mediate the acquired resistant 
phenotype of some cancer cells during chemotherapy. On 
the other hand, autophagy may also function as a death 
executioner to induce autophagic cell death (a form of 
physiological cell death that is contradictory to apoptosis). 

Accordingly, two therapeutic strategies were currently used 
in the clinical trials: One was to inhibit the cytoprotective 
function of autophagy to improve the killing efficacy of 
chemotherapy drugs or resensitize the chemoresistant tumor 
cells to drugs; the other was to induce autophagic cell death 
in the apoptosis‑defective tumor cells, which showed high 
resistance to apoptosis by activating autophagic pathways.

autophagy‑MedIated cheMoresIstance to 
5‑fluorouracIl In gastroIntestInal cancer

Over the past several years, the selection of chemotherapeutic 
regimens has expanded greatly due to the development of 
molecular targeted therapy.[23] Among varieties of those 
drugs, 5‑FU remains the most popular and has been widely 
used for gastrointestinal cancer for about 40 years.[24] 
However, the resistance to 5‑FU which might result in 
therapy failure has become a common clinical issue in 
the treatment of patients with such disease. Regarding the 
chemoresistance, 5‑FU treatment also induces autophagic 
responses in multiple types of gastrointestinal cancer 
cells [Figure 1].[25‑30] So far, the molecular mechanisms 
of 5‑FU‑induced autophagy remain poorly defined. Many 
studies have examined the synergistic effect of autophagy and 
5‑FU in colorectal cancer, hepatocellular carcinoma (HCC), 
pancreatic adenocarcinoma, esophageal cancer, gallbladder 
carcinoma (GBC), and gastric cancer [Table 1]; some hold 
great promise and are currently being investigated within 
the context of phase I and phase II clinical trials [Table 2].

Colorectal cancer
5‑FU is a cornerstone in chemotherapy of advanced 
colorectal cancer;[39] improved combinations of 5‑FU with 
irinotecan; or oxaliplatin have progressively increased tumor 
response as well as the median survival time of patients with 
unresectable tumor.[40] Previous studies have demonstrated 
that inhibition of autophagy augments anticancer effects 
of 5‑FU in colorectal cancer,[13,31] and autophagy responds 
to 5‑FU through the regulation of Bcl‑2 and Bcl‑xL.[34,33] 
Bcl‑2 inhibits autophagy and negatively regulates the 
autophagy‑promoting Beclin‑1‑VPS34 complex by binding 
to the BH3 domain of Beclin‑1.[41,42] To date, many small 
molecule BH3 mimetics have been designed to inhibit the 
anti‑apoptotic Bcl‑2 proteins and induce apoptosis. However, 
most of them failed to exhibit antitumor effects in the 
preclinical and clinical trials,[43] suggesting the induction of 
autophagic cell death might be better suited at present to the 
strategies focusing on the inhibition of anti‑apoptotic Bcl‑2 
proteins for overcoming 5‑FU resistance.[44]

Recently, the p38MAPK signaling pathways were found 
to play a critical role in controlling the balance between 
apoptosis and autophagy in response to 5‑FU. The genotoxic 
stress‑induced by 5‑FU is mediated by ataxia telangiectasia 
mutated, and ataxia telangiectasia and Rad3 related proteins, 
which also promote the activation of the signaling axis, 
MAPK kinase 6/3‑p38MAPK‑p53 driven apoptosis.[35] 
Another mechanism that may participate in the 5‑FU‑induced 
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autophagy response is p53‑AMPK‑mTOR pathway.[11,45] 
5‑FU chemotherapy causes genotoxic stress and then 
increases p53 expression in colon cancer cells; p53 positively 
regulates autophagy by activation of AMPK, and subsequent 
inhibition of mTOR, a process that requires TSC1/2.[46,47] 

Pharmacologic interference with these interactions might 
provide a novel therapeutic strategy targeting colorectal 
cancer cells with high 5‑FU treatment resistance. In fact, 
the combination of oxaliplatin/bevacizumab with HCQ is 
currently being investigated in clinic trials [Table 2].

Figure 1: Autophagy is considered a key mechanism in the development of resistance to 5‑fluorouracil. 5‑Fluorouracil‑based combination therapies 
are standard treatments for many patients diagnosed with various gastrointestinal tumors. Since autophagy is a mechanism of chemoresistance to 
5‑fluorouracil, several inhibitors of autophagy, or interference of certain genes will promote sensitivity to 5‑fluorouracil in gastrointestinal cancer.

Table 1: Autophagy in response to 5‑FU in different types of gastrointestinal cancer

Cell lines (cancer type) Mediating autophagy methods (target) Regulating mechanisms References
HT‑29 (colorectal cancer) CQ (lysosome) p21Cip1, p27Kip1, and CDK2 [31]
DLD‑1 (colon cancer) CQ (lysosome) p27, p53, CDK2, and cyclin D1 [32]
Colon 26 (colon cancer) CQ (lysosome) Bad and Bax [13]
HCT116, HT‑29 (colon cancer) 3‑MA (PI3K III), CQ (lysosome), 

RNAi (Beclin‑1, Atg5)
Bcl‑2/JNK pathway [33]

HT‑29, colon 26 (colon cancer) 3‑MA (PI3K III) Bcl‑xL, cytochrome c/
caspase‑3/PARP pathway

[34]

HCT116, DLD‑1 (colon cancer) 3‑MA (PI3K III), RNAi (Atg7) Bcl‑xL, p53‑AMPK‑mTOR [11]
HaCaT and HCT116 (colon cancer) SB203580 and RNAi (p38MAPK) MAP2K, MAPK kinase‑3, and 

MAPK kinase‑6
[35]

SMMC‑7721, Hep3B, HepG2 (HCC) 3‑MA (PI3K III), CQ (lysosome), RNAi (Beclin‑1) Unknown [12]
HepG2, SMMC7721 (HCC) Pifithrin‑α and RNAi (P53) ROS [28]
PANC‑1, BxPC‑3 

(pancreatic adenocarcinoma)
CQ (lysosome) and wortmannin (PI3K/PLK1) Unknown [27]

OE21, KYSE450, OE19, OE33 
(esophageal cancer)

RNAi (Beclin‑1, Atg7) Unknown [30]

GBC‑SD, SGC‑996 (gallbladder carcinoma) 3‑MA, CQ, RNAi (Atg5, Atg7) Unknown [26]
SGC7901 (gastric cancer) RNAi (PI3K III) Unknown [36]
SNU‑5 (gastric cancer) 3’UTR luciferase reporter (Beclin‑1) MiR‑30 [37]
SGC‑7901 (gastric cancer) Bafilomycin A1 (vacuolar H+ATPases) Unknown [38]
CQ: Chloroquine; ROS: Reactive oxygen species; HCC: Hepatocellular carcinoma.
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Hepatocellular carcinoma
Over the past decades, the surgical operation has been the 
most effective therapeutic strategy for HCC patients at 
early stages,[48] but most patients reach an advanced stage 
for the first diagnosis of HCC and lose the opportunity of 
surgical resection. In those patients with advanced HCC, 
chemotherapy is mostly ineffective with a low response 
rate.[49] It has been revealed that suppression of autophagy 
enhances oxaliplatin‑induced cell death[50] while combining 
it with bevacizumab markedly inhibits the growth of HCC.[51] 
Moreover, the combination of CQ with sorafenib (a potent 
multikinase inhibitor that has been recognized as the standard 
systemic treatment for patients with advanced HCC‑based 
on the results of Study of Heart and Renal Protection trial)[52] 
can generate more ER stress‑induced cell death in HCC both 
in vivo and in vitro.[53]

Several genes and signal pathways contribute to 
autophagy‑mediated chemoresistance in HCC. Recent 
research revealed that p53 contributes to cell survival and 
chemoresistance in HCC under nutrient‑deprived conditions 
by modulating autophagy activation.[28] Blocking p53 leads 
to impaired activation of autophagy, increased nutrient 
starvation, and 5‑FU‑induced cell death in nutrient‑deprived 
HCC accompanied by a remarkable increase in the reactive 
oxygen species (ROS) generation and mitochondrial damage.

Activation of Mek/Erk signaling could activate autophagy 
in tumor cells.[54] Recently, linifanib has been reported 
to inhibit PDGFR‑β and its downstream Akt/mTOR and 
Mek/Erk signal pathways and activate autophagy in HCC 
cells, which contributes to their survival both in vitro and 
in vivo.[55] Several other mechanisms triggering autophagy 
have also been investigated. For instance, Zhou et al. 
reported that autophagy inhibits chemotherapy‑induced 
apoptosis through downregulation of Bad and Bim in HCC 
cells.[56] JNK‑Bcl‑2/Bcl‑xL‑Bax/Bak pathway and SMAD2 
signaling have also been determined as contributors to 
autophagy of HCC.[57,58]

Pancreatic adenocarcinoma
Autophagy plays a cytoprotective role in response to 
chemotherapy in pancreatic cancer cells lines, PANC‑1, 
and BxPC‑3.[27] In a recent study, genistein potentiates 
the antitumor effect of 5‑FU by inducing apoptosis and 
autophagy in MIA PaCa‑2 human pancreatic cancer cells 
and their derived xenografts.[59] Furthermore, in phase I/II 
clinical trial, preoperative inhibition of autophagy with HCQ 
and gemcitabine in patients with pancreatic adenocarcinoma 
is safe, well‑tolerated, and effective.[60] However, a 
contradictive study showed that HCQ monotherapy achieved 
inconsistent autophagy inhibition and demonstrated 
negligible therapeutic efficacy,[61] which might be because 
the use of HCQ with concurrent chemotherapy may obviate 
the need for complete autophagy inhibition in tumors, but 
the exact mechanisms explaining the inconsistency in those 
clinic trials are yet to be determined.

Inhibition of autophagy with CQ promotes apoptotic 
cell death in response to inhibition of the PI3K‑mTOR 
pathway in pancreatic adenocarcinoma both in vitro and 
in vivo.[62] Activation of PI3K results in sequential AKT and 
mTOR activation, ultimately suppressing autophagy.[63,64] 
Inhibition of autophagy results in enhanced apoptosis 
following treatment with PI3K inhibitors, in particular, 
dual‑targeted PI3K/mTOR inhibitors. In this sense, Type I 
PI3K inhibitors (lithium and carbamazepine), type III 
PI3K inhibitors (3‑MA, LY294002 and wortmannin), 
AKT inhibitors (perifosine and API‑2), and mTOR 
inhibitors (rapamycin, RAD001 and CCI‑779) currently 
undergoing clinical evaluation are all promising anticancer 
agents to improve treatment outcomes in pancreatic 
adenocarcinoma.[65‑67]

Esophageal cancer
Malignant cell clones resistance to chemotherapy is a 
major cause of treatment failure in esophageal squamous 
carcinoma cells. Several studies have revealed that induction 
of autophagy plays a significant role in the resistance and 

Table 2: Examples of clinical trials involving chloroquine or hydroxychloroquine for the treatment of gastrointestinal 
cancer

Condition HCQ combined therapy Phase Clinical trial ID
Liver cancer TACE I/II NCT02013778
Advanced solid tumors Vorinostat I NCT01023737
Colorectal cancer Vorinostat II NCT02316340
Advanced solid tumors, melanoma, 

prostate or kidney cancer
MK2206 (Akt inhibitor) I NCT01480154

Pancreatic cancer Proton or Photon beam radiation therapy and capecitabine II NCT01494155
Pancreatic cancer Gemcitabine/abraxane I/II NCT01506973
Advanced or metastatic cancer Sirolimus/vorinostat I NCT01266057
Pancreatic cancer Gemcitabine hydrochloride and paclitaxel albumin‑stabilized 

nanoparticle formulation
II NCT01978184

Colorectal cancer Fluorouracil, leucovorin calcium, oxaliplatin, and bevacizumab I/II NCT01206530
Colorectal cancer Bevacizumab and combination chemotherapy II NCT01006369
Metastatic solid tumors Temsirolimus I NCT00909831
Refractory or relapsed solid tumors Sorafenib I NCT01634893
The content of Table 2 was from http://www.cancer.gov/clinicaltrials. HCQ: Hydroxychloroquine; TACE: Transarterial chemoembolization.
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recovery of chemotherapeutic drug‑treated esophageal cancer 
cells.[30,68‑71] In most studies, the inhibition of autophagy leads 
to increased esophageal cancer cell apoptosis, indicating that 
autophagy might be a prosurvival mechanism rather than a 
cell death mechanism. Efforts have been made to investigate 
the exact self‑protective mechanism of autophagy, and it 
was found to be associated with PI3K/Akt/mTOR[72,73] and 
Stat3/Bcl‑2 pathway.[74] Recently, a typical protein kinase 
CI (PKCI) has been reported to regulate β‑catenin in an 
autophagy‑dependent manner in esophageal squamous cell 
carcinoma cells.[75] Moreover, PKCI may regulate autophagy 
via intracellular ROS, a known autophagy inducer that 
promotes autophagy by inactivating the mTOR pathway[76] 
or inhibiting ATG4,[77] indicating that PKCI could be used 
as an autophagy inducer in killing esophageal cancer cells.

Gallbladder carcinoma
So far, there are no adjuvant chemotherapeutic combinations 
widely accepted for the primary GBC due to their toxicity, 
drug resistance, and limited efficacy resulting in a low 
survival rate, and almost half of patients already have 
metastatic disease at the time of surgery.[78,79] Currently, 5‑FU 
has been used in phase II trial of combination chemotherapy 
for advanced cancers of the gallbladder; the toxicity was 
tolerable but substantial.[80]

We recently observed that combination treatment of 
CQ and 5‑FU was more efficient in killing GBC cells, 
and pretreatment with CQ increased the 5‑FU‑induced 
apoptosis and the G0/G1 arrest in vitro.[81] It is possible 
that cell cycle influences autophagic degradation, and 
inhibition of autophagy may cause cells to be arrested to the 
G0/G1‑phase.[26] Given that both apoptosis and autophagy are 
crucial mechanisms regulating cell survival and homeostasis, 
the relationship between them is quite complicated.[82] In 
some cases, they had no connection[83,84] while, in some 
instances, it was demonstrated that autophagy might promote 
or even restrain apoptosis.[85,86] The exact mechanism for 
the inhibition of autophagy through an increase in the 
cytotoxicity of 5‑FU in GBC cells needs to be verified.

Gastric cancer
The cytoprotective role of autophagy in response to 
chemotherapy has been confirmed in the 5‑FU treatment of 
gastric cancer cells.[38,87] In agreement with this, Zhu et al. 
showed that PI3K inhibitor promotes the antitumor activity 
of 5‑FU through autophagy.[36] Interestingly, a study that was 
conducted recently showed that 5‑FU may suppress miR‑30 
to upregulate Beclin-1 and thus induce autophagic cell 
death and cell proliferation arrest in GC cells[37] indicating 
that 5‑FU may have its inhibitory effect through induced 
autophagy and specifically autophagic cell death.

autophagIc cell death contrIButes to 
5‑fluorouracIl‑Based cheMotherapy

Autophagy is generally considered to be a survival 
mechanism. However, when the severity or the duration 
of the stress is too long, or in apoptotic‑deficient cells, 

autophagy may participate in cell death. Therefore, it is 
called a nonapoptotic form of programmed cell death (PCD) 
as autophagic cell death or type II PCD (type I being 
apoptosis itself ).

As mentioned above, autophagy is believed to have both 
pro‑ and anti‑oncogenic effects on tumor cells.[88] Besides 
the protective mechanism to mediate the acquired resistance 
phenotype of certain cancer cells during chemotherapy, 
autophagy is also considered to play a pro‑death role 
associated with autophagosome, potentially functioning 
as a tumor suppressor mechanism similar to apoptosis.[6,89] 
To date, autophagy inducers are widely used to kill cancer 
cells;[90‑93] it has been reported that some drugs were used for 
cancer treatment due to their effect on cell autophagy. For 
example, aloe‑emodin‑induced rat C6 glioma autophagic 
death;[94] Resveratrol‑induced ovarian cancer cell death 
through autophagy;[95] 6‑shogaol‑induced A549 autophagy 
by suppressing the AKT/mTOR pathway.[96]

In gastrointestinal cancer types, many studies demonstrated 
that autophagy may mediate cell death in certain cancer 
cells where apoptosis is defective or difficult to induce. For 
instance, triptolide, the precursor of tripchlorolide, inhibits 
the growth of hamster cholangiocarcinoma,[97] and human 
tumors transplanted into nude mice.[98] It also suppresses 
the growth of pancreatic cancer[99] and induces cell death 
through apoptosis and autophagy.[100] Furthermore, at the 
molecular level, autophagic cell death could be induced in 
PUMA- or Bax-deficient human colon cancer cells after 
treatment with 5‑FU, resulting in significantly reduced cell 
proliferation.[101] Thus, inducing autophagy when apoptosis 
is inhibited or directly triggering autophagic signaling 
such as PI3K‑Akt‑mTOR pathway,[102] and inhibitors are 
possible strategies that can be applied to cancer therapy. 
These strategies complicate the use of autophagy inhibitor 
or inducer in cancer chemotherapy and the specific role that 
autophagy plays at different stages in cancer progression and 
determination of its cell type and genetic context‑dependency 
needs to be clarified.

conclusIons and perspectIves

Although research on autophagy in chemotherapy has 
expanded dramatically, it is still controversial whether 
autophagy activation leads to cell survival or cell death in 
cancer chemotherapy since autophagy plays a dual role in 
tumor promotion and tumor suppression. Understanding 
the novel function of autophagy may allow us to develop 
a promising therapeutic strategy to enhance the effects 
of chemotherapy and improve clinical outcomes in the 
treatment of cancer patients.

Prior to the clinical applications, a mechanistic understanding 
of the biology of autophagy is urgently needed. There are 
several questions to be addressed in future studies. First, 
although 5‑FU induces autophagy in many gastrointestinal 
cancer cells, it is still difficult to explain whether the 
autophagy accompanies or induces cell death, or only 
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functions as a protective mechanism activated in response 
to stress‑induced by the treatment of 5‑FU or is a cell death 
pathway activated when apoptosis is disabled, or whether all 
the effects arise in different contexts. In fact, it is very likely 
that the outcome of autophagy activation is highly dependent 
on the tumor types.[103,104] Second, more new and reliable 
methods for measuring autophagy in 5‑FU treated samples 
are needed to be developed to maximize the potential of 
autophagy in the stringent clinical study. Third, among 
the autophagy inhibitors, only CQ and HCQ are approved 
by the FDA, but the toxicities and minimal single‑agent 
anticancer efficacy of CQ or HCQ have restricted their 
clinical application. New and exciting autophagy inhibitors 
are worthy of further investigation in the future. Overall, 
our efforts in these areas would increase the understanding 
of the functional relevance of autophagy within the tumor 
microenvironment and ongoing dialogue between emerging 
laboratory and clinical research about targeting autophagy 
and provide a promising therapeutic strategy to circumvent 
resistance and enhance the effects of anticancer therapies 
for cancer patients.
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