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THE BIGGER PICTURE Decreasing projection views to a lower X-ray radiation dose usually leads to severe
streak artifacts. To improve reconstructed image quality from sparse-view data, we develop amulti-domain
integrative Swin transformer (MIST) network in this study. The proposed MIST-net incorporates lavish
domain features from data, residual data, image, and residual image using flexible network architectures,
which help deeply mine the data and image features. To detect image features and protect image edges,
the trainable edge enhancement filter is further incorporated to the network for improving encode-decode
ability. A high-quality reconstruction transformer was designed to improve the ability of global feature
extraction. Our results from both simulation and real cardiac data demonstrated the great potential ofMIST.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To
improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-
net) was developed and is reported in this article. First, MIST-net incorporated lavish domain features
from data, residual data, image, and residual image using flexible network architectures, where a residual
data and residual image sub-network was considered as a data consistency module to eliminate interpola-
tion and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and
protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to
capture image global features. The experimental results on numerical and real cardiac clinical datasets with
48 views demonstrated that our proposed MIST-net provided better image quality with more small features
and sharp edges than other competitors.
INTRODUCTION

Computed tomography (CT) has been widely used in medical

diagnosis and industrial detection fields because of its excellent

imaging ability.1 Especially in 2020, CT became an essential

technology to detect and diagnose coronavirus disease 2019

(COVID-19).2 Although CT scans provide practical and accurate

diagnostic results, they are also increasingly harmful to human

bodies with radiation dose.3 An effective approach to reduce ra-

diation dose is sparse-view CT reconstruction,4,5 in which only

part of the projection data are used for image reconstruction.
This is an open access article under the CC BY-N
In this case, traditional reconstruction algorithms such as filtered

back-projection (FBP)6 lead to serious streaking artifacts as well

as low image quality.

Since the emergence of artificial intelligence,7–9 many deep

learning-based methods have been developed to improve the

quality of sparse-view CT reconstruction.10–12 They can be

divided into three categories: image domain restoration,13

dual-domain restoration,14,15 and iterative reconstruction

methods.16,17 Image domain restoration methods are also called

post-processing methods. They directly process low-quality im-

ages as the input and ground truth as output of network, which
Patterns 3, 100498, June 10, 2022 ª 2022 The Authors. 1
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means that this kindofmethodsdonot need rawdata. The typical

reconstruction networks include FBPConvNet,13 DenseNet de-

convolution network (DDNet),11 and residual encoder-decoder

convolutional neural network (RED-CNN).10 In addition, Xie

et al.18 used a generative adversarial network (GAN) to remove

limited-angle artifacts. Wang et al.19 presented a limited-angle

CT image reconstruction algorithm based on a U-net convolu-

tional neural network, which can effectively eliminate noise and

artifacts while preserving image structures. As there are no pro-

jection data playing the game, it is difficult to accurately recover

image details and features with streak artifact removal.

The dual-domain deep reconstruction methods usually

concentrate to reconstruct high-quality images by considering

both projection and image domains simultaneously. For

example, Hu et al.20 proposed a hybrid domain neural network

(HDNet), which recovered projection and image information suc-

cessively. Liu et al.21 presented a lightweight structure using

spatial correlation. Zhang et al.22 designed a hybrid-domain con-

volutional neural network for limited-angle CT. Wu et al.23 pre-

sented a dual-domain residual-based optimization network

(DRONE), which performed well in edge preservation and detail

recovery. The dual-domain network can be also applied to

three-dimensional (3D) reconstruction.24 However, the final im-

ages may suffer from secondary artifacts because the errors of

projection interpolation are usually introduced.

Inspired by the classic iteration reconstruction, deep recon-

struction networks can also be designed as unfolding deep

iterative reconstruction. Cheng et al.25 accelerated iterative

reconstruction with the help of deep learning. Chen et al.26 pre-

sented a learned experts’ assessment-based reconstruction

network (LEARN) for sparse-view data reconstruction. Zhang

et al.27 extended the LEARN model to a dual-domain version,

named LEARN++. Xiang et al.28 proposed a fast iterative

shrinkage thresholding algorithm (FISTA) for inverse imaging

problems. Unrolling iterative reconstruction methods can sup-

press noise and artifacts to improve image quality. Nevertheless,

iterative reconstruction methods need huge GPU memory,

which leads to difficulty working with 3D geometry.

In this work, we propose a multi-domain integrative Swin

transformer network (MIST-net) to reconstruct high-quality CT

images from sparse-view projections. Broadly, our network ar-

chitecture consists of three key components: initial recovery,

data consistency correction, and high-fidelity reconstruction. In

the initial recovery, a data extension encoder-decoder block is

first used to extend sparse-view data by deep interpolation.

Then, an end-to-end edge enhancement reconstruction sub-

network reconstructed the initial image for sparse artifact

removal and image edge preservation. However, the projection

domain interpolation may introduce errors to further generate

unexpected artifacts. Therefore, the data consistency module,

which consists of two residual sub-networks (one for residual

projection estimation, the other for residual image correction),

was introduced to reduce errors and improve structural details.
Figure 1. The overall architecture of our proposed MIST-net

(A) The pipeline of the proposed MIST-net.

(B and C) Our network has three modules: initial recovery, data consistency, and h

architecture; (C) the edge enhancement reconstruction sub-network for recoveri

(D) The Swin Recformer network to reconstruct a high-quality image.
Although convolutional neural network (CNN)-based deep

learning reconstruction methods have provided good perfor-

mance, they cannot learn global and long-range image informa-

tion interaction well because of the locality of convolution oper-

ator.29,30 Fortunately, transformers31 have such ability for

modeling long-range information and show good performance

in natural language processing (NLP) tasks.31–33 The proposal

of the vision transformer (VIT)34 shows that transformers can

take place of convolutions in some image processing tasks.35–

37 Therefore, we introduce a hierarchical vision transformer using

shifted windows (Swin)37 in a high-fidelity reconstruction module

to capture long-range dependencies.

Compared with developed CNN-based deep networks for

sparse-view reconstruction in the past few years, our MIST-net

is innovative in several aspects. First, an encode-decode38

structure is used in the initial recovery module to extract deep

features in both data and image domains simultaneously. Spe-

cifically, an edge enhancement reconstruction network in the im-

age domain was designed to recover the image edge. Second,

both data residual and image residual networks are used in

data consistency module to eliminate errors in both projection

and image domains, which contribute to artifact reduction and

subtle structure recovery. Third, a modified Swin reconstruction

transformer (Recformer) extracts both shallow and deep features

in the image domain to ensure final reconstruction results.

The organization of the paper is as follows. First, the main

reconstruction results from our MIST and competitors are re-

ported. We also implement a detailed ablation study including

numerical and real cardiac data to show the advantages of our

MIST-net. We further perform noise analysis experiments to

verify robustness of the model. We then discuss our results

and make conclusions of this work. In the Experimental proced-

ures section, we introduce basic theories and then describe our

proposed MIST-net carefully.

RESULTS

In this study, we developed a multi-domain integrative Swin

transformer network to reconstruct CT images from ultra-sparse

view projections. To obtain initial recovery images, two CNN-

based sub-networks in both projection domain and image

domain were designed. Then, we designed a dual-domain resid-

ual network to eliminate errors and noise. Our proposed Swin

reconstruction transformer (i.e., Recformer) sub-network refined

intermediate results. Figure 1 demonstrates the overall architec-

ture of our MIST-net; more details can be found in the Experi-

mental procedures.

Our model was designed and trained in Python using the

PyTorch framework. All experiments were run on a PC with

48G NVIDIA RTX A6000 GPU, Intel Xeon Gold 6242R CPU at

3.10 GHz and 128 GB random-access memory (RAM). The

configuration of the training network is as follows. Our network

was trained by the Adam optimizer, and the learning rate was
igh-definition reconstruction; (B) the encoder-decoder block with similar U-net

ng an initially reconstructed CT image.
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Figure 2. Visualizations of sparse-view reconstruction in case 1 by using different methods

The first through seventh columns represent ground truth (GT), FBPConvNet, HDNet, DDNet, FISTA, LEARN, andMIST-net counterparts from 48 views. The sec-

ond row shows the difference images relative to the GT, and the third row represents the extracted region of interest (ROI) from first row images. The display

windows for the reconstructed and difference images are [�160 240] HU and [�90 90] HU.
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set to 0.00025. The number of epochs was 50, and batch size

was 1. FBPConvNet,13 HDNet,20 DDNet,11 FISTA,28 and

LEARN26 are treated as comparisons. The root-mean-square er-

ror (RMSE), peak signal-to-noise ratio (PSNR), and structure

similarity index (SSIM) are introduced to quantitatively assess

reconstruction results. Our code is publicly released at https://

zenodo.org/record/6368099.

Simulated data result
To validate the feasibility of our proposed network, we trained

and tested our model on 2016 NIH-AAPM-Mayo Low-Dose CT

Grand Challenge datasets.39 The datasets come from Siemens

Somatom Definition CT scanners at 120 kVp and 200 mAs. To

generalize our model to real datasets, we rearranged datasets

with all scanning and configuration parameters being consistent

with following real cardiac CT datasets. Specifically, the dis-

tances from the X-ray source to the system isocenter and detec-

tor are set as 53.85 and 103.68 cm. The number of detector units

and views are set to 880 and 2,200 respectively. The size of re-

constructed CT images is 5123 512 pixels. Finally, a total num-

ber of 4,665 sinograms of 2,2003 880 pixels were acquired from

10 patients at a normal dose setting, where 4,274 sinograms of 8

patients were used for network training and the remaining 391 si-

nograms from other 2 patients for network testing. Our operation

to obtain sparse data is as follows: for every sinogram of

2,200 3 880 pixels, we sample every 30 views until 48 3 880

pixels have been collected. That means our sampled projection

data can only cover 235.6 degrees. We also sample every

10 views to obtain a projection of 144 3 880 pixels, which is

used as a projection label.

Figures 2 and 3 demonstrated the representative reconstruc-

tion results with cases 1 and 2 from patients 1 and 2 of different

reconstruction networks. It was clearly observed that
4 Patterns 3, 100498, June 10, 2022
FBPConvNet removed most of the artifacts caused by sparse

views, but the image boundaries and details were further de-

stroyed. HDNet obtained better images, but it leads to excessive

image smoothing. DDNet was able to recover some image de-

tails, but its results still contained a few unacceptable artifacts.

Unlike the above-mentioned methods, FISTA and LEARN, two

advanced unrolled deep reconstruction methods, have better

performance in sparse-view reconstruction because they can

effectively improve image quality with richer details and clearer

edges. However, some tiny features were still lost. In contrast

to competitors, our MIST-net improved image quality with the

best details and edges.

To display advantages of MIST-net, the regions of interests

(ROIs) were extracted and magnified in Figures 2 and 3. First,

one can see that the magnified structures marked by arrows 1

and 2 were badly blurred and destroyed by FBPConvNet,

HDNet, and DDNet in Figure 2. In contrast to FBPConvNet,

HDNet, and DDNet, FISTA and LEARN achieved better images.

However, FISTA-net and LEARN results were still inferior to our

MIST network. Besides, FBPConvNet, HDNet, and DDNet

missed details and over-smoothened tissue edges in circle 3.

Compared with FBPConvNet, HDNet, and DDNet, FISTA-net

and LEARN almost eliminated artifacts and achieved better im-

ages. However, it was still found that the structure of tissue

was slightly fuzzy, which exposed its weakness on edge recov-

ery. On contrary, our MIST-net obtained the best reconstructed

result with clear edges and rich details in the image region indi-

cated circle 3.

On the other hand, the image structure indicated by circle 4 in

Figure 3 demonstrated the advantages of MIST-net in terms of

structural fidelity. The image feature highlighted by circle 4 was

almost lost or damaged by FBPConvNet, HDNet, and DDNet.

FISTA and LEARN could retain a few structural features, but

https://zenodo.org/record/6368099
https://zenodo.org/record/6368099


Figure 3. Visualizations of sparse-view reconstruction in case 2 by using different methods

The first through seventh columns represent ground truth, FBPConvNet, HDNet, DDNet, FISTA, LEARN, and MIST-net counterparts from 48 views. The second

row shows the difference images relative to the GT, and the third row shows the magnification ROIs. The display windows for the reconstructed and difference

images are [�160 240] HU and [�90 90] HU.
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they were still blurry. In addition, the feature with arrow 5 showed

that DDNet and FBPConvNet produced a gray intensity shift,

while FISTA, LEARN, and MIST-net can address this problem.

To further explain the superiority of our MIST-net in terms of

fine texture retain, the easily overlooked details marked with ar-

rows 6 and 7 are emphasized in Figure 3. With these highlight

structures, it can be inferred that FBPConvNet, HDNet, and

DDNet smeared small image features. FISTA and LEARN recov-

ered some image features missed by the above-mentioned

methods, but the finer image features such as that indicated

by the arrow 6 were destroyed. As a result, compared with other

methods, MIST-net achieved the best results that look quite

similar to ground truth. More reconstruction experimental results

can be found in Appendix A in Supplemental experimental pro-

cedures (see Figure S1).

We alsomade a quantitative evaluation of all methods, and the

results are quantified in Table 1. It was observed that our MIST

network produced better results than the FBPConvNet, HDNet,

DDNet, FISTA, and LEARN methods. Table 1 demonstrates

that FBPConvNet and DDNet achieved the worst performance

in PSNR, SSIM, and RMSE, which indicated that the perfor-

mance of post-processing methods was severely affected by
Table 1. Quantitative evaluation of 48 projection reconstruction re

Views FBPConvNet HDNet

48 RMSEY case 1 27.1508 24.132

case 2 28.7080 22.412

PSNR[ case 1 38.3953 39.419

case 2 37.0957 39.246

SSIM[ case 1 0.9573 0.9625

case 2 0.9647 0.9672
sparse-view artifacts. Compared with FBPConvNet, concen-

trating only on image domain, HDNet stacked two U-net struc-

tures respectively in both projection and image domains. HDNet

had better scores than FBPConvNet, which benefits from the

effectiveness of hybrid domain processing. Meanwhile, FISTA

and LEARN certainly outperformed FBPConvNet, HDNet, and

DDNet in all evaluations because of iterative processing. In Ta-

ble 1, our proposed MIST-net method has the smallest RMSEs

and the biggest PSNRs and SSIMs compared with those com-

petitors. These quantitative results validated the advantages of

the proposed MIST-net, demonstrating the best performance.

More statistical quantitative results from all simulation testing

datasets are given in Table 2, and they demonstrate that our

MIST-net can obtain the best performance. Finally, we also per-

formed the experiments with more views (i.e., 64 views), and the

results are given in Appendices A and B of Supplemental exper-

imental procedures (Figure S2; Table S1).

Clinical cardiac validation
To further verify the performance of MIST-net, the real dataset

used by Yu et al.40 was used. The curved cylindrical detector

contains 880 units, and there are 2,200 views with a full scan.
sults from two simulated cases

DDNet FISTA LEARN MIST-net

3 24.6031 18.1993 18.0470 16.2775

1 29.1107 17.7193 17.5947 15.8242

0 39.2512 41.8699 41.9429 42.8392

1 36.9747 41.2868 41.8392 42.2693

0.9602 0.9744 0.9760 0.9800

0.9635 0.9752 0.9784 0.9818

Patterns 3, 100498, June 10, 2022 5



Table 2. Quantitative evaluation of 48 projection reconstruction results from simulated testing datasets

Views Methods RMSE PSNR SSIM

48 FBPConvNet 27:5520 ±3:8158 38:0544 ±1:4500 0:9596±0:0095

HDNet 23:9574 ±3:3687 39:2675 ±1:2331 0:9649±0:0076

DDNet 25:9597 ±3:7597 38:5814 ±1:6092 0:9611±0:0091

FISTA 19:4109 ±2:1991 41:0691 ±1:0308 0:9730±0:0046

LEARN 17:7858 ±2:0657 41:8307 ±1:0600 0:9782±0:0043

MIST-net 16:1408 ±1:7620 42:6700 ±1:0895 0:9817±0:0037
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The diameter of field of view (FOV) covers 49.83 49.8 cm2, with

an imagematrix of 5123 512 pixels. The distance from the X-ray

source to the system isocenter and the detector array were 53.85

and 103.68 cm. Because we trained the reconstruction network

using American Association of Physicists in Medicine datasets,

here, we transferred the trained network to evaluate reconstruc-

tion performance using real dataset, which can be also benefit to

evaluate the generalization ability of our model. We also ex-

tracted 48 views from short scan to test our MIST-net for

sparse-view CT imaging. It is worth mentioning that the data dis-

tribution of real datasets is different from simulated datasets.

Thus, we pre-processed clinical cardiac dataset to keep its

data distribution consistent with that of training datasets. Specif-

ically, we first normalized the clinical dataset and then mapped it

to the distribution of numerical simulated data.

Figure 4 shows reconstruction results from 48 views using

different reconstruction methods. The full-view FBP reconstruc-

tion also contained some noise and short-scan artifacts.41

Compared with these competitors, our proposed MIST-net

achieved the best reconstruction results. Firstly, as shown in cir-

cle 8, MIST-net achieved the structure closest to the ground

truth, which adequately embodies the advantages of MIST-net

in terms of structural fidelity. In addition, the image feature
Figure 4. Clinical cardiac CT reconstructions from sparse-view data b

The first through seventh columns stand for the FBP reconstruction from full-view

from 48 views. The second and third rows show ROIs. The display windows for
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marked by arrow 9 was not recovered by FBPConvNet, HDNet,

DDNet, FISTA, and LEARN, but the proposed MIST recovered

the structure, which showed that MIST-net was good at details

and feature recovery. Again, MIST-net reconstructed clearer im-

age edges and showed finer structures. The clearest edges indi-

cated by arrow 10, which cannot be obviously reconstructed by

other competitors, strongly confirmed the advantages of the pro-

posedMIST-net. On the contrary, the edges in the reconstructed

images were hard to distinguish from FBPConvNet, HDNet, and

DDNet. FISTA and LEARN provided a better reconstruction in ar-

row 10, but the details were still compromised. Furthermore, the

feature indicated by arrow 11 was destroyed from FISTA-net.

Compared with our proposed model, other non-iterative

methods performed unsatisfactorily. Obviously, FBPConvNet

could not recover the image structure indicated by arrow 12.

Benefiting from a dual-domain design, HDNet suppressed

most of artifacts and noise, but it still caused fuzziness as well

as sparse-view artifacts, which are clearly indicated by arrows

13 and 14. Furthermore, benefiting from the iterativemechanism,

the reconstructed image from FISTA and LEARN were better

than those obtained by FBPConvNet, HDNet, and DDNet. In

edge restoration, FISTA and LEARN were still worse than our

proposed network. The real experiments further demonstrated
y using different networks

data, FBPConvNet, HDNet, DDNet, FISTA, LEARN, andMIST-net counterparts

the reconstructed images are [�800 1,000] HU.



Figure 5. Reconstruction results in case 3

The first through third columns represent ground truth and reconstructions from DU-RecNet andMU-RecNet counterparts with 48 views. The second row shows

the ROIs. The display window for the reconstructed images is [�160 240] HU.
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that the proposed network performed consistently better than

the other competitors in practice. They also demonstrated the

power of the transformer in the sparse-view CT reconstruction.

Ablation exploration and generalization analysis
For analyzing andbenchmarking theproposednetworkMIST-net,

we further focused on ablation explorations to validate the effec-

tiveness of different modules. First, the DU-RecNet represents a

simplified MIST-net that uses two encoder-decoder blocks to

replace the edge enhancement reconstruction sub-network and

SwinRecformersub-network.TheMU-RecNetdenoted themodi-

fied DU-RecNet by removing data consistency module. All net-

works were trained in the sameway. As shown in Figure 5, the re-

sidual domainprocessing is helpful for artifact reduction anddetail

recovery. Regarding circle 1 and arrow 2 results, DU-RecNet

could recover better features than MU-RecNet, as the residual

domain sub-network was designed to eliminate interpolation er-

rors. TheRMSE,PSNR,andSSIM results further explainedadvan-

tage of residual domain sub-network.

We also constructed an EE-RecNet to verify the effectiveness

of the edge enhancement reconstruction network. Compared

with DU-RecNet, EE-RecNet only added the edge enhancement

reconstruction network. The architecture of EE-RecNet was

similar to MIST-net, except that the final Swin Recformer

network was replaced by a U-net. Figure 6 shows reconstruction

results fromDU-RecNet, EE-RecNet, andMIST-net. As shown at

the top of Figure 6 (case 4), DU-RecNet result contained a few

artifacts due to sparse-view down-sampling. The edge enhance-

ment reconstruction module indeed reduces artifacts in the
image domain and helps overcome edge over-smoothness.

Additionally, we found that image region marked with circle 3

was destroyed by DU-RecNet. Both EE-RecNet and MIST-net

reconstructed the general outline, but EE-RecNet lost some de-

tails with arrow 4. Furthermore, from the bottom of Figure 6 (case

5), one observes that Swin transformer was also important for

high-contrast structural recovery, low-contrast feature recon-

struction, and textural detail preservation. The detail indicated

by arrow 5 was blurred by DU-RecNet, while MIST-net could

reconstruct it well. In addition, features marked by arrows 6

and 7 were very similar to the ground truth, but they were blurry

in the images reconstructed by DU-RecNet and EE-RecNet. The

RMSE, PSNR, and SSIM metrics were computed to confirm the

gain with the edge enhancement reconstruction sub-network.

The quantitative results in terms of RMSE, PSNR, and SSIM

have clearly illustrated the merits of our proposed MIST-net.

The statistical quantitative evaluations of ablation experiments

were computed in terms of RMSE, PSNR, and SSIM, and their

results were summarized in Table 3. It can be seen that our

MIST-net can obtain the best quantitative statistical results in

terms of mean and SD than other networks.

To demonstrate the influence of different modules, we also did

an ablation experiment on the real cardiac CT dataset. Figure 7

shows the clinical cardiac reconstructed images from48viewsus-

ing relative methods. The performance of MU-RecNet was

compromised, and the edges and details were hard to distinguish.

DU-RecNet reconstructed observed features but still caused

hazy edges, which are clearly indicated by an arrow in Figure 7.

EE-RecNet recovered details but produced sparse-view artifacts.
Patterns 3, 100498, June 10, 2022 7



Figure 6. Comparison of different networks reconstruction results in cases 4 (top) and 5 (bottom)

The first through fourth columns represent ground truth and reconstructions fromDU-RecNet, EE-RecNet, andMIST-net counterparts from 48 views. The second

row of each part shows the ROIs. The display window for the reconstructed images is [�160 240] HU.
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Compared with competitors, MIST-net delivered the best image

quality and evaluation indicators.

Todemonstrate the advantagesof ourMIST-netwith similar pa-

rameters andmemory,wedesign a pureCNNstructure as a base-

line, which uses five ResUnets to replace all parts of the proced-

ure. Then, we study the effect of edge enhance sub-network and

dual transformerswith similar parameters. The result canbe found
8 Patterns 3, 100498, June 10, 2022
in Table 4. The ‘‘Baseline + Edge-Enhance’’ is similar to the overall

structure of EE-RecNet except for the number of parameters.

Compared with MIST-net, ‘‘Baseline + Dual-SwinRec’’ uses

Swin transformer in both the edge enhancement sub-network

and the last reconstructionblock.With similar parameters, Table 4

shows thatbothedgeenhancementRec-NetworkandSwin trans-

former play important roles in controlling image quality.



Table 3. Quantitative evaluation of ablation experiments

Views Network RMSE PSNR SSIM

48 DU-RecNet 19:3569±3:9817 41:2178± 2:1800 0:9773± 0:0064

MU-RecNet 25:4315±3:1333 38:7374± 1:3734 0:9651± 0:0066

EE-RecNet 18:0518±1:9057 41:6966± 1:1847 0:9789± 0:0042

MIST-net 16:1408±1:7620 42:6700± 1:0895 0:9817± 0:0037

ll
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To further verify the effect of Swin-Recformer in the last

module, we designed Swin-Recformer modules of different

complexity and introduced MIST-Tiny (MIST-T), MIST-Small

(MIST-S), MIST-Base (MIST-B), and MIST-Large (MIST-L). The

design of their initial recovery and data consistency blocks is

exactly the same, and the difference is only in the Swin trans-

former module. In this paper, we use MIST-B as the proposed

MIST-net. The architecture hyper-parameters of these model

variants are as follows:

d MIST-T: C = 96, layer numbers = {2,2,6,2}, head numbers =

{3,6,12,24}

d MIST-S: C = 96, layer numbers = {2,2,18,2}, head

numbers = {3,6,12,24}

d MIST-B: C = 96, layer numbers = {6,6,6,6}, head

numbers = {6,6,6,6}

d MIST-L: C = 96, layer numbers = {8,8,8,8}, head

numbers = {8,8,8,8}

where C is the channel number of hidden layers in the first stage.

The quantitative evaluation and number of parameters are listed

in Table 5. The experimental results show that MIST-B achieved

the best results. In addition, we observed that larger model

(MIST-L) leads to worse results, possibly because of overfitting.

We also study residual data in the data consistency module.

As shown in Figure 1A (i.e. in our network structure), the residual

data z1 � z2 is inputted to the encoder-decoder block F3. As a

comparison, we use z0 � z2 as an input andmakeF3 an interpo-

lation network. The quantitative analysis can be found in Table 6.

The results demonstrated that z1 � z2 works better as residual

data inputted to F3.

The generalization ability is also an important issue for deep

learning-based image reconstruction in practice. In this study,

Gaussian noise was added to the images, where the mean and

variance are set as 0 and 0.01. Then, the noisy images were

used to verify the ability of reconstruction models against noise

attacks during the testing process. Figure 8 showed the recon-

structed results with different networks. The structures marked

with the arrows show that details were blurred by noise using

FBPConvNet, HDNet, DDNet, FISTA, and LEARN. Our proposed

MIST-net can obtain better image quality than other competitors.

Themore detailed noise experimental results are given in Appen-

dix C of Supplemental experimental procedures (see Figure S3).
DISCUSSION

Deep learning has attracted rapidly increasing attention in the field

of medical image analysis. Since 2016, convolutional neural

network-based deep learning techniques have been extensively

developed for tomographic imaging with sparse data, some of
whichwere already approved by commercial scanners and trans-

lated into clinical practice. Although CNN-based deep learning is

impressive, it cannot learn global and long-range image informa-

tion interaction well, because of the locality of convolution opera-

tion (e.g. 33 3 or 53 5 region), with the further result that this kind

of method fails to capture global structures and features of tomo-

graphic imaging. Fortunately, the vision transformer can convert

an image into a sequence to enhance capability of long-range

modeling, which is also one of the inspirations for this paper.

In this study we presented a multi-domain integrative Swin

transformer network for sparse-view CT reconstruction. Our

primary contribution is that we first presented a multi-domain

integrative Swin transformer network and then used it for

sparse-view tomographic reconstruction. Our MIST-net recon-

structs tomographic images with sparse data, where both pro-

jection and image domains are respectively responsible for

repairing projection data and restoring images in the initial sub-

network reconstruction stage. Then, both residual projection

and residual image domain sub-networks are used to eliminate

measurement errors andmake the data consistent. To retain fea-

tures and enhance the edge of the tomographic image, an edge

enhancement sub-network is introduced to avoid over-smooth-

ness and edge blurring. More important, we proposed a

Recformer (a novelty transformer) sub-network to capture global

features and structures of tomographic imaging. Our work first

demonstrated the feasibility of transformer-based tomographic

imaging with sparse data as well extinguished reconstruction

performance. The results showed that the proposed network

could effectively reduce streaking artifacts caused by sparse-

view projection and recover image features and details.

We verified our approachwith both simulated and clinical data-

sets, showing that it outperforms CNN-based methods such as

FBPConvNet, DDNet, HDNet, FISTA, and LEARN. FBPConvNet

andDDNet represent the performance of image post-processing

methods. HDNet, as a dual domain-based deep reconstruction

method, encoded projection domain and image domain informa-

tion simultaneously. FISTAandLEARNareunrolled iterativedeep

learning methods, and they provide state-of-the-art reconstruc-

tion results. Compared with competitors, our MIST-net achieved

the best quantitative performance. We also compare the

complexity and runtime of all competitors (see Table S2). Our

network runs faster than LEARN and DDNet. Compared with

HDNet, the advantages are also obvious because HDNet needs

to train two networks separately, which makes the training pro-

cess more complicated. Compared with FBPConvNet, because

our network is larger, the comparison does not seem fair. To

address this issue, we designed MIST-Tiny (10.4M) in subse-

quent ablation experiments. MIST-Tiny has a similar size as

FBPConvNet (9.8M) and HDNet (9.8M 3 2) and still shows rela-

tively good performance. Compared with FISTA and LEARN, as
Patterns 3, 100498, June 10, 2022 9



Figure 7. Comparison of different networks reconstruction results in the real dataset

The first through fifth columns stand for the FBP reconstruction from full-view data, DU-RecNet, MU-RecNet, EE-RecNet, and MIST-net counterparts from 48

views. The second row shows ROIs. The display windows for the reconstructed images are [�800 1,000] HU.

ll
OPEN ACCESS Article
they are iterative methods, the small number of parameters is a

major feature. However, multiple projection and back-projection

operations cause a huge computational footprint, whichmakes it

difficult to apply to clinical practice. Thus, we cannot rely on

network parameters to judge which is good or bad between our

network and iterative methods. In ablation experiments, we

have verified the effectiveness of proposed modules under the

condition of consistent parameters, and we performed ablation

studies on the Swin module alone. It is worth noting that the per-

formance of MIST-Large is degraded compared with standard

MIST-Base. The possible reason is that the larger model leads

to overfitting. Finally, Gaussian noise experiments further ex-

hibited better generalization ability ofMIST-net over competitors.

Our work first demonstrated the feasibility of transformer-

based tomographic imaging with sparse data as well extin-

guished reconstruction performance. In the future, the trans-

former can be introduced into unrolled iterative reconstruction.

As mentioned above, the computational cost of unrolled

methods depends on the number of iterations (i.e., projection

and back-projection operations). Thus, the easiest way to

reduce the amount of computation is to reduce the number

of iterations. However, for a simple CNN, it is difficult to train

well with a small number of iterations. By introducing the

transformer, the reconstruction network can capture long-

range information and become easier to train than pure

CNN. For example, the iterative method of CNN and trans-
Table 4. Comparison between ablation candidates with similar size

Networks RMSE PSNR

Baseline 19:7047± 3:1251 40:9957± 1:79

+Edge-Enhance 17:6826± 1:9234 41:8785± 1:20

+Dual-SwinRec 18:0210± 2:3201 41:7362± 1:52

MIST-net 16:1408± 1:7620 42:6700± 1:08
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former may get good results with fewer iterations (e.g., 5 or

7 iterations).

Although the proposed network has demonstrated good per-

formance in sparse-view tomographic reconstruction, there are

still some issues that need to be addressed. First, the proposed

method incurs more computational and memory cost than pure

CNN-based methods, which is a challenge of transformed-

based applications in medical imaging. Second, transformers

had strict requirements on input image size because of position

encoding, which limits the flexibility of transformer-based deep

reconstruction. Therefore, we did not use Swin transformers in

our projection domain, because the size of sparse-view projec-

tion is always different. In addition, the transformer requires large

datasets to show the unique advantages. However, medical im-

age datasets with labels are scarce. We plan to extend our

method to iterative reconstruction and explore the feasibility of

our MIST-net with a self-supervised strategy42 for limited-angle

CT43 and low-dose CT.44 In summary, in this paper we present

a MIST-net reconstruction model, which will encourage trans-

former-based applications in medical imaging.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Weiwen Wu, PhD (email: wuweiw7@mail.sysu.edu.cn).
SSIM Number of Parameters

05 0:9757± 0:0061 12:2M

36 0:9795± 0:0042 12:3M

09 0:9789± 0:0051 12:4M

95 0:9817± 0:0037 12:0M

mailto:wuweiw7@mail.sysu.edu.cn


Table 5. Comparison between Swin Recformer modules of different computational complexity

Views Network RMSE PSNR SSIM Number of Parameters

48 MIST-T 16:9113± 1:8407 42:2660± 1:1869 0:9804± 0:0040 10:5M

MIST-S 16:4780± 1:7965 42:4916± 1:1954 0:9814± 0:0038 12:1M

MIST-B 16:1408± 1:7620 42:6700± 1:0895 0:9817± 0:0037 12:0M

MIST-L 16:8268± 1:7739 42:3063± 1:1594 0:9807± 0:0039 13:0M
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Materials availability

The library used in this study is made publicly available via Zenodo (https://

zenodo.org/record/6368099).

Data and code availability

All original code has been publicly released on https://zenodo.org/record/

6368099. This paper analyses existing public data. These data are available

at: https://www.aapm.org/GrandChallenge/LowDoseCT/.
Methodology

CT imaging model

The ideal mathematical model of CT imaging can be expressed as a discrete

linear system:

y = Ax +b ; (Equation 1)

where x represents a reconstructed CT image, and it can be expressed as x =

½x1; x2; x3;.xP�T . y stands for themeasured projection data, and it can bewrit-

ten as y = ½y1; y2; y3;.yQ�T .b stands for projection noise, andA is aCT system

matrix, which contains Q3Pelements. Because of the noise in y, the solution of

Equation 1 can be obtained by minimizing the following objective function:

min
x
jjAx � yjj2F ; (Equation 2)

where k,k2F stands for the Frobenius norm. The ART or SART are usually used

to minimize Equation 2.45 However, solving x directly from a very sparse pro-

jection data y is an under-determined inverse problem, which may lead to the

poor reconstructed image quality with streak artifacts. Thus, in traditional

analytical methods, a regularization term representing prior knowledge is usu-

ally introduced to obtain better reconstruction result; then we have

min
x

�
jjAx � yjj2F + bhhðxÞ

�
: (Equation 3)

There are two components in Equation 3, the fidelity term kAx � yk2F and the

regulation prior knowledge term hðxÞ. The hyper-parameter bh is designed to

balance these two components. Different reconstruction methods correspond

to different regularization priors, such as total variation46,47 and dictionary

learning.43,48,49

Multi-domain integrative network

In the projection domain, the main work is to complement and restore the

sparse-view sinograms. For example, Dong et al.50 completed the missing

datawithU-net architecture, then a typical network further refined the raw image

reconstructed from completed projections. The benefit of the projection domain

deep neural network is that it can reduce the data error from the view of detector

measurement. However, the interpolated projection with deep neural networks

may introducewrongmeasurement and further result in false-positive and false-

negative diagnosis results. Unfortunately, the false results are also difficult to

correct even if by a high-fidelity post-processing image domain network. To

overcome this challenge, the residual data domain sub-network is first consid-

ered to correct the data inconsistency of the initial reconstructed image. Indeed,

the stage is beneficial to correct original data errors to overcome the data incon-

sistency. Furthermore, one residual image domain sub-network further im-
Table 6. Comparison between different designs of residual data

Residual Data RMSE PSNR SSIM

z0 � z2 26:9013 ±4:1702 38:2671± 1:4324 0:9634 ±0:0153

z1 � z2 16:1408 ±1:7620 42:6700± 1:0895 0:9817 ±0:0037
proves the reconstruction performance. Finally, Swin transformer architecture

can deeply characterize various latent features of the reconstructed image to

capture local and global information of image-self.

Edge detection operator

The edges of images are among the most important features, conveying a

wealth of internal information, especially in medical images; for example, the

edges of tumors are key in diagnosing if they are benign or malignant. In this

work, we introduced a Sobel filter51 to overcome the problem of excessive

edge smoothing. The Sobel operator belonged to the orthogonal gradient

operator, and its gradient corresponded to the first derivative. For a continuous

function gða; bÞ, where (a, b) indicates the position point, the gradient can

further be expressed as a vector:

Vgða;bÞ = fGa ; Gbg =

�
vg

va
;
vg

vb

�
=

vg

va
i +

vg

vb
j; (Equation 4)

magðVgÞ = jVgj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vg

va

�2

+

�
vg

vb

�2
s

; (Equation 5)

qða;bÞ = arctan

�
Ga

Gb

�
; (Equation 6)

where magðVgÞ and qða;bÞ stand for the magnitude and direction angle of

Vgða;bÞ. The partial derivatives needed to be calculated for each pixel point

by using the Equation 6. The original Sobel operator contains a 3 3 3 vertical

filter and a 33 3 horizontal filter, which has amaximum response to the vertical

edge and the level edge, respectively.

Liang et al.52 proposed an edge enhancement-based densely connected

network (EDCNN) and achieved good performance in low-dose CT denoising.

Sharifrazi et al.53 applied Sobel filters to achieve accurate detection of COVID-

19 patients from CT images. Compared with other edge operators, the mech-

anism of Sobel is the differential of two rows or two columns, and it can fully

enhance elements on both sides, which makes the edge seem more obvious.

In this work, in addition to the level and vertical filter, we further add a diagonal

filter to our network in.52

Vision transformers

The transformer was first proposed for natural language processing. The trans-

former was similar to an encoder-decoder structure which consists of multi-

head self-attention blocks, normalization layers, and point-wise feedforward

networks. The vision transformer, proposed by Dosovitskiy et al.,34 can be

considered the first vision transformer backbone for image classification. The

VIT demonstrated the effectiveness of transformer in CV tasks, although it

required huge parameters and memory because the global computation led

to quadratic complexity. To reduce the use of GPU memory and the number

of calculation parameters, the Swin transformer37 computed self-attention

within local windows. The computational complexity of a global multi-head

self-attention (MSA) module and a window based on image patches with the

size of n 3 n are respectively recorded as Uð4n2C2 + 2n4CÞ and Uð4n2C2 +

2M2n2CÞ, where n2, C, and M are the number of pixels in an image patch, the

channel number of the hidden layers, and window size, respectively. To solve

the global modeling problem caused by local windows, the Swin transformer

designed a shifted window to strengthen the connection between adjacent win-

dows. Because of its impressive performance, the transformer has also been

introduced to medical image processing. Chen et al.54 proposed TransUNet,

which claimed to be the first transformer-based medical image segmentation

network. Recently, Eformer used self-attention and depth-wise convolution

for better local context capture inmedical image denoising.55Our novel network

MIST-net was developed to explore transformers in sparse-view data
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Figure 8. The generalization of different deep reconstruction networks against noise on simulation datasets

The first through 7th columns stand for the ground truth, FBPConvNet, HDNet, DDNet, FISTA, LEARN, andMIST-net counterparts from 48 views. The first through

third rows represent reconstructed results, difference images, and the magnified ROIs.
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reconstruction. Again, we designed a Swin Recformer sub-network by

combining the Swin transformer and convolution layer to make full use of

both shallow and deep features.

MIST-net

Figure 1 illustrates the flowchart of our proposedMIST-net. There are three key

components: initial recovery, data consistency, and high-definition recon-

struction. Both initial recovery and data consistency have two sub-networks;

one works in radon domain and the other was designed within images domain.

We will describe each sub-network, and more network details can be found in

Appendix D of Supplemental experimental procedures (see Tables S3–S5).

Initial recovery module

The architecture of thismodule is shown in Figure 1. The first block of thismod-

ule is an encoder-decoder block with a linear interpolation at the beginning.

This part is designed to restore spare-view projection data z0 to full-view pro-

jection data z1. This is achieved by a projection domain sub-network z1 =

F1ðz0Þ. At the first layer of initial reconstruction is the network-based image

reconstruction (i.e., FBP layer). An edge enhancement reconstruction sub-

network was used to process the FBP layer output and further obtain a clearer

and faithful image s1. The initial recovery module can be expressed as follows:

s1 = F2ðF1ðz0ÞÞ ; (Equation 7)

where F2 represents the reconstruction sub-network from the initial recovery

module.

Data consistency module

The errors are always introduced in projections and images because the inter-

polation in the radon domain cannot accurately predict the missing original

data. In addition, the following reconstruction sub-network in the images

domain may result in false positive and negative results. These errors may

cause the secondary artifacts to compromise the quality of images. The

data consistency module consists of two parts: the projection residual pro-

cessing sub-network F3 and the image residual processing sub-network F4.

Here, we use two encoder-decoder blocks to handle residual data. The re-

sampled residual data from s1 can be expressed as z1 � z2, where z2 repre-

sents the projection data from the image s1. The estimated projection data

residual z3 of the data consistency module is expressed as

z3 = F3ðz1 � z2Þ: (Equation 8)
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In addition to the data difference computed by the trained data residual

network according to (Equation 5), there is also an image difference between

the output of the initial recovery module and desired image. Here, the image

residual processing sub-network was further used to reduce the data incon-

sistency. The output of the image residual processing sub-network F4 is as

follows:

s2 = F4ðz3Þ : (Equation 9)

Then, we can get the middle reconstruction output by adding the output of

initial recovery module to the results of data consistency module; we have that

s3 = s1 + s2 : (Equation 10)

High-definition reconstruction module

The sparse-view projection may lead to serious streaking artifacts in CT im-

ages, especially when the number of views is extremely scanty. The function

of this module is similar to post-processing methods that learn mappings

from poor images to clear images. In traditional image super-resolution and

denoising tasks, SwinIR56 has achieved great success by using the Swin trans-

former as a backbone. In this part, we propose a hybrid architecture called

Swin Recformer, which is based on both convolution layers and Swin trans-

former layers to implement the image reconstruction task. As shown in Fig-

ure 1D, the Swin Recformer contains convolutional layers, Swin transformer

mixed convolution (STC), units and a few residual connections. Each STC

unit consists of six transformer layers as well as one convolutional layer.

In this section, we will provide architecture details of the STC unit. An STC

unit contains six Swin transformer layers and a 3 3 3 convolution layer. The

Swin transformer block contains 2 core designs, which are described below.

First, the Swin transformer designed a non-overlapping window-based

multi-head self-attention (W-MSA) block, which can learn the long-range infor-

mation correlation in a small-size window region (e.g., a 163 16 feature map).

Second, the shifted window-based multi-head self-attention (SW-MSA) block

adds shifted windows to improve interactions between different windows. In

the lower right of the Figure 1D, two successive Swin transformer blocks are

presented. Each Swin transformer block is successively composed of LN

layer, multi-head self-attention mechanism, residual connection, and MLP.

The W-MSA mechanism and the SW-MSA mechanism make up two adjacent

transformer blocks. With the shifted window partitioning design, consecutive

Swin transformer blocks are computed as follows:
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bxl
= W � MSA

	
LN

	
xl� 1




+ xl� 1 ; (Equation 11)

xl = MLP
	
LN

	bxl


+ xl ; (Equation 12)

bxl + 1
= SW � MSA

	
LN

	
xl




+ xl ; (Equation 13)

xl + 1 = MLP
	
LN

	bxl + 1


+ bxl +1 ; (Equation 14)

where bxl and xl denote the output features of the W-MSA/SW-MSA module

and the MLP module for block l, respectively; W-MSA and SW-MSA denote

window-basedmulti-head self-attention using regular and shifted window par-

titioning configurations, respectively. As for the traditional transformer

methods, self-attention is computed as follows:

AttentionðQ;K;VÞ = SoftMax

�
QKTffiffiffi

d
p +B

�
,V ; (Equation 15)

where Q;K;V˛RM23d are the query, key, and value matrices; d is the query/

key dimension; and M2 is the number of patches in a window. Because the

relative position along each axis lies in the range [�M + 1, M � 1], we param-

eterize a smaller sized bias matrix bB ˛Rð2M�1Þ3ð2M+1Þ, and values in B are

taken from bB. After six Swin transformer blocks, a 3 3 3 convolutional layer

was added to enhance the feature. Between adjacent STC units, a residual

connection was used to aggregate feature maps generated from transformer

and convolution.

Loss functions

For sparse-view CT reconstruction, we optimize the parameters of MIST-net

by minimizing the dual-domain mean square error (MSE). It can be written

as follows:

L = IL � I2O2 +gPL � P2
O2

; (Equation 16)

where IL � IO
2
2 is the image MSE term. IL and IO stand for the label and output

images, respectively. PL � PO
2
2 is the projection MSE, where PL and PO repre-

sent projection label and output. g is a weighting factor; here it was set as 0.1.
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