
Systems biology

GPU-powered model analysis with

PySB/cupSODA

Leonard A. Harris1,2,†, Marco S. Nobile3,4,†, James C. Pino2,5,†,

Alexander L. R. Lubbock1,2, Daniela Besozzi3,4, Giancarlo Mauri3,4,

Paolo Cazzaniga4,6,* and Carlos F. Lopez1,2,*

1Department of Cancer Biology, 2Quantitative Systems Biology Center, Vanderbilt University, Nashville, TN 37232,

USA, 3Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy,
4SYSBIO.IT Centre of Systems Biology, Milan, Italy, 5Chemical and Physical Biology Graduate Program, Vanderbilt

University, Nashville, TN 37232, USA and 6Department of Human and Social Sciences, University of Bergamo,

Bergamo, Italy

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

Associate Editor: Jonathan Wren

Received on January 7, 2017; revised on June 16, 2017; editorial decision on June 22, 2017; accepted on June 26, 2017

Abstract

Summary: A major barrier to the practical utilization of large, complex models of biochemical

systems is the lack of open-source computational tools to evaluate model behaviors over high-

dimensional parameter spaces. This is due to the high computational expense of performing thou-

sands to millions of model simulations required for statistical analysis. To address this need, we

have implemented a user-friendly interface between cupSODA, a GPU-powered kinetic simulator,

and PySB, a Python-based modeling and simulation framework. For three example models of vary-

ing size, we show that for large numbers of simulations PySB/cupSODA achieves order-

of-magnitude speedups relative to a CPU-based ordinary differential equation integrator.

Availability and implementation: The PySB/cupSODA interface has been integrated into the PySB

modeling framework (version 1.4.0), which can be installed from the Python Package Index (PyPI)

using a Python package manager such as pip. cupSODA source code and precompiled binaries

(Linux, Mac OS/X, Windows) are available at github.com/aresio/cupSODA (requires an Nvidia GPU;

developer.nvidia.com/cuda-gpus). Additional information about PySB is available at pysb.org.

Contact: paolo.cazzaniga@unibg.it or c.lopez@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Kinetic modeling of complex biochemical systems is central to the

emerging field of systems biology (Kitano, 2002; Le Novère, 2015).

Kinetic models require definition of numerous free parameters, usu-

ally obtained by calibration to experimental data, that specify initial

species concentrations and kinetic rate constants. Once calibrated, a

model should be analyzed for its sensitivity and predictive power

over ranges of parameter values (Fisher and Henzinger, 2007). Both

model calibration and analysis can require thousands to millions of

model simulations for statistical convergence and significance

(Eydgahi et al., 2013; Gutenkunst et al., 2007). In many cases, the

computational expense of simulation at this scale makes detailed

model analysis infeasible.

Recently, efforts have been made to leverage the highly parallel

structure of graphics processing units (GPUs) to accelerate scientific

computations (Dematté and Prandi, 2010; Nobile et al., 2016).

GPUs are well suited for applications in which the same arithmetic

VC The Author 2017. Published by Oxford University Press. 3492

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(21), 2017, 3492–3494

doi: 10.1093/bioinformatics/btx420

Advance Access Publication Date: 28 June 2017

Applications Note

Deleted Text: ; Eydgahi <italic>et<?A3B2 show $146#?>al.</italic>, 2013
https://academic.oup.com/

operations are applied to many independent data elements, e.g. solv-

ing independently parameterized systems of ordinary differential

equations (ODEs). GPU-based kinetic simulators thus hold great

promise for accelerating tasks such as model calibration and ana-

lysis, but are challenging for non-experts to use because they require

specialized settings and inputs.

To address this problem, we have created a user-friendly interface

between the GPU-based kinetic simulator cupSODA (Nobile et al.,

2013, 2014) and PySB, a Python-based modeling and simulation plat-

form (Lopez et al., 2013). cupSODA is built around the well-known

adaptive stiff/non-stiff ODE integrator LSODA (Petzold, 1983). It is

designed to perform thousands of parallel simulations, each independ-

ently parameterized, of mass-action kinetic models by leveraging the

high-performance memories on the GPU, specifically the cached and

non-mutable constant memory and the low-latency on-chip shared

memory. PySB is a rule-based modeling (Chylek et al., 2014, 2015)

platform for constructing and analyzing complex models of biochem-

ical systems. Models can be constructed in native Python code or im-

ported from various formats, including the Systems Biology Markup

Language (SBML) (Hucka et al., 2003). PySB leverages powerful libra-

ries within the Python ecosystem, such as NumPy, SymPy and SciPy

(Perez et al., 2011), and provides user-friendly interfaces to numerous

third-party simulation and analysis tools, including BioNetGen

(Faeder et al., 2009; Harris et al., 2016), KaSim (Suderman and Deeds,

2013) and StochKit (Sanft et al., 2011).

Below, we briefly describe the main features of the PySB/cupSODA

interface and showcase its utility by performing run time and sensitiv-

ity analyses for three model systems of varying size (Table 1).

2 Features and implementation

cupSODA is designed to exploit the massive parallelism of the

CUDA architecture (Nickolls et al., 2008). To run simulations with

cupSODA, one must construct multiple input files containing, e.g.

the reaction stoichiometries and the initial species concentrations

and rate parameter values for each specified simulation. Numerous

simulator-specific parameters must also be defined, such as the num-

ber of CUDA ‘blocks’ to use and the desired cupSODA memory con-

figuration (see Supplementary Information). The number of

simulations that cupSODA can run in parallel is limited by the num-

ber of CUDA ‘cores’ on the GPU (usually a few thousand; see

Supplementary Table S1), but the number of simulations that can be

loaded onto the GPU at one time is usually many more than this,

limited by the available memory (Nobile et al., 2013, 2014).

The PySB/cupSODA interface simplifies and streamlines the use of

cupSODA via a CupSodaSimulator class, available within the PySB

package. The class constructor accepts the following arguments:

• model: A PySB model object (required)
• tspan: A list of output time points (default: None)

• initials: A list or dictionary of initial species concentrations for

each simulation (default: None)
• param_values: A list or dictionary of rate parameter values for

each simulation (default: None)
• verbose: Verbose output (default: False)

The CupSodaSimulator constructor also recognizes numerous key-

word arguments (kwargs), such as n_blocks, the number of CUDA

blocks and memory_usage, the desired memory configuration.

Importantly, default values are defined for each kwarg, removing

the need for user input. For example, if a user-defined value is not

provided, the number of CUDA blocks is automatically calculated

by querying the specifications of the GPU in use.

The CupSodaSimulator.run() method performs the simulations by

constructing the cupSODA input files and invoking cupSODA as a

subprocess (the method takes tspan, initials and param_values as op-

tional arguments). Additionally, the method reads into a three-

dimensional array the results of the simulations (species time courses),

which cupSODA outputs to (typically thousands of) separate text

files. The user then has the ability to analyze and/or visualize the re-

sults using tools available within the Python ecosystem, e.g. plotting

the time courses using the Matplotlib library (Perez et al., 2011). For

convenience, a run_cupSODA wrapper function has also been imple-

mented that combines invocations of the CupSodaSimulator con-

structor and run method into a single step. A workflow diagram and

example Python script using the run_cupSODA function are provided

in Supplementary Figures S1 and S2, respectively.

3 Results

In Figure 1A–C and Supplementary Figure S3, we compare the run

time efficiency of PySB/cupSODA to the CPU-bound ODE integra-

tor LSODA, available in the Python package SciPy (Oliphant,

2007), for three example models listed in Table 1 (see

Supplementary Information for descriptions). These include models

of the eukaryotic cell cycle (Tyson, 1991), the Ras/cAMP/PKA sig-

naling pathway in Saccharomyces cerevisiae (Besozzi et al., 2012),

and extrinsically induced apoptosis in mammalian cells (EARM: ex-

trinsic apoptosis reaction model) (Lopez et al., 2013). Run time

comparisons show that in all cases SciPy/LSODA is faster for small

numbers of simulations but PySB/cupSODA overtakes it for large

numbers of simulations, achieving a maximum speedup of approxi-

mately one order of magnitude. Comparable speedups are achieved

for other memory settings and GPUs (Supplementary Information

and Supplementary Figs S4 and S5).

For each model in Table 1, we also performed sensitivity analy-

ses (Fig. 1D and Supplementary Figs S6–S12) by quantifying changes

in defined model outputs to variations (620%) in initial protein

concentrations around a set of reference values (Supplementary

Tables S2–S4; see Supplementary Information for further details).

The ability to efficiently perform such analyses is critical since non-

genetic variability within isogenic cell populations has been attrib-

uted to significant variations in protein concentrations across cells

(Spencer et al., 2009). In Figure 1D and Supplementary Figure S11,

we analyze the sensitivity in ‘time-to-death’ in EARM (defined as

the time at which Smac reaches 50% cleavage; see Supplementary

Information and Supplementary Fig. S10) for a specific set of rate

parameters. Our results show that time-to-death is sensitive to the

initial levels of six of the 21 proteins considered. Of particular inter-

est is the sensitivity to Bak. The same analysis performed for a differ-

ent set of rate parameters (Supplementary Fig. S12) shows

insensitivity to Bak but sensitivity to Bax. This indicates that

Table 1. Models used for PySB/cupSODA performance testing

Model Species Reactions End time Output steps

Cell cyclea 5 7 100 100

Ras/cAMP/PKAb 33 39 1500 100

EARMc 77 105 20 000 100

aTyson (1991).
bBesozzi et al. (2012).
cLopez et al. (2013).

GPU-powered model analysis 3493

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: I
Deleted Text: ,
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx0022;
Deleted Text: &hx0022;

the model harbors at least two alternative pathways to apoptosis in-

duction. The analysis comprised 25 410 total simulations and took

�11 min with PySB/cupSODA and �35 min with SciPy/LSODA (for

both parameter sets). Similar accelerations were seen for the cell

cycle and Ras/cAMP/PKA models (Supplementary Information).

4 Conclusion

The PySB/cupSODA interface provides the modeling community

with a high-performance GPU-based kinetic simulator, that can run

thousands of parallel simulations on a common desktop worksta-

tion, within the easy-to-use framework of a full-fledged, open-

source programming and analysis environment in Python. This will

greatly accelerate and streamline the process of analyzing complex

biochemical models for systems biology applications.

Acknowledgment

We thank Jeremy L. Muhlich for useful feedback during the implementation

of this work.

Funding

This work was supported by the National Science Foundation [MCB-

1411482]; the VICC Young Ambassador Award [to C.F.L.]; Vanderbilt

Center for Quantitative Sciences and Kleberg Foundation Funds [to C.F.L.];

and the National Institutes of Health Vanderbilt Biomedical Informatics

Training Program [NLM 5T15-LM007450-14 to L.A.H.].

Conflict of Interest: none declared.

References

Besozzi,D. et al. (2012) The role of feedback control mechanisms on the estab-

lishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevi-

siae. EURASIP J. Bioinform. Syst. Biol., 2012, 1–17.

Chylek,L.A. et al. (2014) Rule-based modeling: a computational approach for

studying biomolecular site dynamics in cell signaling systems. WIRES Syst.

Biol. Med., 6, 13–36.

Chylek,L.A. et al. (2015) Modeling for (physical) biologists: an introduction

to the rule-based approach. Phys. Biol., 12, 045007.

Dematté,L. and Prandi,D. (2010) GPU computing for systems biology. Brief.

Bioinform., 11, 323–333.

Eydgahi,H. et al. (2013) Properties of cell death models calibrated and com-

pared using Bayesian approaches. Mol. Syst. Biol., 9, 644.

Faeder,J.R. et al. (2009) Rule-based modeling of biochemical systems with

BioNetGen. Methods Mol. Biol., 500, 113–167.

Fisher,J. and Henzinger,T.A. (2007) Executable cell biology. Nat. Biotechnol.,

25, 1239–1249.

Gutenkunst,R.N. et al. (2007) Universally sloppy parameter sensitivities in

systems biology models. PLoS Comput. Biol., 3, 1–8.

Harris,L.A. et al. (2016) BioNetGen 2.2: advances in rule-based modeling.

Bioinformatics, 32, 3366–3368.

Hucka,M. et al. (2003) The systems biology markup language (SBML): a me-

dium for representation and exchange of biochemical network models.

Bioinformatics, 19, 524–531.

Kitano,H. (2002) Computational systems biology. Nature, 420, 206–210.

Le Novère,N. (2015) Quantitative and logic modelling of molecular and gene

networks. Nat. Rev. Genet., 16, 146–158.

Lopez,C.F. et al. (2013) Programming biological models in Python using

PySB. Mol. Syst. Biol., 9, 646.

Nickolls,J. et al. (2008) Scalable parallel programming with CUDA. ACM

Queue, 6, 40–53.

Nobile,M.S. et al. (2013) cupSODA: a CUDA-powered simulator of

mass-action kinetics. Lect. Notes Comput. Sci., 7979, 344–357.

Nobile,M.S. et al. (2014) GPU-accelerated simulations of mass-action kinetics

models with cupSODA. J. Supercomput., 69, 17–24.

Nobile,M.S. et al. (2016) Graphics processing units in bioinformatics, compu-

tational biology and systems biology. Brief. Bioinform., 2016, bbw058.

Oliphant,T.E. (2007) Python for scientific computing. Comput. Sci. Eng., 9,

10–20.

Perez,F. et al. (2011) Python: An ecosystem for scientific computing. Comput.

Sci. Eng., 13, 13–21.

Petzold,L. (1983) Automatic selection of methods for solving stiff and nonstiff

systems of ordinary differential equations. SIAM J. Sci. Stat. Comput., 4,

136–148.

Sanft,K.R. et al. (2011) StochKit2: software for discrete stochastic simulation

of biochemical systems with events. Bioinformatics, 27, 2457–2458.

Spencer,S.L. et al. (2009) Non-genetic origins of cell-to-cell variability in

TRAIL-induced apoptosis. Nature, 459, 428–432.

Suderman,R. and Deeds,E.J. (2013) Machines vs. ensembles: effective MAPK

signaling through heterogeneous sets of protein complexes. PLoS Comput.

Biol., 9, e1003278.

Tyson,J.J. (1991) Modeling the cell division cycle: cdc2 and cyclin inter-

actions. Proc. Natl. Acad. Sci. USA, 88, 7328–7332.

A D

B

C

Fig. 1. (A–C) Run time comparisons between PySB/cupSODA and SciPy/

LSODA for the example models in Table 1 (all simulations performed with the

same initial protein concentrations and rate parameters). (D) Sensitivity in

time-to-death in EARM to variations (620%; 25 410 total simulations) in the

initial protein concentrations (gold lines are medians; boxes range from the

first to third quartile; whiskers extend to the minimum and maximum values).

PySB/cupSODA simulations were run using cupSODA 1.0.0 on a GeForce

GTX 980 Ti GPU (2816 cores, 16 threads/block); SciPy/LSODA simulations

were run on an Intel Xeon E5-2667 v3 @ 3.20 GHz CPU (see Supplementary

Table S1)

3494 L.A.Harris et al.

	btx420-TF1
	btx420-TF2
	btx420-TF3

