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Abstract: In this study, we determined the effects of design and processing parameters of precision
injection molding (PIM) to minimize warpage phenomena of micro-sized parts using various plastics
(polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polypropylene (PP), polyamide
(PA), and ABS+ polycarbonate (PC)). We applied a numerical simulation (Moldflow) to determine
the runner’s balance in multi-cavities of the micro-sized part and simulate the warpage phenomenon
of micro-parts with PIM. We used simulation data to fabricate a steel mold by computer numerical
control (CNC) machining. In this, we study manufactured a micro-sized part and measured its
warpage value using various PIM process parameters (melt temperature, mold temperature, injection
pressure, and filling time). In order to obtain optimal results (i.e., minimum warpage), we employed
the Taguchi method and grey theory to discern the influence of each process parameter on PIM.
Finally, we determined that the most significant PIM process parameter influencing the warpage
phenomenon of micro-sized parts was the mold temperature, regardless of whether in terms of the
experimental results, numerical simulations, or grey theory. The PA material had the most suitable
properties for application for micro-sized parts, regardless of whether in terms of experimental results,
numerical simulations, or grey theory for PIM. This study also illustrates that micro-sized parts can
be fabricated by PIM without the use of micro-injection molding, and we determined that the mold
temperature required for molding does not need to be higher than the glass-transition temperature of
the material.

Keywords: warpage; precision injection molding; optimal design and processing; experiment;
numerical simulation; grey theory

1. Introduction

Precision injection molding (IM; PIM) is an important technology that can increase
productivity and reduce costs in fields such as electronics, photonics, and medical plastics
by allowing molded plastics to replace more expensive metal and ceramic components.
Higher melt and mold temperatures, as well as higher injection speeds (shear), increase
melt flow, which improves precision [1]. The size of micro-flow marks is related to the melt
temperature, mold temperature, no-flow temperature, the thermal diffusivity of the resin,
and time pitch formation of flow mark ridges and valleys in IM [2]. The surface waviness of
lenses can be reduced with higher values of melt temperature, injection pressure, packing
pressure, and mold temperature during IM. The most significant factor was determined
to be the melt temperature, followed by the packing pressure, injection pressure, and

Polymers 2022, 14, 1845. https://doi.org/10.3390/polym14091845 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14091845
https://doi.org/10.3390/polym14091845
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-9441-6784
https://orcid.org/0000-0002-5176-4102
https://orcid.org/0000-0002-0733-608X
https://doi.org/10.3390/polym14091845
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14091845?type=check_update&version=3


Polymers 2022, 14, 1845 2 of 32

mold temperature [3]. The maximum residual stress of micro-lens arrays decreased as
the melt temperature, mold temperature, packing pressure, and cooling time increased.
The maximum residual stress increased as the flow rate increased [4]. Variations in the
refractive index of injection-molded polymethyl methacrylate (PMMA) optical lenses were
more uniform when higher packing pressures were used but less so for lower packing
pressures [5]. Multiple objective functions reflecting the product quality, manufacturing
costs, and molding efficiency were utilized to construct an optimization model of IM
parameters [6]. This requires high optical quality with high form accuracy and lower
residual stresses, which are challenges for both optical tool insert machining and PIM
processes [7]. IM process parameters have significant effects on the optical performance
and surface waviness of precision plastic optical lenses. An orthogonal experiment was
carried out with the Taguchi method, and the results were examined by an analysis of
variance (ANOVA) [8]. The proposed control method resulted in a decrease in product
weight variations from 0.16% to 0.02% in the case of varying the mold temperature, and
the number of cycles to return stability decreased from 11 to 5 with respect to variations
in the melt temperature [9]. An overview of various studies related to research on the
topic of monitoring and control systems for IM explained why the application of artificial
intelligence (AI) methods is beneficial [10]. Micro-sized polymer parts can usually be
manufactured either by conventional IM or by micro-IM (µIM). Experimental validation
of a functional analysis was carried out by molding the same micro-sized medical part
of a thermoplastic elastomer material using the two processes by means of multi-cavity
molds [11]. IM is a molding technology that melts material with the aid of a screw and an
external heating device and then injects it into a mold to form the corresponding product
as the mold cools [12]. Dimensional control and online defect detection are extremely
important for quality control, particularly for high-resolution PIM [13]. A particle swarm
optimization algorithm contributed to the tuning of hyperparameters of a support vector
classifier (SVC) model in order to minimize the error between the SVC and experimental
results in IM [14]. One report reviewed recent studies on methods for detecting relevant
physical variables, optimizing process parameters, and determining control strategies of
machine variables in the molding process [15]. The methodology presented the potential
of reducing or eliminating the defect rate caused by material variations while allowing di-
mension predictions for injection-molded parts [16]. PIM of high-performance components
requires that primary error sources that affect the molded component be identified and
isolated so that these errors can be reduced if needed [17]. An appropriate choice of process
parameters is essential in ensuring the precision and uniformity of molded parts [18]. To
minimize part warpage, a segmented dynamic mold temperature control was developed
with the aim of homogenizing the specific volume of a plate-shaped geometry [19].

µIM is applied to manufacture micro-sized parts and is among the most common
and versatile methods mass production of complex plastic parts. The replication prop-
erties of products are discussed in terms of different µIM process parameters, which are
mainly influenced by the mold temperature [20–25], holding pressure [21,24–26], injection
velocity [23,24,27], and melt temperature [27].

There has been much research investigating warpage in IM by experimentation, numer-
ical simulations, and soft computing. Polycarbonate (PC)/acrylonitrile–butadiene–styrene
(ABS) composites exhibited 14.02% reduced warpage after optimization of processing
parameters by numerical simulation using the Taguchi method [28]. The multi-response
optimization of IM with polypropylene (PP) emphasized multiple response considerations
using warpage [29]. A part’s warpage can be analyzed using various µIM process parame-
ters (melt temperature, packing pressure, packing time, and cooling time). It was found
that warpage properties are mainly influenced by the cooling time [30–32], melt tempera-
ture [31–37], and packing pressure [31,33,34,36,38]. The packing time, cooling time, and
melt temperature were the most significant factors influencing warpage reductions based
on design of experiment (DOE), response surface methodology (RSM), firefly algorithm
(FA), and annealing treatment [32].
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The Michelson interferometric system is an effective approach to measure micro-sized
parts manufactured by PIM. The application and theory of Michelson interferometry are
well described in the literature [39–47].

Grey theory is an algorithm used to find optimal solutions in various situations.
Deng [48] developed the theory for systems that lack information, such as structured
messages, operating mechanisms, and behavior documents, which are referred to as grey
systems. A grey relational analysis using expert systematic manipulations and subsequent
data can resolve the effects of numerous variables [49]. An orthogonal array with a grey
relational analysis and fuzzy logic was employed to determine a part’s warpage with vari-
ous injection mold parameters (mold temperature, melt temperature, filling pressure, and
filling time) [50,51]. The warpage property was found to mainly be significantly influenced
by the mold temperature [52,53], melt temperature [54], and packing pressure [54,55].

In this study, we fabricated micro-sized parts using various plastic materials (poly-
oxymethylene (POM), ABS, PP, polyamide (PA), and ABS+ PC) by PIM. The PIM process
parameters we examined were the melt temperature, mold temperature, injection pressure,
and filling time. We simultaneously compared the warpage phenomenon of PIM-produced
micro-sized parts with experimentation, numerical simulations, and grey theory. In this
study, we also discuss the mold window of micro-sized parts for various materials in PIM.
The warpage of molded micro-sized parts was measured on a charge-coupled device (CCD)
and laser equipment. The aim of this study was to apply the Taguchi method to determine
the minimum warpage of PIM-produced micro-sized parts, and we mainly attempted to
use PIM instead of µIM to produce precision-molded parts.

2. Materials and Methods
2.1. Experimental
2.1.1. Precision Injection Molding (PIM)

Figure 1 indicates the dimensions of the micro-sized part (a micro-sized electric fan
as the micro-sized case) and its mold. The thickness of the blade of the micro-sized part
(micro-sized electric fan) was 180 µm. We employed PIM to fabricate the micro-sized part
and attempted to use PIM without the use of µIM techniques.

Figure 1. Cont.
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Figure 1. The dimensions of the micro-sized part and mold for PIM (unit: mm). (a) Micro-sized part
(micro-electric fan) and (b) mold (side view).

A three-plate mold with two cavities was utilized during PIM. The mold cavities
were fabricated by a computer numerical control (CNC) process. The mold material we
used was NAK-80, and its hardness was 350 HMV. The inlet gate of the three-plate mold
was a sidewall pin gate. The mold cavities of moving and stationary parts are shown in
Figure 2. A PIM machine (220S, Arburg, Lossburg, Germany) with a screw diameter of
18 mm and a clamping force of 25 tons was used for all experiments. A Regloplas 300S
(Switzerland) mold temperature control machine with a precision of ±1 ◦C was used.
We used POM (Delrin 9255, DuPont Engineering Polymers, Midland, MI, USA), ABS
(SP-6, Chi Mei, Taiwan), PP (Polypro BC1, Mitsubishi Chemicals, Japan), PA (X7323 Trans,
Creanova-Trogqmid, Memphis, TN, USA), and ABS + PC (Novodur KU 2-5300, Bayer USA,
Boston, MA, USA) materials to fabricate the micro-sized parts via PIM. In this study, we
investigated warpage phenomena of PIM-fabricated micro-sized parts in terms of optimal
processing parameters and optimal materials. The PIM process parameters were the melt
temperature (A), mold temperature (B), injection pressure (C), and filling time (D). Table 1
lists values of the PIM process parameters for the various plastic materials. To identify the
relative significance of these four process parameters, various experiments were performed
with 34 runs. A statistics-based experimental design method, the Taguchi method [56],
was utilized to reduce the number of experimental runs (Table 2). In this study, we also
investigated the mold window of micro-sized parts using various materials in PIM to find
a suitable material.



Polymers 2022, 14, 1845 5 of 32

Figure 2. Cavity of the mold insert. (a) Cavity for moving part. (b) Cavity for stationary part.

Table 1. Processing parameters of PIM using POM/ABS/PP/PA/ABS + PC materials.

Level Parameter Level 1 Level 2 Level 3

A. Melt temp. (◦C) 225/230/270/295/240 230/235/275/300/245 235/240/280/305/250
B. Mold temp. (◦C) 80/80/50/70/55 85/85/55/75/60 90/90/60/80/65

C. Injection press. (MPa) 40/40/15/45/30 45/45/20/50/35 50/50/25/55/40
D. Filling time (s) 1/0.5/0.1/0.1/1 1.5/1/0.2/0.2/1.5 2/1.5/0.3/0.3/2

Table 2. The L9 orthogonal array used in the main experiment.

Run Melt Temp. (A) Mold Temp. (B) Injection Press. (C) Filling Time (D)

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

2.1.2. Measurement (Warpage)

The allowance error of a fabricated micro-sized part is very important. Analysis
of warpage phenomena of micro-sized parts was the primary task of this study. We
used optimal processing parameters to determine the relationship between PIM process
parameters and warpage of the micro-sized parts. Laser equipment (red-light He-Ne laser,
25 mW) and a charge-coupled device (CCD; A102K, Basler, Sony, Tokyo, Japan) were
employed to measure the warpage of the micro-sized parts (Figure 3). A three-dimensional
(3D) laser scanner (LSH-II-150, Hawk, Nextc, Corvallis, OR, USA) was applied to determine
the extent of warpage of the micro-sized parts.

In the measurement procedure, due to the small geometric size of the actual micro-
sized parts, the warpage of the could not be measured with a conventional method.
Therefore, the measurement method of optical interference fringe projection was used
to determine whether the actual micro-sized parts were warped. We used the Michelson
interference fringe. The laser beam was divided into two lights by a beam splitter and a
mirror to produce bright and dark interference fringes, as shown in Figure 2, due to the
overlap of the two reflected light beams. L1 is the distance from mirror A to the beam
splitter, L2 is the distance between mirror B and the beam splitter, M1 is reflected light from
mirror A, M2 is reflected light from mirror B, and p is the interference fringe pitch. When
the laser light hits the beam splitter and is separated in two, it hits reflector A to generate
reflected light M1 and hits reflector B to generate reflected light M2, which are projected
onto a screen to generate interference fringes. Reflector B was fine-tuned to reflect lights
M1 and M2 so that there was an angle between them. With a smaller distance, the stripe
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pitch, p, is larger. When the distance, L1, from the mirror to the beam splitter is not equal
to L2, the contrasting effect worsens. When L1 is equal to L2, the contrast is optimal. When
the interference fringes hit the micro-sized part, the stripes projected onto the micro-sized
part bend because of fluctuations in the micro-sized part’s surface. This phenomenon was
used to determine whether the micro-sized part was warped. During the imaging process,
the color of the finished micro-sized part (a millimeter-size fan) affected the imaging, as a
deeper color of the micro-sized part (micro-electric fan) produced a better imaging effect.
Because the micro-sized part made of PA was transparent after PIM, it was necessary to
use a singular pen to darken the imaged part to facilitate imaging. We demonstrated that
the Michelson interferometer design for position measurements was capable of a fringe
interpolation accuracy of 1 part in 36,000.

Figure 3. Cont.
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Figure 3. Schematic diagram of Michelson interference and measurement equipment assembly
platform. (a) Arrangement of measurement equipment. (b) Micro-sized part and CCD system.
(c) Real measurement system and micro-sized part. (d) Laser light on the surface of the micro-
sized part.

Figure 4 shows the theoretical texture of the micro-sized part’s surface. One of the
fan blades was fixed vertically on a pole using quick-drying glue. After CCD imaging,
an enlarged and inverted image was formed. The circled part was caused by interference
fringes of the projection site. As shown in the Figure 4, on the blade part, because the blade
radian was formed by rotation and extension in the x direction as the axis, the interference
fringe was parallel to the x direction and was straighter than the y direction. In theory, this
fringe projection of the part should be a straight line at this location.

Figure 4. Cont.
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Figure 4. Textures on the surface of micro-sized part by laser scanning. (a) Laser light scans the surface
of the micro-sized part and transfers the image to the software system. (b) The theoretical texture
of the surface of the micro-sized part. (c) The theoretical texture of the surface of the micro-sized
part (enlarged).

2.2. Numerical Simulation

Continuity equation:
Dρ

Dt
=

∂ρ

∂t
+∇·

(
ρ
→
u
)
= 0 (1)

Momentum equation:

ρ
D
→
u

Dt
= −∇p + η∇2→u + ρ

→
g (2)

Energy equation:

ρcp
DT
Dt

= k
(
∇2T

)
+ η

.
γ

2 (3)

Then
.
γ = ∇→u ·∇→u

where t is time, ρ is density,
→
u is the velocity vector, P is pressure,

→
g is the gravity vector,

η is viscosity, cp is specific heat, k is thermal conductivity, T is temperature, and
.
γ is the

shear rate.
The viscosity model of a fluid is described by the following equations:

η
( .
γ, T, P

)
=

η0(T, P)

1 +
(

η0
.
γ

τ∗

)1−m , (4)

η0(T, P) = D1 exp
[
− A1(T − T∗)

A2 + (T − T∗)

]
, T < T∗, (5)

η0(T, P) = ∞, T > T∗ (6)

T ∗ (P) = D2 + D3P (7)
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and
A2 = Ã2 + D3P (8)

where T∗ denotes the glass-transition temperature of the polymer and m represents the
flow index. A1, A2, D1, D2, and D3 are coefficients.

Boundary and initial conditions are described by the following equations:

→
u = 0; T = Tw;

∂P
∂n

= 0 at z = ±h (at the mold wall), (9)

∂
→
u

∂z
=

∂T
∂z

= 0 at z = 0 (at the centerline), (10)

P = 0 (at the flow front), and (11)
→
u = u(x, y, z, t) (at the inlet); (12)

where Tw is the mold temperature, n denotes normal direction, and u represents the
inlet velocity.

The energy balance on a solid–liquid interface is described by:

Ts = Tl = Tm at z = s(x, y, t) f or t > 0 and (13)

ks

(
∂Ts

∂n

)∣∣∣z=s(x,y,t)− kl

(
∂Tl
∂n

)∣∣∣z=s(x,y,t) = ρl Lh
∂s
∂t

(14)

where Ts is the solid temperature, Tl is the liquid temperature, Tm is the freezing tempera-
ture, s is the z-coordinate for the solid–liquid interface, Lh is the latent heat, ks is the solid
thermal conductivity, and kl is the liquid thermal conductivity.

The model contains (a) five independent variables of three velocities (u, v, and w),
one pressure variable (P), and one temperature (T); and (b) one dependent variable, i.e.,
viscosity (η). The governing equations were solved using the control volume finite element
method. For details of the numerical simulation, see Shen et al. [57]. We first employed
computer-aided design (CAD) software (I-DEAS, vers. 12.0) to plot the full model (sprue,
runner, gate, and micro-sized part) for PIM (Figure 5a). Computer-aided engineering (CAE)
software (Moldflow, vers. 2015) was utilized to examine the PIM-fabricated micro-sized
part (micro-electric fan) (Figure 5b). The 3D mesh used a four-node tetrahedral element for
the numerical simulation. The simulation model had 54,646 meshes and 15,512 nodes on
the micro-part. The calculation time was about 20 min for each case. A personal computer
with a Pentium 6 3.5 GB central processing unit (CPU), 8 GB of memory, and a 1 TB hard
disk was used.

2.3. Grey Theory

Grey theory [48] is mainly used to analyze relationships, establish models, and make
decisions when a system model is not clear, the information is incomplete or unknown, or
the operation status is unclear. In this study, we used a grey relational analysis based on grey
theory to calculate the optimal PIM process parameters and applied grey decision analysis
in grey theory to calculate the optimal material for the PIM-fabricated micro-sized part.
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Figure 5. Meshing model by CAD (I-DEAS) and CAE (Moldflow). (a) Micro-sized part, sprue, runner,
and gate system by CAD software drafting (I-DEAS). (b) Meshes of micro-sized part, sprue, runner,
and gate system on Moldflow software.

2.3.1. Grey Relational Analysis of Optimal Processing Parameters

(1) Grey relational space.

Comparison sequence:

xi(k) = (xi(1), . . . , xi(k)) X (15)

and
Reference sequence:

xi(0)(k) = (xi(0)(1), . . . , xi(0)(k)) X (16)
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where i = 0, . . . , m; k = 1, . . . , n N.

(2) The effect of the measurement method.

(a) Maximum: measurement of the upper-limit effect

x∗i (k) =
x(0)i (k)

max x(0)i (k)
(17)

(b) Minimum: measurement of the lower-limit effect

x∗i (k) =
min x(0)i (k)

x(0)i (k)
(18)

(c) Median: measurement of moderate effects-measurement of central effects

x∗i (k) =
min

{
x(0)i (k), x0(k)

}
max

{
x(0)i (k), x0(k)

} (19)

(3) Grey correlation measurement.

γ(x0, xi) =
1
n

n

∑
k=1

γ(x0(k), xi(k)) (20)

where γ(x0(k), xi(k)) and γ(x0, xi) are the grey correlation coefficient and degree, respectively.
An m × n matrix, X, was generated based on group sequences, x∗i (k)~x∗m(m), by grey

correlation.

X =


x∗1(1) x∗1(2) · · · x∗1(n)
x∗2(1) x∗2(2) · · · x∗2(n)

...
...

. . .
...

x∗m(1) x∗m(2) · · · x∗m(n)

 (21)

and

∆ =


∆01(1) ∆01(2) · · · ∆01(n)
∆02(1) ∆02(2) · · · ∆02(n)

...
...

. . .
...

∆0m(1) ∆0m(2) · · · ∆0m(n)

 (22)

∆0i(k) = |xi(k)− x0(k)| (23)

i = 1, . . . ,m, with the smallest being ∆min and the largest ∆max.
Definition of the grey correlation coefficient γi:

(a) Locality when only x0(k) is the reference sequence and the other is the comparison
sequence.

γ(x0(k), xi(k)) =
∆min + ζ∆max

∆0i + ζ∆max
(24)

where x0(k) and xi(k) are reference sequence and a specific comparison sequence,
respectively. ξ is the identification coefficient, and its value is between 0 and 1.

(b) Integrity: when any x0(k) is a reference sequence.

γ
(
xi(k), xj(k)

)
=

∆min + ζ∆max

∆ij(k) + ζ∆max
(25)

∆ij(k) = ‖ xi(k)− xj(k) ‖ (26)



Polymers 2022, 14, 1845 12 of 32

is the absolute value.

The grey correlation coefficient, ξ, is used to compare the background value with the
measured micro-sized part and is generally 0.5.

(4) Grey correlation.

The quantitative measurement formula is called the grey correlation. The coefficient
average value is taken to be:

γ
(
xi, xj

)
=

1
n

n

∑
k=1

γ
(
xi(k), xj(k)

)
(27)

In an actual system, the grey relation of the extended formula is:

γ
(
xi, xj

)
=

n

∑
k=1

βkγ
(

xi(k), xj(k)
)

(28)

where βk represents the normalized weight of factor k. When
n
∑

k=1
βk = 1, the two equations

are equal.
Finally, we determined the optimal PIM processing parameters.

2.3.2. Grey Decision Analysis of Suitable Material

The grey decision was as follows: event a occurs, and countermeasure b is used to
deal with it. This is the “situation”. Among multiple decisions dealing with the same event,
the one with the best effect is chosen to deal with the event.

(1) Situation Sij =
(
ai = bj

)
where ai is an event, and bi is a countermeasure.

(2) The target is an index for evaluating the situation effect (countermeasure effect), and
an evaluation scale by an analytical hierarchy (AHP) table is shown in Table 3.

(3) Effect measurement for evaluating targets can be divided into three types.

Table 3. AHP evaluation scale meaning and explanation.

Assessment Scale Definition Explanation

1 Equally important
The contribution of the two comparison

schemes is of equal importance
(equal strength)

3 Slightly important Experience and judgment tend to prefer a
certain plan (slightly stronger)

5 Quite important Experience and judgment strongly favor
a certain plan (very strong)

7 Extremely important Very strong tendency to favor a certain
plan (very strong)

9 Absolutely important There is enough evidence to definitely
favor a certain plan (very strong)

2, 4, 6, 8 Median of adjacent scales When a compromise value is needed

(a) Measurement of the benefit target (upper-limit effect measurement)

rij =
uij

max
{

uij
} (29)

where rij is the situation, and uij is the actual effect.
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(b) Measurement of the cost target (lower-limit effect measurement)

rij =
min

{
uij
}

uij
(30)

(c) Measurement of a specific target (specific-center effect measurement)

rij =
min

{
uij, u0

}
max

{
uij, u0

} (31)

where u0 is the actual effect.

(4) For situation rij, under the corresponding M, M
(

up
ij

)
= rp

ij, if there is one target

(p = 1, 2, . . . , l), where r1
ij, r2

ij, . . . , rl
ij, rp

ij is called the comprehensive effect measurement,

it is recorded as r∑
ij .

r∑
ij =

1
l

l

∑
p=1

rp
ij (32)

Considering m countermeasures, b1, b2, . . . , bm are used to cope with event ai, and
there must be a corresponding comprehensive effect measurement vector, r∑

i :

r∑
i =

[
r∑

i1, r∑
i2, ....., r∑

im

]
(33)

Considering i ∈ I = {1, 2, . . . , n}, there are n events, i ∈ I = {1, 2, . . . , n}.
r∑ is the comprehensive effect measurement matrix.

r∑ =


r∑

11 r∑
12 · · · r∑

1m
r∑

21 r∑
22 · · · r∑

2m
...

...
. . .

...
r∑

n1 r∑
n2 · · · r∑

nm

 (34)

(5) Let r∑
i =

[
r∑

i1, r∑
i2, . . . , r∑

im

]
be the comprehensive effect measurement vector of event

ai. If there are conditions, r∑
ij∗, that meet r∑

ij∗ = max
j

r∑
ij , it is called a satisfactory

situation Sij∗
(
ai·bj∗

)
. n is also called a satisfactory strategy, bj∗ , to deal with event ai.

A satisfactory r∑
i is the optimal situation.

Using an L9 orthogonal table of the experiment to perform the grey correlation cal-
culation and analysis, the grey correlation was degree discharged as a selection of the
measurement sample, and it was compared to the experimental results.

The steps of grey decision analysis used in this study were as follows:

1. Values of five materials in the evaluation criteria were sampled.
2. Events, countermeasures, situations, goals, and samples were identified.

Event: The material of the micro-sized part for PIM was selected as an event.
Countermeasure: Schemes A, B, C, D, and E represent the POM, ABS, PP, PA, and
ABS + PC materials, respectively.
Therefore, plan A (b1), B (b2), . . . , E (b5).
Situation:
S11 = (a1, b1), material selection (scheme A)
S12 = (a1, b2), material selection (scheme B)
S13 = (a1, b3), material selection (scheme C)
S14 = (a1, b4), material selection (scheme D)
S15 = (a1, b5), material selection (scheme E)
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3. Make effect measurements of effect samples.
4. Decide. Finally, we determined which material was the best mold material.

3. Results and Discussion

In order to obtain the best results for the process parameters and material selection
for the micro-sized part with PIM (judged by the minimum warpage), the micro-sized
part (micro-electric fan) had to be assembled on the central axis of the heat dissipation
equipment, and the qualified warpage should be <0.5 mm.

3.1. Numerical Simulation (Also Compared to the Experiment on the Short Shot Situation)

Figure 6 shows a short shot of the filling stage of PIM between the numerical simulation
and experimental results for the micro-sized part (using POM/ABS/PP/PA/ABS + PC
materials). Figure 6a indicates the simulation and experimental results of the PIM-fabricated
micro-sized part using POM. The simulation and experimental results of the micro-sized
part were similar in appearance, but the experimental results showed an asymmetric filling
phenomenon at a 30% filling time. It was found that some blades of the experimental
micro-sized part generated inferior results in the numerical simulation at a 60% filling time.
The numerical simulation and experimental results of the micro-sized part were found to
have similar appearances at a 90% filling time. The numerical simulation and experimental
results of the micro-sized part were similar in appearance at a 100% filling time (Figure 6a).
The difference between the experiment and numerical simulation is shown at a 60% filling
time. Regardless of whether the filling stage was leading or lagging, the filling of the
micro-sized blade could be determined from the situation of filling the milling blade. For
the part’s blade, the numerical simulation was similar to the experimental results, but in
the blade-filling situation, it numerical simulation indicated that the upper edge of the
blade-filling flow was ahead of the lower edge, and the experimental blade-filling situation
consisted of the blade-filling flow. The results of the numerical simulation were opposite to
the experimental results. Figure 6b depicts a short shot of the filling stage of the micro-sized
part with µIM using ABS between the numerical simulation and experimental results.
The numerical simulation and experiment results of the micro-sized part were similar in
appearance at a 30% filling time. Results indicated that for the numerical simulation of
the filling stage of the micro-sized part, the appearance was inferior to the experimental
results at a 60% filling time. The appearances of the numerical simulation and experimental
results of the micro-sized part were similar at a 90% filling time. Results showed that
the numerical simulation and experimental results of the micro-sized part were similar in
appearance at a 100% filling time. The difference between the experimental results and
numerical simulation results is shown at a 60% filling time (Figure 6b). Regardless of
whether the filling stage was leading or lagging, it was found, based on the filling situation
of the micro-sized part’s blade, that the plastic material flowed into the thin region after
the micro-sized part body was filled first. For the blade part, the numerical simulation
results were similar to the experimental results, but in the blade-filling situation, numerical
simulation indicated that the upper edge of the blade-filling flow was ahead of the lower
edge, and the experimental blade-filling situation consisted of the blade-filling flow. The
numerical simulation was opposite to the experimental results. Figure 6c is a short shot of
the filling stage of the numerical simulation and experimental results of the micro-sized part
using PP. The simulated filling results slightly lagged behind the experimental results of the
micro-sized part at a 30% filling time. The numerical simulation and experimental results of
the micro-sized part were similar in appearance, with filling times of 60%, 90%, and 100%.
The difference between the experimental results and numerical simulation is shown at a
60% filling time (Figure 6c). Regardless of whether the filling stage was leading or lagging,
the filling of the micro-sized part’s blade could be determined from the filling situation of
the milling blade. For the blade part, the numerical simulation results were similar to the
experimental results, but in the blade-filling part, numerical simulation indicated that the
upper edge of the blade-filling flow was ahead of the lower edge, and the experimental
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blade-filling part consisted of the blade-filling flow. The numerical simulation results were
opposite to the experimental results. Figure 6d is a short shot of the filling stage of the
numerical simulation and experimental results of the micro-sized part using PA. The filling
phenomenon of the numerical simulation was slightly ahead of the experiment’s micro-
sized part shape at a 30% filling time. The numerical simulation and experimental results of
the micro-sized part were similar in appearance at filling times of 60%, 90%, and 100%. The
experimental results and numerical simulation differed at a 60% filling time. Regardless of
whether the filling stage was leading or lagging, the filling of the micro-sized blade was
determined from the milling fan blade-filling situation. For the blade part, the numerical
simulation results were similar to the experimental results, but for the blade-filling part,
numerical simulation indicated that the upper edge of the blade-filling flow was ahead of
the lower edge, and the experimental blade-filling part consisted of the blade-filling flow.
For the leading edge, the numerical simulation results were opposite to the experimental
results, but the leading and trailing edges of blade filling were lower than with the other
materials. Figure 6e is a short shot of the numerical simulation and experimental results of
the micro-sized part using ABS + PC. The numerical simulation and experimental results of
the micro-sized part were similar in appearance at filling times of 30%, 60%, 90%, and 100%.
A difference between the experimental results and numerical simulation of the micro-sized
part appeared at a 60% filling time. Regardless of whether the filling stage was leading or
lagging, the filling of the micro-sized part blade was determined from the filling situation
of the millimeter fan blade. The numerical simulation results of the blade part were similar
to the experimental results, but in the blade-filling part, it was found numerical simulation
that the upper edge of the blade-filling flow which was slightly ahead of the lower edge.
The upper edge of the micro-sized part was leading, and results of numerical simulation
were opposite those of the experimental results, although the upper and lower edges of
blade filling were leading and trailing, respectively, less than with the other materials.

Warpage values of the micro-sized parts for the various plastics with the numerical
simulation are given in Table 4. The warpage phenomena of the micro-sized part using var-
ious polymer materials with PIM were in the order of POM > PP > ABS + PC > ABS > PA.
The minimum warpage value was demonstrated at the ends of the micro-sized blade for PA,
and PA was the most suitable material for the micro-sized part obtained by PIM. Therefore,
PA was determined to be the most suitable material, followed by ABS, ABS + PC, and PP,
whereas POM was the least suitable material in this study.

Table 4. Numerical simulation of the warpage of micro-sized parts for PIM
(POM/ABS/PP/PA/ABS + PC).

Runs. Warpage (mm)

L1 0.427/0.412/0.450/0.410/0.430
L2 0.311/0.301/0.302/0.300/0.301
L3 0.500/0.498/0.575/0.480/0.510
L4 0.302/0.300/0.283/0.270/0.290
L5 0.283/0.260/0.261/0.258/0.261
L6 0.600/0.510/0.511/0.505/0.510
L7 0.425/0.410/0.427/0.408/0.415
L8 0.420/0.410/0.427/0.405/0.415
L9 0.560/0.500/0.552/0.498/0.523

Average 0.429/0.400/0.420/0.392/0.406
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To minimize the warpage of the PIM-fabricated micro-sized part with various process
parameters and plastics, whether in terms of experimental results or numerical simula-
tion, the following Equation was used for the analysis to describe the smaller-the-better
characteristics:0

S
N

= −10 log

{
1
n

n

∑
i=1

1
y2

i

}
(35)

where yi is the measured or numerical simulation property (warpage), and n corresponds
to the number of samples in each test trial. We produced a signal-to-noise (S/N) reaction
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diagram of warpage of the micro-sized part in PIM for the numerical simulation (Figure 7).
Levels of optimal factors statistically resulting in minimum warpage of the micro-sized part
using POM/ABS/PP/PA/ABS + PC materials by numerical simulation were predicted to
be A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1. These optimized factor
levels of process parameters represent melt temperatures of 230/235/275/300/245 ◦C, mold
temperatures of 85/85/50/75/60 ◦C, injection pressures of 50/50/25/55/40 MPa, and
filling times of 1/0.5/0.1/0.1/1 s. Finally, the mold temperature was the most important
process parameter, followed by the melt temperature, injection pressure, and filling time,
in terms of warpage of the micro-sized part in PIM in the numerical simulation.

Figure 7. Variations in the signal-to-lose (S/N) ratio with factor level for warpage phenomenon of
the micro-sized part by numerical simulation (POM/ABS/PP/PA/ABS + PC).

3.2. Experimentation and Measurement (of the Warpage and Mold Window)

The measurement calculation method is shown in Figure 8a. Two tangent lines, T1
and T2, of the selected stripes were drawn to intersect at a in the Figure 8a. Take point a
on T1 as b, and the distance between a and b is L1. From b, make a perpendicular to T1.
The line segment intersects T2 at c, the distance from b to c is L2, and the angle between
T1 and T2 is calculated using formula (34). The larger the value, the greater the amount of
blade warpage.
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Figure 8. Cont.
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Figure 8. The interference fringes and situations for measurement method for micro-sized part with
various plastics. (a) Measurement diagram; (b) Interference fringe of PP material; (c) Interference
fringe of ABS material; (d) Interference fringe of ABS + PC material; (e) Interference fringe of PA
material; (f) Interference fringe of POM material.

θ = tan−1
(

L2
L1

)
(36)

Figure 8b–f shows the interference fringe patterns of the PIM-fabricated micro-sized
part for various plastics. Table 5 indicates the warpage value after calculation with
Formula (34) from Figure 8b–f. Warpage values for various plastics after measurement
and calculation are given in Table 5. The POM material exhibited the largest warpage
phenomenon of the micro-sized part with PIM; followed by PP, ABS + PC, and ABS, with
PA exhibiting the lowest value. Thus, PA was found to be the most suitable material,
followed by ABS, ABS + PC, and PP, with POM deemed not to be a suitable material.

Table 5. Warpage of the micro-sized part in the experiment for PIM (POM/ABS/PP/PA/ABS + PC).

Runs Warpage (mm)

L1 0.527/0.452/0.530/0.430/0.490
L2 0.420/0.341/0.382/0.320/0.361
L3 0.603/0.538/0.655/0.500/0.570
L4 0.410/0.340/0.363/0.290/0.350
L5 0.382/0.300/0.341/0.278/0.321
L6 0.710/0.550/0.591/0.525/0.570
L7 0.530/0.450/0.501/0.428/0.475
L8 0.521/0.450/0.507/0.425/0.475
L9 0.670/0.540/0.632/0.518/0.583

Average 0.505/0.440/0.500/0.413/0.466

Figure 9 indicates the mold window for the PIM-fabricated micro-sized part using
POM, ABS, PP, PA, and ABS + PC materials. The melt temperature exceeding the upper
limit of the mold window caused material degradation. When the melt temperature reached
the lower limit, IM led to a short-shot situation. When the processing value exceeded the
right upper limit, processing created a flash. When the processing value was toward the
lower left side, processing results were a short-shot situation. The area of the mold window
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had a maximum for PA, followed by ABS, ABS + PC, and PP, with POM exhibiting the
minimum value. The mold results revealed that the molding process using PA was more
flexible than that using ABS, ABS + PC, or PP, and POM was deemed unsuitable. This is
because the melt flow index of PA (80) had the maximum value, followed by ABS (35),
ABS + PC (19), and PP (12.5), with POM having the lowest value (7.4); hence, molding was
easier with PA than with ABS, ABS + PC, PP, or POM.

Figure 9. The mold window for the micro-sized part using POM, ABS, PP, PA, and ABS + PC materials
by precision injection molding.

Figure 10 indicates S/N ratios of warpage of the micro-sized part with various pro-
cess parameters according to experimental results (PIM). Based on these results, opti-
mal factor levels of process parameters that statistically resulted in minimum warpage
of the micro-sized part using POM/ABS/PP/PA/ABS + PC materials for µIM were
A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1. These optimized factor levels
represent melt temperatures of 230/235/275/300/245 ◦C, mold temperatures of
85/85/55/75/60 ◦C, injection pressures of 50/50/25/55/40 MPa, and filling times of
1/0.5/0.1/0.1/1 s. The results also revealed that the mold temperature was the most
important process parameter affecting warpage of the PIM fabricated micro-sized part in
this experiment, followed by the melt temperature, injection pressure, and filling time.

Figure 10. Variation of the S/N ratio with factor level for warpage phenomenon of micro-sized part
by experiment (POM/ABS/PP/PA/ABS + PC).

A higher mold temperature reduces the plastic’s viscosity, and this situation allows the
melted plastic to more easily fill in the micro-cavities of the micro-sized part during PIM.
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This phenomenon caused less warpage of the micro-sized part. As the melt temperature
of the plastic increases, the viscosity of the melted plastic decreases. An appropriate
difference in the melt temperature and mold temperature facilitates minor differences in
the temperature distribution of the plastic during the filling stage of PIM. This situation led
to smaller warpage of the PIM-fabricated micro-sized part.

To sum up, results of warpage of the micro-sized part were very similar, regardless
of the different materials or process parameters between the experimental results and
numerical simulation with PIM.

3.3. Grey Theory

In this study, the analysis using grey theory was divided into two parts: optimization
of predictions of experimental process parameters (grey relational analysis in grey theory)
and material selection (grey decision analysis in grey theory) for PIM.

3.3.1. Grey Relational Analysis in Grey-Theory-Optimal Process Parameters

For the grey relational analysis, the four axioms of grey relation and generation of a
grey relation model are shown by:

r(x0, xi) =
1
n

n

∑
k=1

r(x0(k), xi(k)) (37)

and

r(x0(k), xi(k)) =
min

i
max

k
|x0(k)− xi(k)|+ ξmin

i
max

k
|x0(k)− x1(k)|

|x0(k)− x1(k)|+ ξmin
i

max
k
|x0 − xi(k)|

(38)

The identification coefficient, ξ generally has a value of 0.5.
For the experimental scheme of the grey correlation analysis, refer to Table 2

(L9 orthogonal table). The process parameters of PIM were (A-) melt temperature (◦C),
indicator 1; (B-) mold temperature (◦C), indicator 2; (C-) injection pressure (MPa), indi-
cator 3; and (D-) filling time (s), indicator 4 (Table 3). Taking PA as an example, if the
mold temperature was too high, the molded micro-sized part cooled too slowly. If the
mold temperature was too low, the flow rate of the melted plastic decreased after entering
the mold cavity, and the rapid cooling caused short shots. This situation revealed that a
mold temperature of 75 ◦C was best. If the melt temperature was too high, although the
fluidity of the plastic was high, it was easy to cause burrs in the plastic overflow. The
melt temperature being too low could cause short shots due to insufficient filling by the
plastic. As the fluidity of the plastic decreased, the relative injection pressure had to be
increased. Therefore, a melt temperature of 300 ◦C was adopted. The injection pressure was
related to the injection speed and injection time. If the injection pressure was too low, the
injection speed was too slow, which led to insufficient filling by the plastic, and the injection
time increased. If the injection pressure was higher, the injection speed was faster, which
shortened the injection time of a single micro-sized part. Therefore, an injection pressure of
50 MPa was used. The filling time was related to the injection speed and injection pressure.
The greater the injection pressure, the faster the injection speed and the shorter the filling
time. If one of the three factors was opposite, the other two were also opposite, so a filling
time of 0.3 s was used.

Target column:
x0 = (300, 75, 50, 0.3)
Model indicator column:
x1 = (A1, B1, C1, D1) = (295, 70, 45, 0.1)
x2 = (A1, B2, C2, D2) = (295, 75, 50, 0.2)
x9 = (A3, B3, C2, D1) = (305, 80, 50, 0.1)
Using Equations ((17)–(19)), after processing the original data, we used Equation (S8)

to determine the difference in the sequence size, and the results were as follows:
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401 = (5.00, 5.00, 10.00, 0.10)
402 = (5.00, 0.00, 5.00, 0.00)
403 = (5.00, 5.00, 0.00, 0.10)
404 = (0.00, 5.00, 5.00, 0.10)
405 = (0.00, 0.00, 0.00, 0.10)
406 = (0.00, 5.00, 10.00, 0.00)
407 = (5.00, 5.00, 0.00, 0.00)
408= (5.00, 0.00, 10.00, 0.10)
409 = (5.00, 5.00, 5.00, 0.100), maximum value = 10.00, minimum = 0.00
Taking ξ = 0.5 and using Equation (25) to calculate the grey correlation coefficient, the

results were as follows:

1. r(x0(1), x1(1)) = 0.5000, r(x0(2), x1(2)) = 0.5000, r(x0(3), x1(3)) = 0.3333, r(x0(4), x1(4)) =
0.9804

2. r(x0(1), x2(1)) = 0.5000, r(x0(2), x2(2)) = 1.0000, r(x0(3), x2(3)) = 0.5000, r(x0(4), x2(4)) =
1.0000

3. r(x0(1), x3(1)) = 0.5000, r(x0(2), x3(2)) = 0.5000, r(x0(3), x3(3)) = 1.0000, r(x0(4), x3(4)) =
0.9804

4. r(x0(1), x4(1)) = 1.0000, r(x0(2), x4(2)) = 0.5000, r(x0(3), x4(3)) = 0.5000, r(x0(4), x4(4)) =
0.9804

5. r(x0(1), x5(1)) = 1.0000, r(x0(2), x5(2)) = 1.0000, r(x0(3), x5(3)) = 1.0000, r(x0(4), x5(4)) =
0.9804

6. r(x0(1), x6(1)) = 1.0000, r(x0(2), x6(2)) = 0.5000, r(x0(3), x6(3)) = 0.3333, r(x0(4), x6(4)) =
1.0000

7. r(x0(1), x7(1)) = 0.5000, r(x0(2), x7(2)) = 0.5000, r(x0(3), x7(3)) = 1.0000, r(x0(4), x7(4)) =
1.0000

8. r(x0(1), x8(1)) = 0.5000, r(x0(2), x8(2)) = 1.0000, r(x0(3), x8(3)) = 0.3333, r(x0(4), x8(4)) =
0.9804

9. r(x0(1), x9(1)) = 0.5000, r(x0 (2), x9(2)) = 0.5000, r(x0(3), x9(3)) = 0.5000, r(x0(4), x9(4)) =
0.9804

Use Equation (26) to calculate the grey correlation, β = 1
4

r(x0, x1) = 0.5784 (that is x1);
r(x0, x2) = 0.7500 (that is x2);
r(x0, x3) = 0.7451 (that is x3);
r(x0, x4) = 0.7451 (that is x4);
r(x0, x5) = 0.9951 (that is x5);
r(x0, x6) = 0.7083 (that is x6);
r(x0, x7) = 0.7500 (that is x7);
r(x0, x8) = 0.7034 (that is x8);
r(x0, x9) = 0.6201 (that is x9);
Discharge the grey correlation order, arranged from largest to smallest, for PA
PA: x5 > x2 > x7 > x4 > x3 > x6 > x8 > x9 > x1
After the grey relational ranking, the best processing condition for PA was the

fifth group (x5) of experimental processing parameters.
Calculation results:
POM: x6 > x8 > x5 > x2 > x4 > x1 > x9 > x7 > x3
ABS: x5 > x7 > x4 > x2 > x3 > x6 > x8 > x9 > x1
PP: x5 > x2 > x7 > x4 > x3 > x6 > x8 > x9 > x1
ABS + PC: x5 > x2 > x7 > x4 > x3 > x6 > x8 > x9 > x1
Table 6 indicates the arrangement of the grey relations of the POM/ABS/PP/PA/ABS + PC

materials and the best plan. Results revealed that the best process conditions for the
POM/ABS/PP/PA/ABS + PC materials were the 6/5/5/5/5 group of experimental pro-
cess parameters.
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Table 6. Arrangement of the grey relation of POM/ABS/PP/PA/ABS + PC materials and the
best plan.

Run Grey Correlation Sort

1 0.7273/0.5833/0.5784/0.5784/0.5606 6/9/9/9/9
2 0.7500/0.7273/0.7500/0.7500/0.7500 4/4/2/2/2
3 0.5606/0.7273/0.7451/0.7451/0.7273 9/5/5/5/5
4 0.7273/0.7273/0.7451/0.7451/0.7273 5/3/4/4/4
5 0.8106/0.9773/0.9951/0.9951/0.9773 3/1/1/1/1
6 0.8750/0.7083/0.7083/0.7083/0.7083 1/6/6/6/6
7 0.5833/0.7500/0.7500/0.7500/0.7500 8/2/3/3/3
8 0.8523/0.6856/0.7034/0.7034/0.6856 2/7/7/7/7
9 0.6023/0.6023/0.6201/0.6201/0.6023 7/8/8/8/8

Based on results of grey correlation calculations, the best process conditions in term
of warpage of the micro-sized part using various plastics for grey relation calculations are
shown in Table 7. Based on these results, the optimal factor levels of process parameters
that statistically resulted in minimum warpage of the PIM-fabricated micro-sized parts using
POM/ABS/PP/PA/ABS + PC materials were A2B3C1D1/A2B2C3D1/A2B2C3D1/A2B2C3D1/
A2B2C3D1. These optimized factor levels represent melt temperatures of 230/235/275/300/
245 ◦C, mold temperatures of 90/85/55/75/60 ◦C, injection pressures of 40/50/25/55/
40 MPa, and filling times of 1/0.5/0.1/0.1/1 s. Therefore, the experimental result, numerical
simulations, and grey relational analysis in grey theory obtained similar results for the
optimal processing of the micro-sized parts for various plastics with PIM.

Table 7. The processing conditions of warpage of the micro-sized part with various plastics based on
grey relational analysis.

Material Run
Optimal Set of Processing Parameters

A. Melt Temp. (◦C) B. Mold Temp. (◦C) C. Injection Press.
(MPa) D. Filling Time (s)

POM 6 230 80 15 1.5
ABS 5 235 85 50 1
PP 5 235 55 25 0.1
PA 5 300 75 55 0.5

ABS + PC 5 245 60 45 1

3.3.2. Grey Decision Analysis in Grey-Theory-Suitable Material

Samples of the five material evaluation criteria are shown in Tables 1, 8 and 9, and the
effects on samples were processed for effect measurements. After processing, as shown in
Tables 8 and 9, the comprehensive effect was measured by Equation (31):

r∑
11 : POM; r∑

12 : ABS; r∑
13 : PP; r∑

14 : PA; r∑
15 : ABS + PC

r∑
11 =

1
7

7

∑
p=1

rp
11 =

1
7

(
r1

11, r2
11, . . . , r7

11

)
=

1
7
(1 + 1 + 0.71 + 1 + 0.72 + 1 + 1) = 0.918

r∑
12 =

1
7

7

∑
p=1

rp
12 =

1
7

(
r1

12, r2
12, . . . , r7

12

)
=

1
7
(0.43 + 0.71 + 1 + 0.85 + 0.63 + 0.38 + 1) = 0.713
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r∑
13 =

1
7

7

∑
p=1

rp
13 =

1
7

(
r1

13, r2
13, . . . , r7

13

)
=

1
7
(0.34 + 1 + 1 + 1 + 1 + 1 + 1) = 0.906

r∑
14 =

1
7

7

∑
p=1

rp
14 =

1
7

(
r1

14, r2
14, . . . , r7

14

)
=

1
7
(0.6 + 0.56 + 0.49 + 0.72 + 0.34 + 1) = 0.609

r∑
15 =

1
7

7

∑
p=1

rp
15 =

1
7

(
r1

15, r2
15, . . . , r7

15

)
=

1
7
(0.43 + 1 + 1 + 0.99 + 0.91 + 0.5 + 1) = 0.832

r1 =
(

r∑
11, r∑

12, r∑
13, r∑

14, r∑
15

)
= (0.918, 0.713, 0.906, 0.609, 0.832)

Consider satisfactory decision conditions,

r∑
ij∗ = min r∑

ij∗ = min
{

r∑
11, r∑

12, . . . , r∑
15

}
= min{0.918, 0.713, 0.906, 0.609, 0.832} = r∑

14 = 0.609

This situation means that PA was the most satisfactory material, followed by ABS,
ABS + PC, and PP, whereas POM was determined to be unsuitable. PA was the most suit-
able material for PIM-fabricated micro-sized parts according to simultaneous experimental
results, numerical simulations, and grey theory.

Table 8. Sample of material evaluation criteria.

Target Sample Target
Polarity

POM
Scheme A

ABS
Scheme B

PP
Scheme C

PA
Scheme D

ABS + PC
Scheme

E

1 Melt temp. Minimum 195 230 230 295 240
2 Mold temp. Minimum 70 80 50 70 55
3 Injection Press. Minimum 15 40 15 45 30
4 Filling time Minimum 1 1 1 1 1
5 Specific weight Minimum 3 7 9 5 7
6 Shrinkage rate Minimum 5 7 5 9 5
7 Tensile strength Minimum 7 5 5 9 5

Table 9. Effect measurement processing of effect samples.

Target Sample Target
Polarity

POM
Scheme A

ABS
Scheme B

PP
Scheme C

PA
Scheme D

ABS + PC
Scheme

E

1 Melt temp. Minimum 1 0.85 1 0.49 0.96
2 Mold temp. Minimum 0.71 0.63 1 0.71 0.91
3 Injection Press. Minimum 1 0.38 1 0.34 0.5
4 Filling time Minimum 1 1 1 1 1
5 Specific weight Minimum 1 0.43 0.34 0.6 0.43
6 Shrinkage rate Minimum 1 0.71 1 0.56 1
7 Tensile strength Minimum 0.71 1 1 0.56 1

3.4. Molded Product

Figure 11 shows the molded PIM-fabricated micro-sized parts. The goal of this study
was to fabricate suitable micro-sized parts using optimal methods. The minimum warpage
of the micro-sized parts was the condition for judging optimal molding. Therefore, in this
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study, we attempted to apply PIM to make micro-sized parts without using µIM techniques.
We will employ the resulting data from this study to mass produce micro-sized parts in the
future.

Figure 11. The molded micro-sized part by µIM.

4. Conclusions

The goal of this study was to successfully fabricate micro-sized parts by PIM. We
determined optimal process parameters (melt temperature, mold temperature, injection
pressure, and filling time) with various materials (POM, ABS, PP, PA, and ABS + PC) for
micro-sized parts using minimum warpage of the micro-sized part as judgment criterion
by numerical simulations, experimental results, and grey theory.

In order to save mold-opening time, we first used numerical simulation software
(Moldflow) to confirm the runner’s balance in multi-cavities of the micro-sized part flow
and then simulated the warpage of the micro-sized part during PIM. According to the simu-
lation analysis data, we employed CNC to process the mold for the PIM process. In order to
obtain the best results (i.e., minimum warpage), we applied the Taguchi method and grey
relational analysis in grey theory to identify the influence of each PIM process parameter.

Through numerical simulation and experimental results, the statistically optimal level
of the smallest warpage of micro-sized parts using POM/ABS/PP/PA/ABS + PC materials
was A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1. These optimized process-
parameter factor levels represent melt temperatures of 230/235/275/300/245 ◦C, mold
temperatures of 85/85/50/75/60 ◦C, injection pressures of 50/50/25/55/40 MPa, and
filling times of 1/0.5/0.1/0.1/1 s. Based on results of grey relational analysis in grey theory,
the optimal factor levels of process parameters that statistically resulted in minimum
warpage of the micro-sized parts using POM/ABS/PP/PA/ABS + PC materials with PIM
were A2B3C1D1/A2B2C3D1/A2B2C3D1/A2B2C3D1/A2B2C3D1. These optimized factor
levels represented melt temperatures of 230/235/275/300/245 ◦C, mold temperatures
of 90/85/55/75/60 ◦C, injection pressures of 40/50/25/55/40 MPa, and filling times of
1/0.5/0.1/0.1/1 s. The results were very similar, regardless of whether using numerical
simulations, experimental results, or grey relational analysis in grey theory for optimal
processing with PIM.

To sum up, the mold temperature was the most important factor among various
process parameters for PIM-fabricated micro-sized parts, whether in terms of numerical
simulations, experiment results, or grey theory. Our study results suggest that micro-sized
parts can be manufactured by PIM without the use of µIM, and the mold temperature
required for molding does not need to be higher than the glass-transition temperature of the
material. PA was the most suitable material for micro-sized parts by PIM, whether in terms
of numerical simulations, experimental results (including the warpage measurement and
mold window), or grey decision analysis in grey theory. The results of warpage analyses
of PIM parts were very similar when using numerical simulations, experimental results,
and grey theory. Ultimately, using results of this study, we could completely fabricate
micro-sized parts using PIM.
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