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Abstract

Climate change’s effect on sea surface temperature (SST) at the regional scale vary due to

driving forces that include potential changes in ocean circulation and internal climate vari-

ability, ice cover, thermal stability, and ocean mixing layer depth. For a better understanding

of future effects, it is important to analyze historical changes in SST at regional scales and

test prediction techniques. In this study, the variation in SST across the Persian Gulf and

Gulf of Oman (PG&GO) during the past four decades was analyzed and predicted to the

end of 21st century using a proper orthogonal decomposition (POD) model. As input, daily

optimum interpolation SST anomaly (DOISSTA) data, available from the National Oceanic

and Atmospheric Administration of the United States, were used. Descriptive analyses and

POD results demonstrated a gradually increasing trend in DOISSTA in the PG&GO over the

past four decades. The spatial distribution of DOISSTA indicated: (1) that shallow parts of

the Persian Gulf have experienced minimum and maximum values of DOISSTA and (2)

high variability in DOISSTA in shallow parts of the Persian Gulf, including some parts of

southern and northwestern coasts. Prediction of future SST using the POD model revealed

the highest warming during summer in the entire PG&GO by 2100 and the lowest warming

during fall and winter in the Persian Gulf and Gulf of Oman, respectively. The model indi-

cated that monthly SST in the Persian Gulf may increase by up to 4.3 ˚C in August by the

turn of the century. Similarly, mean annual changes in SST across the PG&GO may

increase by about 2.2 ˚C by 2100.

Introduction

Sea surface temperature (SST) variations under climate change influence species in the marine

environment and may thus threaten sensitive ocean corals, alter the intensity and frequency of
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blooms, reduce the nutrient flux from the deep to surface waters, raise sea level, change the

global food chain, and create health-related problems for humanity by providing a more suit-

able environment for pathogenic microbes [1–6]. The variations in SST can also have a signifi-

cant impact on climate components [7–10]. Several studies have demonstrated that SST has

increased at global scale during the 20th century [11–13], while regional studies in some parts

of the world have found that shallow waters such as gulfs may display a larger variation in SST

increase compared with deep water areas [14]. This may be a result of the relatively lower

water depth in shallow water bodies [15–17]. Gulfs are mainly affected by their surrounding

land mass and therefore the SST in such water bodies is also affected by air temperature, which

consequently leads to more variability. For example, the decadal rate of SST increase in Narra-

gansett Bay, USA, which is about 1.1 ˚C, is four times greater than that of the main ocean [18].

The Persian Gulf and Gulf of Oman (PG&GO) are important water bodies from an eco-

nomic, political, environmental, and social perspective. Sea surface temperature in PG&GO

has shown an increasing trend during recent decades [19–25]. However, climate change effects

on SST variations are not similar in either time or space and, although reported results reveal

an increasing trend in global mean SST, data on the trends at regional level are limited and

sometimes inconsistent [8,26,27]. In addition, climate change effects on future trends and vari-

ations in SST will be different depending on region, due to driving forces including potential

change in ocean circulation and internal climate variability, ice cover, thermal stability, and

ocean mixing layer depth [28]. Therefore, far-reaching analysis at regional scale using mea-

sured SST and prediction of future SST would help authorities to mitigate harmful effects of

global warming on marine ecosystems. In particular, long-term prediction of SST is important

at regional scale for PG&GO, due to local effects on marine ecosystems, local climate, and

beyond. Researchers have attempted to project future SST using different types of global circu-

lation models [29–31]. However, these models are complex and consist of different compo-

nents such as atmosphere, ocean, land, sea ice, chemistry, and biology [32]. This makes them

data heavy and they require large amounts of measured data in order to make reliable predic-

tions. A simpler model may be relevant when data availability is sparse.

The aim of this study was to evaluate spatiotemporal variations in SST across PG&GO,

which is located in the Middle East between Iran and the Arabian Peninsula. For this purpose,

variations in daily optimum interpolated SST anomaly (DOISSTA) data for PG&GO during

the past four decades, which are available from the National Oceanic and Atmospheric

Administration (NOAA) in the United States, were analyzed. The analysis comprised two

stages. In the first stage, spatiotemporal descriptive statistics on the DOISSTA data were inves-

tigated for PG&GO. In the second stage, the proper orthogonal decomposition (POD) method

was used to capture dominant modes of DOISSTA. The POD model have previously been

shown to represent accurately the pattern of DOISSTA variation in the northeastern part of

the Indian Ocean [33]. In addition, SST across PG&GO during the 21st century was predicted

using the POD model, which learns potential future warming patterns from the past behavior

of historical DOISSTA trends. The POD approach has been widely applied in the field of

computational fluid dynamics, but its application has been more rarely reported in oceanic

and atmospheric studies [34,35].

Study area

The Persian Gulf and Gulf of Oman, a climate change hotspot [36], borders Iran in the north,

Iraq and Pakistan in the northwest and northeast, respectively, and Oman, United Arab Emir-

ates, Qatar, Kuwait, Bahrain, and Saudi Arabia in the south (Fig 1). The water mass is con-

nected to the Arabian Sea and ocean water in the east. The climate of surrounding land is dry

Sea surface temperature across the Persian Gulf and Gulf of Oman
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and subtropical. Air temperature exceeds 50 ˚C in summer and evaporation rate exceeds rain-

fall in PG&GO. Mean annual rainfall along the southern and northern coasts is less than 50

and 200 mm, respectively. Freshwater discharge into PG&GO is mainly provided by the rivers

of Iran, among which Arvand Rud provides the largest share. On the south coast, small

amounts of freshwater flow into PG&GO. Higher salinity concentration in PG&GO than in

the Indian Ocean, especially in western parts including the Persian Gulf, is the main factor

influencing water exchange between PG&GO and the ocean [37,38].

The study area consists of the largest and most important transportation network between

Europe, Africa, and South Asia, and it includes two-thirds and one-third of the world’s known

oil and gas reserves, respectively [39]. Moreover, the water body is one of the largest habitats

for marine organisms, such as corals, fish, and mammals [19,20,40,41]. Considering the

importance of PG&GO, environmental and ecosystem protection has always been a challenge

for the surrounding countries. Oil platforms and refineries around the Persian Gulf, discharge

of oil, chemicals, and waste into the water, oil and gas transport in huge tankers, and outbreak

of several wars in this region are the main factors threatening aquatic ecosystems of PG&GO

[19]. This, together with the impact of climate change on aquatic ecosystems of PG&GO, have

caused unsustainable conditions in the water body. A SST increase could exacerbate the effects

of different pollution loads in PG&GO [42].

These challenges have prompted the coastal states of PG&GO to pay particular attention to

this water body during implementation of national development programs, so as to protect the

future sustainability of PG&GO. To assess the success of this work, this study investigated

recent and future trends in SST across PG&GO.

Fig 1. Map showing the study area and surrounding countries.

https://doi.org/10.1371/journal.pone.0212790.g001
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Materials and methods

Previous studies have investigated SST variations using monthly data [43,44], while Shaltout

and Omstedt [45], Hobday et al. [46], and Noori et al. [33] used daily SST data to study marine

extreme temperatures. Generally speaking, the variability is higher for daily SST data than for

data recorded at monthly time scales, reaching about 1.5 times higher in some parts of the

ocean [28]. As monthly SST datasets are averaged from daily data, they are smoothed and do

not properly show extreme high and lows of SST. Therefore, in this study we used DOISSTA

data to reveal the high and low extremes of SST across PG&GO. The DOISTA data available

from the NOAA website have a spatial resolution of 0.25 degree on a daily basis. The data com-

prise multiple sensor observations (satellites, ships, and marine buoys). More details on the

DOISSTA database are presented in Reynolds et al. [47] and Reynolds [48].

The DOISSTA database covers the period from January 1982 to December 2015. The data

are available in NETCDF format and can be loaded and managed by the MATLAB software.

The extracted DOISSTA data for our study area resulted in 609 square 0.25 degree grids, each

of which contained DOISSTA data for a total of 12,784 days. Thus, the final database was a

matrix for DOISSTA containing 609 rows and 12,784 columns, as shown in Fig 2. In the

matrix, rows indicate the number of grids (xi) and columns represent the number of days (ti).
The DOISSTA matrix data were first analyzed in terms of descriptive statistics such as

mean, minimum, maximum, and standard deviation (Fig 3). In the second stage, the POD

method was used to extract the dominant spatiotemporal patterns in DOISSTA for the study

area (Fig 3). The POD method was independently introduced by a number of scientists, e.g.,

Kosambi [49], Loeve [50], Karhunen [51], Pougachev [52], and Obukhov [53]. It is a statistics-

based method that extracts spatiotemporal structures of an objective parameter available from

simulations or experiments [33]. In other words, POD is a linear procedure for extracting a

basis for modal decomposition from an ensemble of data called “snapshots”. It is noteworthy

that, although the POD is a linear procedure, it is as blind as Fourier analysis and makes no

assumptions on the linearity of the objective parameter [54]. However, the main advantage of

POD lies in its mathematical properties, which render the method the preferred basis to use in

many situations [54]. By application of the POD method, low-dimensional approximations of

a high-dimensional problem can be optimally obtained. Therefore, the POD always results in a

finite number of modes that properly capture the dominant features of an infinite objective

problem [55].

When applying POD to the DOISSTA data, spatial and temporal components (Θi(x) and

αi(t), respectively) were considered according to [56,57]:

DOISSTAðx; tÞ ¼
XN

i¼1

aiðtÞYiðxÞ ð1Þ

In order to calculate Θi(x), it is necessary to solve Eq (2) to estimate the eigenvalues and

their corresponding eigenvectors [58,59]:

j1 � lIj ¼ 0 ð2Þ

where λ is the eigenvalue such that λ1� λ2� λ3� � � � � λN� 0 and I is the unit matrix. Hav-

ing eigenvalues and their corresponding eigenvectors, one can calculate Θi(x) using Eq (3)

[60,61]:

Θ1ðxÞ ¼
XN

i¼1

b1iDOISSTAðiÞ;Θ2ðxÞ ¼
XN

i¼1

b2iDOISSTAðiÞ; . . . ;ΘNðxÞ ¼
XN

i¼1

bNiDOISSTAðiÞ ð3Þ

Sea surface temperature across the Persian Gulf and Gulf of Oman
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where βii are eigenvectors corresponding to the eigenvalues. Finally, αi(t) can be calculated by

[62,63]:

aðtÞ ¼ ðDOISSTAðx; tÞ;YðxÞÞ ð4Þ

In the POD application, the first few eigenvalues are most important, as they represent the

main energy in the system (here DOISSTA variations in PG&GO) [64]. Thus, by using the

first few modes (K) corresponding to the first few calculated eigenvalues, it was possible to rep-

resent DOISSTA variations in PG&GO. In addition, using just the first few modes one can

regenerate DOISSTA data using Eq (5) [56].

DOISSTAðx; tÞ ffi
XK

i¼1

aiðtÞYiðxÞ K � N ð5Þ

By considering the fact that only αi(t) will change in the future, Noori et al. [33] updated Eq

Fig 2. Prepared daily optimum interpolation SST anomaly (DOISSTA) data in matrix format.

https://doi.org/10.1371/journal.pone.0212790.g002
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(5) so that it can be used for prediction as:

DOISSTAðx; t þ lÞ ffi
XK

i¼1

aiðt þ lÞYiðxÞ K � N ð6Þ

where l is the future target time.

According to “Future Prediction of SST” in Fig 3, we extrapolated αi(t) from 2016 to 2100.

Thereafter, the model performance was checked by comparing predicted and measured SST

data available from the NOAA website during the control period 2016–2018. Finally, SST data

were estimated by application of Eq (6) for PG&GO during 2020–2100. Note that the devel-

oped POD model had a spatial and temporal resolution equal to the DOISSTA data used, i.e.,

0.25 degree and one day, respectively.

The POD model predicted SST based on the assumption that it will continue to develop

according to the pattern embedded in the historical records. Sanford et al. [65] report that

emissions of greenhouse gases have been consistent with the representative concentration

pathway 8.5 (RCP8.5) of the Fifth Assessment Report of the Intergovernmental Panel on Cli-

mate Change (IPCC) [66] from the beginning of 2005. RCP8.5 is similar to emissions scenario

Fig 3. Schematic diagram of the analytical procedure involving the POD method used in the present study.

https://doi.org/10.1371/journal.pone.0212790.g003
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A1FI used in the Fourth Assessment Report of the IPCC [67]. Therefore, the POD predictions

can be expected to be comparable with those projected by global circulation models such as

the Community Model Inter-comparison Project Phase 5 (CMIP5) based on RCP8.5 [68].

Results and discussion

Descriptive statistics

The mean, minimum, maximum, and standard deviation in DOISSTA for PG&GO (including

609 grids with a spatial resolution of 0.25 degree) are shown in Fig 4A–4D, respectively. As can

be seen from Fig 4A–4C, there was an increase in the mean, minimum, and maximum trends

of DOISSTA, corresponding to approximately 1 ˚C over 34 years. This increasing trend in

DOISSTA for PG&GO confirms findings by other researchers [21–25,33]. It is worth noting

that, even though the increasing trend had a low gradient, it may still be important due to the

sensitive marine ecosystem in PG&GO [20,69]. For a better understanding of the variations in

DOISST (i.e., not the anomalies) in the study area, mean annual DOISST was calculated for all

609 grids in the region over the 34-year period (Fig 4E). As can be seen from the diagram,

there was a gradually increasing trend in mean annual DOISST over the period, with the trend

being more pronounced in the beginning of the period (1982–1998) and thereafter relatively

stable up to 2015. There was a “hiatus” in the period 1998–2012, due to lower warming rates in

ambient air temperature compared with the average warming rate (long-term) and increasing

rates of air temperature forecast by climate models [70]. Note that this remains to be con-

firmed, although it has been detected for both SST and air temperature [70,71]. High DOISST

also occurred in 1998–1999, 2002, 2006, 2010, and 2015, years that were subjected to El Niño-

Southern Oscillation (ENSO) that eventually led to unusually large DOISST. Some researchers

have reported unusually strong and positive DOISST across PG&GO in 1998, 2002, 2006, and

2010, possibly as a result of the Indian Ocean Zonal Mode, which is connected to ENSO

[20,22,72]. A link between positive DOISSTA in PG&GO and ENSO status in the Pacific has

also reported [41].

The spatial variation in minimum, maximum, and standard deviation of DOISSTA are

shown in Fig 4F–4H, respectively. A generally decreasing trend in minimum values from east

to west was clearly evident in the study area (Fig 4F). In other words, the Persian Gulf, located

in the western part of the study area, has experienced smaller DOISSTA than the Gulf of

Oman. The minimum values of DOISSTA occurred along the southern coast of the Persian

Gulf, between the Bahrain and Qatar coastlines (Gulf of Salwah), and in the northernmost

areas of the Persian Gulf, where the river Arvand Rud discharges into the Persian Gulf. The

northernmost areas of the Persian Gulf experienced the maximum values of DOISSTA. These

areas are the shallowest parts of the Persian Gulf, where the water temperature is highly

affected by the air temperature of the surrounding dry land. Furthermore, the water tempera-

ture of Arvand Rud, which differs from that of the Persian Gulf, plays a key role in the fluctua-

tion in SST in the northernmost parts of the gulf. Similar to the minimum values, there was an

increasing trend in maximum values of DOISSTA from east to west (Fig 4G). As regards the

standard deviation of DOISSTA, it appeared that the majority of the Gulf of Oman experi-

enced the smallest variation, due to its greater water depth and higher latent heat of vaporiza-

tion (Fig 4H). The central parts of the Persian Gulf and locations close to the Strait of Hormuz

experienced low variation in DOISSTA, due to greater water depth compared with other parts

of the gulf. The southern coast and northernmost part of the Persian Gulf experienced the

highest DOISSTA variations, as a result of being affected by air temperature of the surround-

ing dry land, shallow water depths in the region, and connections between the Arvand Rud

Sea surface temperature across the Persian Gulf and Gulf of Oman
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Fig 4. Historical trends in (A) mean values, (B) minimum values, (C) maximum values, and (D) standard deviation

(StD) values of DOISSTA across the Persian Gulf & Gulf of Oman (PG&GO); (E) mean annual values of daily

optimum interpolation sea surface temperature (DOISST) across PG&GO; and (F) spatial distribution in minimum

values, (G) maximum values, and (H) standard deviation values of DOISSTA across PG&GO.

https://doi.org/10.1371/journal.pone.0212790.g004
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and the Persian Gulf. These findings are comparable with results reported by Nandkeolyar

et al. [22].

POD results

Mode extraction. The first 10 calculated eigenvalues, along with their conserved system

energy, are shown in Fig 5. The first eigenvalue conserved about 60% of the system energy and

the first five eigenvalues represented about 90% of total energy. In general, there is no a distinct

formula to choose the number of modes corresponding to the eigenvalues for further investi-

gation of an objective parameter. It is usually determined based on an energetic threshold cri-

terion greater than 90% as used by some researchers [56,57,64]. In addition, in this study, just

the first five modes have to be included as the other eigenvalues are too small to be of interest

(Fig 5). Thus, using the first five modes corresponding to the first five eigenvalues, it was possi-

ble to determine the dominant pattern of DOISSTA variation in PG&GO.

The space-dependent terms for the first five modes (Θ1(x) to Θ5(x), respectively) are shown

in Fig 6A–6E, respectively. According to the results for Θ1(x), the Persian Gulf has experienced

more variation in DOISSTA than the Gulf of Oman (Fig 6A). In addition, the shallow parts of

PG&GO, which are mostly located along the southern coasts and northernmost parts of the

Persian Gulf, showed the largest variation. Based on the results for Θ1(x), the Gulf of Oman

has experienced the least variation, due to its greater depth than the Persian Gulf. These find-

ings are in line with results reported by Nandkeolyar et al. [22]. Comparing the results of

Θ1(x) with the spatial distribution of standard deviation calculated in the previous stage (see

Fig 4H) revealed that, although the results were rather similar, there were some differences.

These differences were mainly due to consideration of information from all grids in the study

area for calculation of Θ1(x), which leads to more realistic results [73]. For example, consider-

ing the shallower water depth in the Persian Gulf than in the Gulf of Oman, DOISSTA in the

Persian Gulf can be expected to be more affected by the air temperature of surrounding dry

land, which displays greater variation. Therefore, Θ1(x) more accurately reflected the actual

spatial variation in DOISSTA in PG&GO than the calculated standard deviation in Fig 4H.

Moreover, the Θ2(x) results were similar to the results for Θ1(x), especially in the Persian Gulf.

For example, based on the Θ2(x) results, there was significant variation in DOISSTA along the

southern coast and the northwestern part of the Persian Gulf during the study period (Fig 6B).

In addition, the Θ3(x) and Θ4(x) results (shown in Fig 6C and 6D, respectively) support the

results for Θ1(x), with both components reflecting higher variation in southern and north-

ernmost parts of the Persian Gulf. However, the results for Θ5(x) showed little compatibility

with Θ1(x), as they indicated that coasts along Oman and United Arab Emirates in the Gulf of

Oman experienced more variation in DOISSTA (Fig 6E).

The calculated temporal terms of all first five modes (α1(t) to α5(t), respectively) are shown

in Fig 7A, while those for α1(t) to α5(t) are shown separately in Fig 7B–7F, respectively. It is

worth noting that α1(t) had greater importance than the other terms due to the significance of

the first mode (Θ1(x)). As Fig 7A clearly shows, α1(t) to α5(t) fluctuated with an annual wave-

length that matched the annual change cycle in SST. According to the results for α1(t) (Fig 7B),

the variation in DOISSTA was incremental and increased with a low gradient during the

34-year study period, as also reported by others [21–25,33], and the minimum DOISSTA

occurred in late February each year. Thereafter, there was a warming trend, with DOISSTA

reaching a maximum by the middle of August, followed by a cooling period, so that DOISSTA

again reached a minimum in late February. This cycle was repeated for α1(t) in each year in

the study period, and is in line with reported results for SST variation in the study area [17].

Based on the high percentage of system energy conserved by the first mode, the results for

Sea surface temperature across the Persian Gulf and Gulf of Oman
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Fig 5. The first 10 calculated eigenvalues and their conserved energy percentage in the Persian Gulf & Gulf of Oman (PG&GO).

https://doi.org/10.1371/journal.pone.0212790.g005

Fig 6. Pattern of space-dependent terms for (A) the first mode Θ1(x), (B) the second mode Θ2(x), (C) the third mode Θ3(x), (D) the

fourth mode Θ4(x), and (E) the fifth mode Θ5(x).

https://doi.org/10.1371/journal.pone.0212790.g006
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α1(t) represented a high percentage (about 60%) of the DOISSTA variation in PG&GO. The

results for α2(t), α4(t), and α5(t) indicated a mild decreasing trend for DOISSTA (Fig 7C, 7E

and 7F, respectively). These findings clearly suggest a cold bias in DOISSTA across PG&GO,

which matches reported results obtained by running climate models [74]. This cold bias in

DOISSTA across PG&GO regularly expands in winter and continues into spring and summer

[75].

The high variation in DOISSTA across PG&GO compared with the concurrent global aver-

age may be a result of different phenomena [21]. El Niño-Southern Oscillation and the Indian

Ocean Zonal Mode are undoubtedly two processes that are important drivers of DOISSTA in

PG&GO. However, it has been suggested that the interplay between ENSO and the Indian

Ocean Zonal Mode is not the only mechanism influencing DOISSTA in PG&GO [41]. Other

investigations have indicated that a positive North Atlantic Oscillation, the Siberian high pres-

sure system, and Shamal wind events have important effects on DOISSTA [76,77]. Further-

more, consistent warming trends for PG&GO have been reported since 1950, and especially

since 1970 [78]. The air temperature over PG&GO is rapidly increasing and the increase may

exceed +4 ˚C by the end of this century [79]. Furthermore, there is some evidence of a weaken-

ing influence of the Siberian high pressure system that could be a result of an increasing trend

in air surface temperature over PG&GO [80]. All these results indicate that the positive rate of

warming of PG&GO water could be related to the increasing trend in climate variables such as

Fig 7. Pattern of time-dependent terms for (A) the first mode α1(t), (B) the second mode α2(t), (C) the third mode α3(t), (D) the

fourth mode α4(t), and (E) the fifth mode α5(t).

https://doi.org/10.1371/journal.pone.0212790.g007
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air temperature in the study area, as well as strong effects of oceanographic events such as

ENSO, the North Atlantic Oscillation, and the Indian Ocean Zonal Mode.

Model performance for control period 2016–2018. The α1(t) to α5(t) values for the

period 2016–2100 estimated using the POD model are shown in Fig 7B to 7F, respectively

(extrapolated values are shown in brown). The model performance was checked by comparing

predicted and measured SST data available from the NOAA website for the control period

2016–2018. The mean absolute relative error between SST values predicted by the POD model

and measured values for 2016–2018 is shown in Fig 8A. The error was less than 2% for more

than 50% of days in 2016, 2017, and 2018, while it increased to about 2.7% for more than 90%

of days in 2016, 2017, and 2018 (Fig 8A). Based on these results, it can be concluded that the

POD model reasonably predicted SST for PG&GO.

Predictions: 2020–2100. The POD model was used to predict SST across PG&GO for the

period 2020–2100. Spatial trends in mean monthly SST in February, May, August, and

November (representing winter, spring, summer, and fall respectively), are illustrated in Fig

8B–8E for the selected years 2030, 2050, 2070, and 2100, respectively. The spatial distribution

of mean annual SST for the selected years 2015, 2030, 2050, 2070, and 2100 is shown in Fig

9A–9E, respectively. In addition, the spatial distribution of differences between the predicted

SST shown in these diagrams and those measured in 2015 are illustrated in Fig 9B–9E. All dia-

grams clearly show a warming trend in PG&GO in the future, and a more severe warming

trend in the Persian Gulf than in the Gulf of Oman.

Based on Fig 8B–8E, summer seasons in the Persian Gulf will experience most warming by

2100, while fall seasons will experience least. Summer seasons in the Gulf of Oman will also

experience most warming by 2100, while winter seasons will experience the least warming in

that case. In general, the maximum difference between SST measured in 2015 and projected

by the POD model was observed for the Persian Gulf, where SST was 4.3 ˚C higher by August

2100. The greatest differences for the Persian Gulf in other future years were 2.1, 2.8, and 3.4

˚C in May 2030, May 2050, and August 2070, respectively. No previous study has projected

SST for PG&GO by the end of 21st century, but the results obtained are in line with values

reported for other marine environments. For example, the monthly SST projected by global

circulation models under RCP8.5 indicates a rise of 4.8 and 3.7 ˚C for six large marine ecosys-

tems of the Northwest Atlantic by the end of August and February 2100, respectively [81].

Results from 26 models in CMIP5 under scenario RCP8.5 reveal an increase of up to 6 ˚C

from August 1976 to August 2099 for monthly SST over large marine ecosystems adjacent to

Europe, North America, and the Arctic Ocean [28]. Additionally, SST over the Mediterranean

Sea during summer and winter seasons has been estimated to rise by 2.9 and 0.5 ˚C, respec-

tively, under scenario RCP8.5 by the end of 21st century [44].

In regards to mean annual warming, this study clearly showed that the north coast of the

United Arab Emirates and south coastlines of the Strait of Hormuz will experience the highest

SST in the future, reaching 32 ˚C by 2100 (Fig 9B–9E). Mean annual (maximum) SST across

PG&GO may increase from 28.5 (29.9) ˚C in 2015 to 30.7 (31.8) ˚C in 2100. Such an increase

would threaten natural habitats in PG&GO [82]. The increasing trend in the Mediterranean

Sea is reported to about 3.1 ˚C under scenario A2 (same as A1FI, represents the highest emis-

sions of greenhouse gases) for the period 1960–2099 [29]. The SST off the Australian coast is

predicted to increase by 2–4 ˚C under RCP8.5 by 2100 [83]. Chust et al. [84] predict a positive

change in SST under scenario A1B (represents moderate emissions of greenhouse gases) over

the Black Sea, of around 3.7 ˚C during 2080–2100 relative to 1980–2000. The increase in

annual SST for PG&GO predicted in the present study also exceeded the up to 1.3 ˚C increase

in global SST during 21st century predicted by Aral and Guan [31]. In another study, the SST
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Fig 8. (A) Mean absolute relative error between sea surface temperature (SST) values for the Persian Gulf & Gulf of Oman

(PG&GO) predicted by the proper orthogonal decomposition (POD) model and measured during the period 2016–2018;

and spatial trends in mean monthly SST in (B) February (representing winter), (C) May (representing spring), (D) August

(representing summer), and (E) November (representing fall) in the selected future years 2030, 2050, 2070, and 2100.

https://doi.org/10.1371/journal.pone.0212790.g008
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Fig 9. (A) Spatial distribution of mean annual sea surface temperature (SST) across the Persian Gulf & Gulf of Oman

(PG&GO) for (A) the year 2015, (B) the year 2030 and difference between 2030 and 2015, (C) the year 2050 and difference

between 2050 and 2015, (D) the year 2070 and difference between 2070 and 2015, and (E) the year 2100 and difference

between 2100 and 2015.

https://doi.org/10.1371/journal.pone.0212790.g009
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in the Western English Channel was predicted to increase by around 0.5 and 2.5 ˚C under sce-

narios RCP2.6 and RCP8.5, respectively, by the year 2100 [85].

Relative to the year 2015, our predicted monthly maximum SST warming in PG&GO by

the end of 21st century is close to that estimated for large marine ecosystems and exceeds that

estimated for the Mediterranean Sea. In addition, we found that summers generally showed a

stronger trend than winters. This may be a result of integration of greenhouse gas warming

over a much thinner climatological mixing layer depth in warm (summer) than in cold (win-

ter) seasons, thereby intensifying the SST seasonal cycle during the 21st century [28].

Conclusions

This study evaluated variations in DOISSTA across PG&GO during the past 34 years using

descriptive statistics and predicted SST by 2100 using a POD model. Investigations of DOIS-

STA based on statistical indices revealed an increasing trend in mean, minimum, and maxi-

mum DOISSTA of about 1 ˚C during the 34-year study period, likely due to the impacts of

climate change. In the study period, the Persian Gulf experienced smaller and larger DOISSTA

than the Gulf of Oman. The spatial distribution of the first mode calculated by POD revealed

maximum variation in DOISSTA in the Persian Gulf, especially along its southern coasts

between Bahrain and Qatar coastlines and in the northernmost area, where the river Arvand

Rud discharges into the gulf.

Prediction of SST indicated that summer seasons in PG&GO will experience most warming

by 2100, while the warming effect will be smaller for fall and winter seasons. The monthly max-

imum difference between SST measured in 2015 and SST predicted by the model for 2030,

2050, 2070, and 2100 was 2.1 (May), 2.8 (May), 3.4 (August), and (August) 4.3 ˚C, respectively.

Future mean annual warming in PG&GO relative to 2015 was predicted to be highest along

the north coast of the United Arab Emirates and south coastlines of the Strait of Hormuz,

where SST may reach 32 ˚C by 2100. Mean annual (maximum) SST across PG&GO was pre-

dicted to increase from 28.5 (29.9) in 2015 to 30.7 (31.8) ˚C in 2100. This 2.2 ˚C increase in

mean annual SST would threaten natural habitats and marine ecosystems in PG&GO.
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