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Abstract: No reliable biomarkers exist to identify athletes in various training states including
functional overreaching (FOR), non-functional overreaching (NFOR), and overtraining syndrome
(OTS). Participants (N = 10, age 38.3 ± 3.4 years) served as their own controls and in random,
counterbalanced order either ran/cycled 2.5 h (70.0 ± 3.7% VO2max) three days in a row (FOR) or
sat in the lab (rest) (separated by three weeks; 7:00–9:30 am, overnight fasted state). Participants
provided fingerprick samples for dried blood spot samples (DBS) pre- and post-exercise/rest, and
then during two recovery days. DBS proteins were measured with nanoLC-MS in data-independent
acquisition (DIA) mode, and 593 proteins were identified and quantified. Proteins were considered
for the FOR cluster if they were elevated during one of the two recovery days but not more than
one of the exercise days (compared to rest). The generalized estimating equation (GEE) was used to
identify proteins linked to FOR. A total of 13 proteins was linked to FOR and most were associated
with the acute phase response and innate immune system activation. This study used a system-wide
proteomics approach to define a targeted panel of blood proteins related to FOR that could form the
basis of future NFOR- and OTS-based studies.
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1. Introduction

Successful training leading to enhanced performance involves cycles of overload and adequate
recovery [1–3]. A primary goal during training is to avoid the combination of excessive overload and
inadequate recovery leading to “overreaching”, defined as a short-term decrement in performance with
or without related physiological and psychological symptoms in which restoration of performance
takes several days to several weeks [1].

“Functional” overreaching occurs when athletes deliberately use a short-term period (e.g., training
camp) to increase the training load resulting in short-term performance decrements without serious,
long-lasting psychological or other negative symptoms [2]. “Functional overreaching” (FOR or short-term
overreaching) will eventually lead to an improvement in performance after recovery. Non-functional
overreaching (NFOR or extreme overreaching) occurs when athletes train beyond their ability to recover
with concomitant performance decrements and psychological disturbances that include decreased vigor
and energy, increased fatigue, and loss of desire to train [1]. NFOR can result in a prolonged recovery
time with sleep disturbance, elevated resting heart rate, illness, and psychological stress. A hallmark
feature of FOR and NFOR is the inability to sustain intense exercise for a prolonged period of time.
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NFOR can easily progress to the overtraining syndrome (OTS), and athletes with OTS may take months
or possibly years to completely recover.

There is a strong demand for diagnostic tools to identify athletes in various training states for
FOR, NFOR, and OTS [1,3]. A reliable biomarker for FOR, NFOR, and OTS should be sensitive to the
training load and occur prior to the establishment of OTS. Additionally, changes in the biomarker in
response to acute exercise should be distinguishable from chronic changes, and be relatively easy to
collect and measure [1]. No established objective biomarkers currently exist for FOR, NFOR, or OTS,
and subjective measures are regarded as superior to physiological measures such as plasma hormones
and cytokines, energy homeostasis, and exercise workload monitoring [4–7].

Proteins are the main components of the metabolic pathways of cells, and the large-scale
measurement of the structure and function of proteins in a tissue or organism is highly useful in
the identification of candidate biomarkers for various disease processes and drug treatments [8].
Proteomics, however, has seldom been used in exercise-based, human studies [9], despite the indication
from multiple studies with race horses and dogs that serum amyloid A (SAA) and other acute phase
response proteins are useful indicators of exercise-induced muscle damage and exhaustion, and poor
performance [10–17]. Petibois et al. [18] suggested that acute phase proteins be considered in the
biochemical model of the overtraining process based on seminal global metabolic response studies
using Fourier-transform infrared spectrometry.

The purpose of this study was to determine if two different clusters of proteins could be identified
through global proteomics procedures to define acute compared to chronic physiological changes
related to FOR. The goal was to use a simple, practical blood collection measure (fingerprick dried
blood spot samples) in developing a targeted proteomics panel of post-FOR chronically expressed
proteins that could form the basis for NFOR- and OTS-based studies. Label free targeted proteomics,
in this case Data Independent Acquisition (DIA), was utilized in this study because this method
generates a record of all detectable fragments of peptides in a sample, combining the advantages of
SRM (reproducible) and shotgun analysis (high throughput).

2. Materials and Methods

2.1. Participants

Study participants included ten healthy, trained, male endurance runners or cyclists, ages
23–50 years. Participants agreed to train normally, stay weight stable, and avoid the use of large-dose
vitamin/mineral supplements (above 100% of recommended dietary allowances), herbs, and all
medications during the project. All subjects voluntarily signed informed consent forms, and study
procedures were submitted to and approved by the Institutional Review Board at Appalachian
State University.

2.2. Baseline Testing

Study participants came to the North Carolina Research Campus, Human Performance Lab
(Kannapolis, NC, USA) for baseline testing one to two weeks prior to the overreaching segment of
the study. Participants reviewed and voluntarily signed the consent form, and supplied training
history information. Participants that were runners (N = 3) were tested for VO2max using graded
exercise tests on a treadmill, and cyclists (N = 7) on a Lode cycle ergometer (Lode Excaliber Sport,
Lode B.V., Groningen, The Netherlands). Continuous metabolic measurements were made with the
Cosmed CPET system (Rome, Italy). Body composition was measured using the BodPod system
(Life Measurement, Concord, CA, USA).

2.3. Research Design for the Randomized Trials

Participants served as their own controls and in random order engaged in a 3-day period of
functional overreaching (2.5 h/day, running/cycling) or a 3-day rest period in the Human Performance
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Lab (Figure 1). Participants reported to the lab in an overnight fasted state, provided a fingerprick
sample, and completed the Training Distress Scale (TDS), a 19-item self-reported questionnaire
that calculates training distress and performance readiness [19]. At 7:00 am, participants started
running/cycling on laboratory treadmills or their own bicycles on CompuTrainer Pro Model 8001
trainers (RacerMate, Seattle, WA, USA) at 70% VO2max, or sat in the lab for 2.5 h in an adjoining room to
the lab. Heart rate, rating of perceived exertion (RPE), oxygen consumption (Cosmed CPET metabolic
system), and ventilation were measured and recorded every 30 min during the 2.5 h exercise bouts.
Participants consumed 2–3 mL/kg water every 15 min, and no other food or beverages were consumed
during the 2.5-h bouts. An additional fingerprick sample was collected immediately post-exercise.
Participants repeated these procedures for two additional days (thus, three 2.5-h exercise bouts or rest
periods on Monday, Tuesday, Wednesday), and then returned to the lab to provide fingerprick blood
samples and TDS responses on Thursday and Friday mornings at 7:00 am. After a 3-week period,
participants crossed over and repeated the counterbalanced procedures. During the 3-day period
when participants sat in the lab, moderate but not intensive training regimens were allowed.
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Figure 1. Research design with study participants (N = 10) randomized to 3-day periods of 2.5 h/day
running/cycling or sitting and two days resting recovery, with crossover to the counterbalanced
condition after a 3-week washout period. Fingerprick blood samples were collected pre- and
post-exercise/sitting sessions during each 3-day period, and at 7:00 am the following two mornings
(overnight fasted state). The Training Distress Scale (TDS) was administered at 7:00 am each of the five
mornings in the lab.

2.4. Proteomics Procedures

In this study, dried blood spot (DBS) specimens were collected via fingerprick onto standard blood
spot cards (Whatman® protein saver cards, Sigma-Aldrich, St. Louis, MO, USA) and dried overnight.
Samples were shipped to Biognosys (Schlieren, Switzerland) for global proteomics analysis [20,21].
A puncher was used to remove the middle of the DBS, and proteins were solubilized, reduced and
alkylated, and digested into peptides using trypsin. Samples were cleaned up using C18 columns
and dried down. To reduce variance, all 16 samples for each athlete (batch) were randomized and
subsequently measured consecutively by mass spectrometry (MS). MS sensitivity and precision were
monitored using a pooled sample of all DBS samples, with injections before, after, and twice during
each batch. MS analyses were performed on a Q-Exactive mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) coupled to a nanoLC autosampler. 1 µg of DBS peptide of each sample was
injected and peptides were separated with reverse phase nanoLC chromatography. All samples were
measured with data independent acquisition mode (DIA).

2.5. Data Processing

The DIA files were processed using Spectronaut™ software (Biognosys). Spectronaut was also
used to calculate the false discovery rate (FDR) of identified peptides and a cut-off of 0.01 was taken
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across all samples. For each protein, the three most abundant peptides were used for quantitative
analysis (in case more than three peptides per protein were identified).

2.6. Statistics

The statistical methodology used to detect protein responses to exercise involved the use of
Generalized Estimating Equations (GEE) and Generalized Linear Mixed Models (GLMM) at single
protein levels. The interaction between time of the measurement and condition status (exercise, rest)
was used as a categorical predictor. In the current study, GEE was the preferred choice given the
research design (2-arms, randomized, crossover) and the sample of ten athletes. For the statistical
power simulation test, GLMM was used. In this study, the data were first corrected for potential batch
effects, prior to normalization relative to the maximum value in each row. To account for technical
variability, the significance threshold (p-value) was set to 0.01 if the coefficient of variation (CV) in
the z-score of a given protein in technical repeat samples exceeded 15% across athletes and time
points. Otherwise the p-value significance level was set at p ≤ 0.05. The simulation generated artificial,
normally distributed data using the technical variance of the original data. Different levels were
derived from twelve proteins randomly selected from the subset of athletes (from 10 to 50 with steps
of 10), with the assumption that the effect would be notable in 80% of the athletes at each time point.
Bonferroni correction was applied assuming a final panel of five proteins. After estimating the GEE
and GLMM models, pairwise comparisons between each time-by-condition level were calculated, and
the Tukey correction for multiple comparison was applied to adjust the significance level. The GEE
analysis of the original data and the GLMM analysis of simulated data delivered identical results for
given proteins.

2.7. Protein–Protein Interaction Network Analysis

Proteins expressed acutely following each of the three 2.5-h exercise sessions, and those expressed
on day 1 and/or day 2 of recovery were mapped onto STRING v10 to build two protein–protein
interaction networks. STRING v10 (search tool for the retrieval of interacting genes/proteins) is
a database of known and predicted physical/functional protein associations based on genomic context,
high-through put experiments, co-expression and previous knowledge (http://string-db.org/) [22].

3. Results

Study participant data (N = 10 males) are summarized in Table 1. Metabolic monitoring of the
three 2.5-h exercise sessions showed that the athletes averaged a heart rate of 140 ± 4.3 beats/min
(79.6 ± 2.0% maximal heart rate or HRmax), oxygen consumption of 29.4 ± 0.9 mL kg−1 min−1

(70.0 ± 1.2% maximal oxygen consumption or VO2max), and ventilation of 65.1 ± 1.9 L/min. The rating
of perceived exertion (RPE) averaged 15.4 ± 0.3 units at the end of each session (rating of “hard”).
No significant differences were found between the runners (N = 3) and cyclists (N = 7) for the data
listed in Table 1 and exercise performance data, and all analyses were conducted for the combined
group of these 10 athletes.

Table 1. Characteristics of study participants (N = 10 males) (mean ± SE).

Variable Mean ± SE

Age (years) 38.3 ± 3.4
Height (m) 1.81 ± 0.02
Weight (kg) 85.6 ± 1.3
Body fat (%) 20.9 ± 2.1

VO2max (mL kg−1 min−1) 42.0 ± 1.3
Maximal heart rate (beats/min) 176 ± 3.7

http://string-db.org/


Proteomes 2018, 6, 33 5 of 17

The simulation using GLMM modelling with 34 proteins showed that a relatively low number of
participants was needed to show significant changes in protein up and down regulation, supporting
the use of 10 athletes in this randomized, crossover trial. Data consistency was monitored through
several pooled samples, and the results supported a reproducible protein quantitation.

The total Training Distress Scores (TDS) were higher at 7:00 am (pre-lab sessions) in the exercise
compared to rest trials on the second and third days, and the first day of recovery (interaction effect,
p < 0.001) (Figure 2).
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Figure 2. Changes in the total Training Distress Scale (TDS) scores with exercise and rest conditions
(interaction effect, p < 0.001). p-values, change pre-to-post change exercise compared to rest day.

The DIA approach using the dried blood spot samples (16 samples per athlete) resulted in the
identification of 6499 precursors. Protein inferences (discarding the non-unique peptide hits and
assigning the peptides to the proteins of origin) resulted in a total number of 593 proteins (intra-batch
technical median CV of 22%, batch correction using the R package Combat) (see Table S1) [20,21]. Of the
593 identified proteins, 60 increased significantly immediately post-exercise on day 1 (of the 3-day
exercise period) compared to the rest condition. Of these, 30 were related to immune function. Table 2
lists 15 of the proteins that increased significantly immediately post-exercise after each of the three
days of exercise compared to rest, and most were related to immune function. The median technical
CV of the listed proteins was 6%, with a range of 3–8%, except for O95810 with 23%. Figure 3A–H)
compares exercise and rest intensity data for eight of these 15 immune-related proteins.

Table 2. Proteins (N = 15) increasing significantly pre-to-post-exercise (acutely) compared to rest after
each of the three 2.5 h exercise sessions. Protein sizes and chromosome locations are available at
https://www.uniprot.org/.

UniProt Protein Protein Name Basic Function

P61626 Lysozyme C Monocyte/macrophage bacterilytic function

P08246 Neutrophil elastase Modifies the functions of natural killer cells, monocytes and
granulocytes

P59665; P59666 Neutrophil defensin 1 Antibacterial, fungicide, antiviral activity; kills by permeabilizing
membrane

P80511 Protein S100-A12 Ca, Zn, Cu binding protein; prominent role, regulation
inflammation/immune

https://www.uniprot.org/
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Table 2. Cont.

UniProt Protein Protein Name Basic Function

P05109 Protein S100-A8 Ca, Zn binding protein; regulate inflammation/immune; chemotaxis

P49913 Cathelicidin antimicrobial
peptide Binds to bacterial lipopolysaccharides (LPS), has antibacterial activity

P12814 Alpha-actinin-1 F-actin cross-linking protein to anchor actin to intracellular structures

P60709 Actin, cytoplasmic 1 Cell motility; granulocytes

P07737 Profilin-1 Binds to actin; granulocyte motility/chemotaxis

P02776 Platelet factor 4 Released during platelet aggregation; chemokine activity; chemotaxis

P60660 Myosin light polypeptide 6 Regulatory light chain myosin; muscle development

Q96QV6; Q93077 Histone H2A types Component of nucleosome; transcription regulation, DNA repair

P62805 Histone H4 Component of nucleosome; transcription regulation, DNA repair

P05204 Non-histone chromosomal
protein HMG-17 Binds nucleosomal DNA

O95810 Serum deprivation-response
protein Targets protein kinase C-alpha on lipid rafts
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Figure 3. Selected plasma proteins (from Table 2) increasing acutely each day of the 3-day exercise
period compared to rest. (A) Lysozyme C; (B) Neutrophil elastase; (C) Neutrophil defensin 1;
(D) Protein S100-A12; (E) Protein S100-A8; (F) Cathelicidin antimicrobial peptide; (G) Histone H2A
types; (H) Histone H4. * p < 0.05, change pre-to-post change exercise compared to rest day.
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STRING protein–protein interactions using proteins listed in Table 2 are depicted in Figure 4.
Biological process pathways identified in STRINGS for the 15 proteins included four gene sets involved
with killing of cells of other organisms, four to six with the defense response to bacterium, fungus, and
other organisms, six to seven with chemotaxis and locomotion, and seven to eight with the immune
system response (all FDR < 0.015).
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“Chronic proteins” in this study were defined as proteins that did not increase or decrease acutely
after the three exercise versus rest bouts, but increased only on the morning of day 1 and/or day 2 of
recovery. Of the 593 proteins, 71 chronic proteins were identified through GEE modelling. Three other
criteria were applied to narrow down this list of proteins to those most strongly associated with the
recovery period from the FOR exercise period. An overview of this approach is described in Figure 5,
with emphasis on recovery day expression, those that showed a clear exercise versus rest pattern
when graphically displayed, and proteins that had literature support and biological plausibility. After
application of these criteria, 13 chronic proteins were included as listed in Table 3. Of these, at least 11
were related to immune function. Intensity data for five of the 13 proteins from Table 3 are presented
in Figure 6A–E.
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Figure 6. Selected plasma proteins increasing during day 1 and/or day 2 of recovery from the 3-day
exercise period compared to rest, but not acutely immediately post-exercise. (A) Serum amyloid A-4
protein; (B) Myeloperoxidase; (C) Corticosteroid-binding globulin; (D) Complement C4B; (E) Complement
component C8 gamma chain. * p < 0.05, change pre-to-post change exercise compared to rest day.

Table 3. Proteins increasing on day 1 and/or day 2 of recovery from the 3-day exercise period compared
to rest, but not acutely immediately post-exercise. Protein sizes and chromosome locations are available
at https://www.uniprot.org/.

UniProt Protein Protein Name Function

P35542 Serum amyloid A-4 protein Major acute phase reactant; cell chemotaxis

P05164 Myeloperoxidase Granulocyte microbicidal activity against wide range of pathogens;
production of hypochlorous acid

P07360 Complement component C8
gamma chain

Part of membrane attack complex that plays key role in immune
response; forms pores in target cells

P0C0L5 Complement C4B Non-enzymatic component C3, C5 convertases and thus essential for
complement activation

P05155 Plasma protease C1 inhibitor Crucial role in regulation of complement activation

https://www.uniprot.org/
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Table 3. Cont.

UniProt Protein Protein Name Function

Q14624 Inter-alpha-trypsin inhibitor
heavy chain H4 Acute-phase protein involved in trauma inflammatory response

P19652 Alpha-1-acid glycoprotein 2 Transport protein; modulates immune function during the
acute-phase reaction; inflammation

P10643 Complement component C7 Part of membrane attack complex that plays key role in immune
response; forms pores in target cells

P02765 Alpha-2-HS-glycoprotein Promotes endocytosis; part of acute-phase response; phagocytosis;
bone mineral influence

P01834 Immunoglobulin kappa
constant

Constant region of immunoglobulin heavy chains; complement
activation; defense immune response; phagocytosis recognition and
engulfment

P01871; P04220 Immunoglobulin heavy
constant mu

Constant region of immunoglobulin heavy chains; C region; antigen
binding; immune response

P08185 Corticosteroid-binding
globulin Major transport protein for glucocorticoids and progestins

P35754 Glutaredoxin-1 Glutathione activity; cell redox homeostasis

STRING protein–protein interactions using the proteins listed in Table 3 are depicted in Figure 7
(https://string-db.org). P01834 (Ig kappa chain C region) and P04220 (Ig mu heavy chain disease
protein) for humans were not listed in STRING. Of the nine proteins networked in Figure 5 (all FDR
< 0.001), seven were included in the gene set for the immune defense response (biological process),
four in the acute phase response, three in complement activation, and three in the humoral immune
response mediated by circulating immunoglobulins.

Proteomes 2018, 6, x 12 of 17 

 

P05155 Plasma protease C1 inhibitor  
Crucial role in regulation of complement 

activation 

Q14624 
Inter-alpha-trypsin inhibitor 

heavy chain H4 

Acute-phase protein involved in trauma 

inflammatory response 

P19652 Alpha-1-acid glycoprotein 2 

Transport protein; modulates immune 

function during the acute-phase reaction; 

inflammation 

P10643 Complement component C7 

Part of membrane attack complex that plays 

key role in immune response; forms pores in 

target cells 

P02765 Alpha-2-HS-glycoprotein 

Promotes endocytosis; part of acute-phase 

response; phagocytosis; bone mineral 

influence 

P01834 
Immunoglobulin kappa 

constant 

Constant region of immunoglobulin heavy 

chains; complement activation; defense 

immune response; phagocytosis recognition 

and engulfment 

P01871; P04220 
Immunoglobulin heavy 

constant mu 

Constant region of immunoglobulin heavy 

chains; C region; antigen binding; immune 

response  

P08185 
Corticosteroid-binding 

globulin 

Major transport protein for glucocorticoids 

and progestins 

P35754 Glutaredoxin-1 Glutathione activity; cell redox homeostasis 

STRING protein–protein interactions using the proteins listed in Table 3 are depicted in Figure 

7 (https://string-db.org). P01834 (Ig kappa chain C region) and P04220 (Ig mu heavy chain disease 

protein) for humans were not listed in STRING. Of the nine proteins networked in Figure 5 (all FDR 

< 0.001), seven were included in the gene set for the immune defense response (biological process), 

four in the acute phase response, three in complement activation, and three in the humoral immune 

response mediated by circulating immunoglobulins. 

 

Figure 7. STRING protein–protein interaction graph using immune-related proteins listed in Table 3. 

The thickness of the network lines indicates the strength of data support (https://string-db.org). 

P01834 (Ig kappa chain C region) and P04220 (Ig mu heavy chain disease protein) for humans were 

not listed in STRING. 

Figure 7. STRING protein–protein interaction graph using immune-related proteins listed in Table 3.
The thickness of the network lines indicates the strength of data support (https://string-db.org).
P01834 (Ig kappa chain C region) and P04220 (Ig mu heavy chain disease protein) for humans were not
listed in STRING.

4. Discussion

Using a randomized, crossover design, ten male runners and cyclists sat in the lab or exercised
intensely for 2.5 h each morning in an overnight fasted state for three days in a row. Total distress
scores showed that the 3-day exercise period increased psychological distress to levels expected

https://string-db.org
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during functional overreaching [19]. Dried blood spot (DBS) samples were collected pre- and
post-exercise/rest, and at 7:00 am the following two mornings, and the use of this practical blood
collection method allowed the acquisition of a large number of samples with minimal discomfort to
the athletes. DBS samples offer many advantages, especially in an athletic setting, as a sample format
including ease and safety of transport and handling [23]. Analytes preserved within the DBS are stable
for long time periods at ambient conditions and can be eluted in solvents for later proteomics analysis.

Global proteomics procedures from the DBS samples showed that of 593 proteins identified,
60 proteins increased significantly after the 2.5 h exercise bout on day 1 (of the 3-day exercise period)
and 15 after each of the three days of exercise compared to rest. STRING protein–protein interactions
showed that these 15 proteins expressed acutely post-exercise were involved with an activated immune
system response including pathogen defense and immune cell chemotaxis and locomotion. Some of
these proteins involved in the acute response to exercise have been identified previously, especially
neutrophil elastase and protein S100-A8 [16,17,24,25]. S100-A8/A9 (calprotectin) is released primarily
from activated neutrophils, is found in high levels in human blood samples (~5 mg/L), promotes
phagocyte migration and functions as an alarmin and endogenous danger-associated molecular
pattern (DAMP), and is regarded as a cardiovascular disease (CVD) risk factor when systemically
expressed [26]. S100-A12 is a ligand for receptor advanced glycation end products (RAGE), promotes
phagocyte chemotaxis, and is a potent stimulator of acute inflammation [27,28].

Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites following
exercise [28], and neutrophil elastase is one of three serine proteases stored in granules that act in
combination with reactive oxygen species to help degrade engulfed microorganisms and debris [29].
Neutrophils read chemotactic peptides released from damaged cells or bacteria, and then respond
by increasing the nucleation and polymerization of actin filaments. Profilins are small (12 to 15 kDa)
and abundant proteins that have been found in all eukaryotic cells tested [30] and are involved in the
dynamic turnover and restructuring of the actin cytoskeleton. Thus, post-exercise increases in profilin-1
and actin (cytoplasmic 1) appear to represent the increase in neutrophil actin filament polymerization
that supports migration to involved tissues [31].

The primary purpose of this investigation was to identify a targeted panel of post-FOR chronically
expressed proteins that could be utilized and validated in future overtraining-based investigations.
Our analysis found that 13 of the 593 identified proteins did not increase acutely post-exercise, but
increased on the morning of day1 and/or day 2 of recovery. STRING protein–protein interactions
showed that most of these proteins were involved in the immune defense response including the
acute phase response, complement activation, and humoral responses mediated by circulating
immunoglobulins. Similar to the findings of the current study, others have shown that targeted
protein biomarkers such as myeloperoxidase (MPO) and various acute phase proteins including serum
amyloid A (SAA), complement factors, and alpha-1-acid glycoproteins are elevated after ultramarathon
events or prolonged and intensive exercise training periods [9,18,25,32–38].

The acute phase response is a systemic reaction to environmental insults including severe stress,
infection, trauma, and late-stage cancer, and involves the hepatic production of many proteins
including SAA, C-reactive protein, complement proteins, antiproteases, transport proteins, and those
involved with the coagulation and fibrinolytic system [39,40]. During the acute phase response,
plasma levels of SAA rise to very high levels, are produced by hepatocytes and tissue macrophages,
and trigger multiple signaling pathways related to phagocyte migration and inflammation [39].
Similar to the findings of the current study, SAA was elevated 48 h following the 246-km Spartathlon
race in a group of ultradistance runners [9,33]. In this study, IL-6 increased immediately after the
Spartathlon race and then returned to normal in contrast to SAA that remained high during the 2-day
recovery period [9,33]. IL-6, which rises to high levels following stressful exercise bouts, stimulates
the production of most acute-phase proteins by hepatocytes that influence one or more stages of
inflammation [40]. Animal-based studies have focused on the value of measuring SAA and other acute
phase proteins in monitoring physiological responses to intensified training stress [10–17]. One study
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of 20 Arabian horses showed that higher compared to lower pre-race serum SAA levels were strongly
linked to an inability to complete 120- and 160-km endurance events [10].

In the current study, MPO rose strongly on the second day of recovery from the 3-day period
of intensified exercise. MPO is a lysosomal protein stored in azurophilic granules of the neutrophil
and during degranulation is released into the extracellular space. MPO is a biomarker of neutrophil
activation and inflammation following strenuous exercise [15–17] and is systemically elevated in
patients with coronary artery disease [25,41]. MPO was increased for at least 19 days in 42 triathletes
following an Ironman triathlon, although this study lacked a suitable control group [25].

5. Conclusions

Prior studies utilized a limited number of proteins, and most were based on acute shifts in
racing dogs and horses. The chief contribution of the current study was the use of a system-wide
proteomics approach to define clusters of blood proteins from DBS samples that were (1) expressed
acutely post-exercise and (2) chronically during 2-day recovery from a 3-day period of intensified
exercise (FOR). Of 593 proteins identified, 60 proteins increased significantly after the 2.5 h exercise
bout on Day 1 and 15 after each of the three days of exercise compared to rest. Thirteen of the identified
proteins did not increase acutely post-exercise, but increased on the morning of day 1 and/or day 2 of
recovery. Most of these proteins (acute and chronic) signaled an exercise-induced activation of innate
immune function, supporting prior research demonstrating the heavy involvement of the immune
system in restoring homeostasis after intense exercise [42,43]. The next step in this line of research
is to test the targeted panel of FOR-related proteins defined in this study in NFOR- and OTS-based
investigations with high-level athletes. The “chronic” period included in this study after FOR (2 days
of recovery) could be extended for weeks and months within the NFOR and OTS context. The ultimate
goal is to refine the targeted proteomics panel so that when combined with various other tools such as
the TDS and workload assessment will result in a highly predictive process that will assist the coach in
individualizing training regimens to prevent NFOR and OTS in athletes.

Supplementary Materials: The following are available online http://www.mdpi.com/2227-7382/6/3/33/s1.
Table S1 provides intensity data for the 593 proteins identified for each of the 16 blood samples acquired during
the exercise and rest periods (XLSX).
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The following abbreviations are used in this manuscript:

CV Coefficient of variation
DIA Data independent acquisition
DBS Dried blood spot
FDR False discovery rate
FOR Functional overreaching
GEE Generalized estimating equation
GLMM Generalized linear mixed models
NFOR Nonfunctional overreaching
OTS Overtraining syndrome
RPE Rating of perceived exertion
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SAA Serum amyloid A
STRING Search tool for the retrieval of interacting genes/proteins
TDS Training distress scale
VO2max Maximal volume of oxygen consumption
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