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We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during
the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The
stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt
electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the
single entities is discussed. In suspensions, the QDs behave differently depending on the
solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS
under constant illumination. The photocurrent expected for single QDs is discussed. The
value of the observed photocurrents, > 1 pA is due to the formation of agglomerates
consistent with the collision frequency and suspension stability. The observed frequency of
collisions for the stepwise photocurrents is smaller than the diffusion-limited cases
expected for single QDs colliding with the electrode surface. Dynamic light scattering
and scanning electron microscopy studies support the detection of aggregates. The
results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of
single entities by increasing the stability of the nanomaterial. The rate of hole transfer from
the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain
conditions of electron injection to the Pt electrode and in colloidal suspensions of
CdSe/ZnS.

Keywords: CdSe quantum dot, CdSe/ZnS quantum dot, photoelectrochemistry (PEC), photooxidation, colloidal
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INTRODUCTION

It is fundamentally interesting to understand the electrochemistry of semiconducting materials. The
materials’ properties and the correlation with their reactivity have implications in energy conversion
using electrochemical reactions. Since the initial reports of single NP electrochemistry, collision or
nanoimpact experiments have provided information about the intrinsic kinetic parameters of
electrocatalytic materials that mass transport effects may mask. Conversely,
photoelectrochemistry experiments at the single entity level lag behind the analogous
electrocatalytic studies. Early experiments of colloidal metal oxides include manipulating the
conditions during metal electrodeposition to prepare composite materials by incorporating the
metal oxide into the metal electrodeposit. Large electrodes were used to detect the photocurrent from
suspended particles, or “slurries” (Dunn et al., 1981a; Dunn et al., 1981b). Our group detected TiO2

nanoparticles (NPs) using photocurrent in MeOH (Fernando et al., 2013). Anatase NPs collided with
a Pt ultramicroelectrode (UME) which yielded stepwise current changes characteristic of single
entities. In that report (Fernando et al., 2013), the observed currents were due to the photooxidation
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of MeOH. Fernando et al. studied dye-sensitized TiO2 NPs and
their agglomerates in MeOH (Fernando et al., 2016) with a
F-doped SnO2 UME. The dye was based on cis-
bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)
ruthenium(II), known as N179. Barakoti et al. studied the N719
dye/TiO2 system on a Pt UMEs (Barakoti et al., 2016) and two
distinct responses were observed in the dark and under
illumination. In the dark, at sufficiently negative potentials,
dye on the TiO2 surface oxidizes and further oxidizes the
redox-active solvent (CH3OH). When illuminated, the dye
photooxidizes the CH3OH and injects electrons into the TiO2

NPs that the Pt UME ultimately records. Peng et al. and Ma et al.
modeled transport across TiO2 nanostructured film that covered
a metallic UME. Pent et al. detected TiO2 entities colliding onto a
UME modified with a NP film (Peng et al., 2018b). Ma et al.
(2018) used a Au/TiO2 UME to detect ZnO/N719 entities
photooxidizing water; in these last two papers, where the
authors studied the dynamics of carrier transport. Mirkin et al.
(Wang et al., 2020) detected photooxidation currents from co-
catalysts modified TiO2 NPs during water oxidation. We point
out that there are electrochemical kinetic studies of
semiconductor materials. Velický et al. (2016) have studied the
kinetics of MoS2 towards the outer-sphere Ru(NH3)6

3+/2+ redox
couple, down to a single monolayer of SC material. Sambur et al.
(2016) have mapped the spatial distribution of electron transfer
on nanorods during water splitting. The authors obtained kinetic
rate constants from super resolution imaging experiments. Our
group is interested in studying the rate of hole transfer rate across
the nanomaterials/liquid interface, and here we demonstrate that
it is possible to detect the current of photooxidation for individual
CdSe entities. The rate of hole transfer has been studied with
transient optical techniques and electrochemistry in films, as in
the case of sulfide electrolytes (Chakrapani et al., 2011).

Other systems related to semiconductor materials are the Pt
NPs colliding with a Si UME covered with a TiO2 tunneling layer
(Ahn and Bard, 2015), which displayed a large current density.
There have also been studies of semiconducting materials that do
not rely on photoelectrochemical detection. Tschulik et al. (2013)
oxidized and reduced Fe2O3 NPs, in the so-called nano impact
experiments, were able to measure the size of the particles. Our
group proposed sizing of ZnO NPs based on their reduction
potential (Perera et al., 2015). We also studied ZnO mass
transport and electron transfer during the electrolysis of the
nanomaterials (Karunathilake et al., 2020). While large
bandgap materials are interesting for some applications, lower
bandgap materials, such as CdSe materials, are more appealing in
studies of solar energy conversion, and to the best of our
knowledge, this is the first report of the stochastic
electrochemistry of CdSe single entities.

Previous studies of CdSe quantum dots (QDs) include studies
on ensembles of films prepared with QD (Yu D. et al., 2003; Jha
and Guyot-Sionnest, 2010; Puntambekar et al., 2016; Liu et al.,
2017) or the electrochemiluminescence of the material in a
colloidal suspension (Myung et al., 2002). More recently,
Wang et al. (2021) studied the electrocatalytic rates (activity)
of single MoS2 quantum dots on a Ag UME towards hydrogen
evolution reaction. Alshalfouh et al. (2019) studied CdSe

quantum dots using impacts and single-molecule spectroscopy
in aqueous solutions. They concluded that the QDs are
irreversibly oxidized in the aqueous media. However, they do
not lose their emissive properties after a single collision with the
Pt UME, and they were capable of desorbing from the electrode
surface without being significantly decomposed. There are also
studies of individual semiconducting NPs with spectroscopy
(Chen et al., 2017; Wang et al., 2019), but they do not follow
the current from individual entities. In this paper, we present the
detection of entities of CdSe quantum dots in CH3OH under
illumination. The QDs photooxidize CH3OH, which is a well-
known hole scavenger. The photocurrent values indicate that the
current is due to the agglomerates of the QDs injecting holes into
the solvent. We show that the CdSe/ZnS, because it is a more
stable material under these conditions, increases the probability
of detection.

EXPERIMENTAL

Chemicals
All chemicals were used as received and were purchased from
Sigma Aldrich unless otherwise stated. Methanol was of
spectroscopic grade and used as received. Chloroform was
used as received, while acetonitrile was dried by incubation in
activated alumina. For electrochemical measurements, the
solvents were degassed with Ar or N2.

Material Preparation
We prepared CdSe and CdSe/ZnS QDs in colloidal solutions by
modifying procedures described before. For CdSe QDs, we
based our synthesis on the report in Jasieniak et al. (2005)
and it is depicted in Figure 1. Briefly, the QDs were synthesized
from the precursors of CdO and Se using Schlenk line
techniques. The solvents and solutions were degassed and
kept under a dried Ar line. Figure 2 depicts the procedure
for synthesizing CdSe/ZnS, after adapting the procedure of Bae
et al. (2008). This synthesis followed the usual protocols for
manipulating air, and water-sensitive techniques, like the CdSe
QD, described above. The precursors are CdO, Se powder, zinc
acetate, and S powder.

Material Characterization
The materials synthesized were characterized by transmission
electron microscopy TEM (JOEL JEM-2100F).
Photoluminescence (PL) spectra was obtained with a
fluorimeter (Horiba). Dynamic light scattering (DLS) of
colloidal suspensions was obtained with a NICOMP Particle
Sizer 380/ZLS (PSS, Santa Barbara, CA). The electrodes’
scanning electron microscopy (SEM, Scios 2, Thermo Fisher
Scientific) was performed after coating them with a Cr layer.

Colloidal Concentration
We estimated the colloids’ concentration from the suspension’s
absorbance by calculating the value of the molar absorptivity at
the first excitation peak, ε. This value was used to calculate the
concentration using Beer’s law. We calculated the molar
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absorptivity from the optical properties, using Eqs. 1, 2 according
to Yu et al. (2003b):

ε � 5857 × D2.65 (1)

where D is:

D � (1.6122 × 10−9)λ4 − (2.6575 × 10−6)λ3 + (1.6242 × 10−3)λ2

− (0.4277)λ + (41.57)
(2)

where λ is the wavelength of the first excitation peak.

Electrochemical Measurements
The setup for the electrochemical measurement has been
described in detailed elsewhere (Fernando et al., 2013). Briefly,
we used a three-electrode configuration with a Pt/iodide solution
reference electrode. The reference electrode side of the cell
included a double junction:

Pt/I−(10mM), I−3(10mM)/CH3OH/ (3)

We did not see any evidence of iodide or triiodide in the
background experiments. Alternatively, we used a Ag QRE
electrode. These electrodes potentials were calibrated and
converted to NHE. A Xe arc lamp (Newport) illuminated a
PTFE cell equipped with a silica window, and the detection
was done in a commercial potentiostat (CH Instruments). We
prepared the colloidal suspensions on the bench and loaded the

cell; before the electrochemical experiments started, we degassed
the suspensions with Ar or N2 for at least 20 min.

RESULTS AND DISCUSSION

Material Characterization
Figure 3 shows the characterization of the CdSe material by
optical methods. Figure 3A shows absorption spectra and
Figure 3B the photoluminescence data; both are consistent
with the particle size determined by TEM of ca. 4 nm (Figure 3C).

The colloids were centrifuged and re-dispersed in methanol,
acetonitrile and chloroform. Initially, we performed illumination
experiments with a Xe arc lamp and monitored the materials’
fluorescence as a function of illumination time. The data in
Figure 4 shows the results. Interestingly, the CdSe was stable
in MeCN but not in MeOH as seen in Figure 4A, while the
protected CdSe/ZnS colloids display the opposite behavior: they
were stable in MeOH but not as stable in MeCN (Figure 4B). Our
experiments are in nonaqueous solvents, while the stability of
CdSe QDs has been studied in more detail in aqueous
environments (Puzyn et al., 2009; Mulvihill et al., 2010), with
some studies in toluene, e.g., (Mokari and Banin, 2003). It is
interesting to note that for CdSe, the emission was more stable in
CH3CN. In water, ligand dissociation can limit the material
stability (Mulvihill et al., 2010), and could also be favorable in
MeOH. We note that the electrochemical window of CH3CN (ca.
4.5 V), is much larger than the bandgap of the materials used in

FIGURE 1 | Schematics of the synthesis for CdSe QDs, modifying the procedure in ref (Jasieniak et al., 2005).

FIGURE 2 | Schematics of the synthesis for CdSe QDs, modifying the procedure in ref (Bae et al., 2008).
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this work (ca. 2 eV), make the materials unlikely to oxidize or
reduce the MeCN under illumination. For the materials, the
conduction band edge would be at around −1.0 V vs. NHE
(Spittel et al., 2017), while the valence band would be about
+1 V vs. NHE. For MeCN, the window is typically around −2.7 V
for the reduction and around +2.3 V vs. NHE for the oxidation
(Bard and Faulkner, 2001). Therefore, the photogenerated
electrons and holes are not expected to electrolyze the solvent.

To improve the stability of CdSe-based materials, several
groups have developed methods to synthesize core-shell
materials (Peng et al., 1997; Zhu et al., 2010). We studied
CdSe/ZnS QDs because the layer of ZnS makes the QDs more
stable and minimizes non-radiative recombination (Hines and
Guyot-Sionnest, 1996). As expected, this core-shell material is
more stable against photo-stimulated degeneration. However, the
material eventually decays in all the solvents used, and it is more
stable in MeOH, for approximately an hour or longer. In the case
of chloroform, both CdSe and CdSe/ZnS were not stable in the
solvent under illumination. Similar to the CH3CN case, for
CHCl3 the oxidation potential is ca. +3.2 V vs NHE (Bird
et al., 2020), approximately 2 V more positive than the VB
edge. The reduction potential for CHCl3 has been reported to

be ca. −1.25 vs NHE for Ag electrodes (Hoshi and Nozu, 2006),
which is around 200 mVmore negative than the conduction band
edge for the materials. Traces of water may decrease the CdSe
stability in chloroform because it is known to react with oxygen
when exposed to light to produce COCl2, Cl2, and HCl, among
other species (Perrin et al., 1980). Although we closed the cuvette
for the experiments in Figure 4, traces of water and O2 may enter
the colloidal suspension and produce oxidizing agents under
illumination such as Cl2 and HCl that facilitate the oxidation
of the material. In MeOH, the material is capable of oxidizing the
solvent without losing its emission properties quickly.

QD detection
Figure 5 shows the result for the stochastic detection of QDs
suspended in MeOH and the control experiment without
illumination to the colloid (Eapp � 0.2 V vs NHE). Figure 5A
shows the photocurrent transients observed under illumination.
Note that the anodic transients, negative in the instrument’s
convention, are the transients of interest. For comparison, the
colloid without illumination does not show the discrete
transients, consistent with the photocatalytic nature of the
process, like the previous observation of anatase entities
(Fernando et al., 2013). The figure also shows the methanol
blank in the dark and under illumination, in the same scale as
the photocurrent (red trace). The suspension in the dark and the
blank are all lower in magnitude than the anodic photocurrent.
Figure 5B shows the detail of the blank and controls, in a region
where the currents do not show a particular trend, although due
to the small current values, some regions have slopes that change

FIGURE 3 | Material characterization. (A) UV Vis of CdSe synthesized;
the colloidal concentration is 7.7 μM. (B) Photoluminescence of the material in
a 58 μM suspension (C) TEM image of a single QD.

FIGURE 4 | Photoluminescence of illuminated colloids of CdSe and
CdSe/ZnS in different solvents with an initial concentration of ca. 10 μM.
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during the experiment, such as the current for the colloid in the
dark in Figure 5C, which has been offset to facilitate the
comparison. The difference between the current under
illumination and in the dark is due to photocurrent from
previously deposited QDs. The material can deposit on the

electrode when the UME was immersed in the suspension
before the data acquisition. The staircase shape of the
photocurrent in Figure 5C,D corresponds to entities
photooxidizing MeOH. The stochastic electrochemistry of
electrocatalytic NPs, the staircase response indicates that
“sticking interactions”, are responsible (Xiao and Bard,
2007; Xiao et al., 2008). On the other hand “blips”
correspond to particles that bounce off the electrode surface
(Kwon et al., 2010; Kwon et al., 2011) or become inactive upon
collision(Dasari et al., 2012; Dasari et al., 2014). From the data
in Figure 5, entities attach irreversibly to the electrode surface
while constantly turning over a product, and cathodic
transients are assigned to QDs, leaving the surface or
becoming inactive.

Figure 6 shows the corresponding experimental data for CdSe
without the ZnS layer for a 25 μm diameter UME. The data
includes the control experiment for the suspension in the dark,
which does not present any discrete current changes. As above,
the difference between currents in the dark and under
illumination is likely the photocurrent from CdSe already
adsorbed on the electrode. In the data selected for Figure 6,
many of the anodic steps that result from collisions show a return
to the baseline, likely due to the lower stability of the CdSe
in MeOH.

FIGURE 5 | Photocurrent and control experiment to detect stochastic photocurrents for a 200 pM QD concentration in CH3OH, (A) blank MeOH in the dark
(brown), blank under illumination, and control experiment for the suspension in the dark (black); all data plotted in the same scale (B) shows a detail for the blank and
control experiments. (C) shows the control in the dark (black) and particle in light (red), with the data offset for clarity. (D) a different set of steps in detail for the data shown
in a), red. 10 μm electrode, Eapp � 0.2 V vs NHE.

FIGURE 6 | Stochastic photocurrent measurement for CdSe in MeOH
under illumination (red), and control experiment for the colloid in the dark
(black). All other conditions as in Figure 5.
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Stochastic photoelectrochemistry yields the statistical
distribution of the photocurrent. In colloidal suspensions of
semiconductor NPs the diameter is expected to have a
Gaussian distribution, and NPs of different sizes will have
different photocurrents. Figure 7 shows the combined
observed frequency of anodic steps of different sizes for the
stochastic detection of both materials in MeOH. The
histograms are the result of 1800 s of experimental time for
CdSe and 1,600 s for CdSe/ZnS. As expected, the protected
CdSe/ZnS dots (Figure 7B) yielded ∼5 times the frequency of
the CdSe colloid (Figure 7A). This behavior is consistent with 1)
the presence of more traps on the bare CdSe surface, which could
cause recombination to outcompete charge separation, and 2) the
CdSe being less stable in the suspensions as seen in the long-term
illumination study described above (Figure 4). We used
methanol in this study because it is an effective hole
scavenger, and using it as a solvent facilitates QD detection
(maximum MeOH concentration). The data in Figure 7 is
also interesting in that for CdSe the size of the photocurrents
observed is larger than for CdSe/ZnS, despite the stability issues
described above. Under illumination, the product of MeOH
oxidation has been reported to produce formaldehyde for
TiO2 films (Sun and Bolton, 1996; Wang et al., 2002; Zigah
et al., 2012), and under colloidal conditions, this has been recently
confirmed for anatase NPs (Barakoti et al., 2021). Therefore, the
photooxidation of CH3OH could produce HCHO through an
inner sphere oxidation mechanism, which is expected to be
relatively slow. For CdSe the photooxidation of MeOH is not
fast enough to compete with the photo-induced dissolution of the
material. If a redox mediator cannot remove holes fast enough,
these can be available for the dissolution of the material
(Chakrapani et al., 2011):

2CdSe(h+)→Cd2+ + Se0 (4)

If the material dissolves, that will cause the removal of the oleate
protecting layer. This process will cause the QDs to agglomerate,
yielding a particle that will have a larger cross-section.

We note that the frequency of collision is much smaller than
the expected from the diffusion-limited behavior, Eq. 5

f � 4rdDNPC
bulk
NP (5)

where DNP is the diffusion coefficient, Cbulk
NP is the bulk

concentration, and rd is the radius of UME disk. For a 5 nm
QD, Cbulk

NP � 200 pM, and DNP � 2 × 10–6 cm2 s−1, the frequency of
collision should be > 105 Hz, while the data in Figure 7
corresponds to 10–3 Hz. Therefore, the photocurrent is not
limited by the mass transport of individual particles. This
behavior is consistent with observation of our group and
others (Fernando et al., 2013; Barakoti et al., 2016; Fernando
et al., 2016; Peng et al., 2018a; Wang et al., 2020), although Ma
et al. reported a correlation at low concentrations (Ma et al.,
2018). Here, we propose that the QDs agglomerate and that the
agglomerates have a much lower collision frequency.

The size of the photocurrent also points towards the detection
of agglomerates or aggregates of QDs. A 5 nm diam NP should
have a cross-section of ca. 2 × 10–13 cm2 to capture photons with
energy larger than the bandgap; to a first approximation, we use
the geometric projected area of a 5 nm QD. Our lamp’s power
density is 250 mW/cm2, and based on the manufacturers’ data,
around 16.9% of the lamp power is within the spectral region of
200–540 nm, which the QDs can absorb. We take the energy of a
250-nm photon, 8 × 10–19 J/photon, and assuming that this is the
average energy per photon for the spectral region that the QDs
can absorb. Based on the power density, there are 8.2 × 10–15 W
that interact with the QD geometric crossection which
corresponds to 104 photons/QD. Suppose every interacting
photon gets converted to electron-hole pairs, assuming no
recombination losses, the expected photocurrent is in the
order of 10–15 A, much smaller than the 1–10 pA in Figure 7.
Therefore, aggregates are consistent with 1) photocurrents larger
than expected for single QDs, 2) with the stability study and 3)
with the low detection frequency.

We performed DLS experiments on the CdSe suspensions.
Figure 8 shows the size-deconvoluted results for a 10-μM CdSe
suspension in CHCl3, before irradiation with the arc lamp. The
number distribution shows that most of the concentration of NPs
is distributed around the 4–10 nm size, consistent with the TEM
results (Figure 8A). The details of the number distribution are
shown in Figure 8B, where the NPs around the 5 nm diameter
account for over 80% of the suspended NPs, and (c), where
agglomerates in the 25–30 nm range are less than 0.02% of the
total distribution. The intensity distribution shows much larger
agglomerates that are >200 nm diam. Note that because the
scattering is proportional to (Diam)6, these larger aggregates
account for a significantly larger contribution of the scattering
signal but correspond to a minuscule percentage of the total
number of suspended entities.

We imaged an UME after a collision experiment in a CdSe
suspension, i.e., after illumination. Figure 9A shows the disk that

FIGURE 7 | Histograms of the photocatalytic current step observed
during the photooxidation of MeOHwith (A)CdSe 1800 s of experimental time
and (B) CdSe/ZnS for 1,600 s. All other conditions as on Figure 5.
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FIGURE 8 | Dynamic light scattering of CdSe suspension (10 μM). (A) number weight of the size distribution in the 0–300 nm range. (B,C) show details of the
number distribution in (A); (B) is for 0–40 nm and (C) from 25 to 30 nm (D) shows the intensity weight distribution from 0 to 300 nm for the same suspension.

FIGURE 9 | SEM of a 25 μm diam electrode after collision experiments. (A) a lower magnification image displaying the Pt microdisk. (B–D) are zooms showing
agglomerates deposited at the electrode surface.
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is decorated with particles after a collision experiment.
Figure 9B,C show higher magnifications of the electrode
surface covered with agglomerates of QDs with sizes of
100 nm or larger. A 100-nm agglomerate, near the limit of the
SEM resolution under these conditions, would correspond to
entities of more than 20 QDs that have adsorbed onto the
electrode surface. In summary, for the conditions of this work,
we observed agglomerates before illumination by DLS, and after
illumination on the electrode surface. The agglomerates are
consistent with the detection of larger photocurrents.

CONCLUSIONS

We have demonstrated photocurrent detection from single
entities that form from suspended QDs during the constant
irradiation of the solution. The photocurrent displays a
stepwise behavior characteristic of entities adsorbing to the
surface irreversibly, although some QDs leave the surface,
consistent with the observations from single-molecule
spectroscopy (Alshalfouh et al., 2019). In suspensions, the
QDs behave differently depending on the solvent used to
prepare the suspension. However, the CdSe/ZnS colloidal
suspension can be stable for 1 h in MeOH, which is sufficient
to detect stochastic events. The CdSe/ZnS stability indicates that
the ZnS prevents carrier trapping, which allows the suspended
entities to be detected. CdSe/ZnS is widely regarded as a Type I
core-shell arrangement of semiconductors where the ZnS band
edge energies promote electron and hole confinement within the
CdSe core (Dabbousi et al., 1997). Therefore, ZnS could be a
tunneling layer preventing charge transfer from the CdSe to the
Pt electrode or from the material to the solution interface.

However, the core-shell material is more stable in MeOH
and easier to detect than the CdSe NP. The collision events
display a frequency of collision that is much lower than
expected based on the diffusion-limited value of dispersed
QDs diffusing to the electrode surface. The photocurrent value
is consistent with agglomerates due to issues of suspension
stability. We are currently working on characterizing these
agglomerates to deconvolute information from single NP
behavior. Also, we expect to detect smaller currents with
digital filtering (Gutierrez-Portocarrero et al., 2020) to
enable the study of smaller agglomerates and the details of
carrier trapping.
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