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Abstract

A microbial community is a dynamic system undergoing constant change in response to

internal and external stimuli. These changes can have significant implications for human

health. However, due to the difficulty in obtaining longitudinal samples, the study of the

dynamic relationship between the microbiome and human health remains a challenge.

Here, we introduce a novel computational strategy that uses massive cross-sectional sam-

ple data to model microbiome landscapes associated with chronic disease development.

The strategy is based on the rationale that each static sample provides a snapshot of the

disease process, and if the number of samples is sufficiently large, the footprints of individ-

ual samples populate progression trajectories, which enables us to recover disease pro-

gression paths along a microbiome landscape by using computational approaches. To

demonstrate the validity of the proposed strategy, we developed a bioinformatics pipeline

and applied it to a gut microbiome dataset available from a Crohn’s disease study. Our anal-

ysis resulted in one of the first working models of microbial progression for Crohn’s disease.

We performed a series of interrogations to validate the constructed model. Our analysis sug-

gested that the model recapitulated the longitudinal progression of microbial dysbiosis dur-

ing the known clinical trajectory of Crohn’s disease. By overcoming restrictions associated

with complex longitudinal sampling, the proposed strategy can provide valuable insights into

the role of the microbiome in the pathogenesis of chronic disease and facilitate the shift of

the field from descriptive research to mechanistic studies.
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Author summary

The delineation of system dynamics of a microbial community can provide a wealth of

insights into the roles of the microbiome in the pathogenesis of chronic disease. However,

due to the difficulty in obtaining longitudinal samples, most existing microbiome studies

have been cross-sectional and largely descriptive. Here, we present a novel computational

strategy that leverages massive static sample data to model microbiome landscapes associ-

ated with chronic disease development. To demonstrate the validity of the proposed strat-

egy, we applied it to a gut microbiome dataset available from a Crohn’s disease study and

constructed one of the first microbial progression models of the disease. We performed a

series of interrogations on the constructed model. Our analysis suggested that the con-

structed model recapitulated the longitudinal progression of microbial dysbiosis during

the known clinical trajectory of Crohn’s disease. By overcoming the sampling restrictions

inherent to slowly progressive diseases, our approach is potentially widely applicable in

many different studies across body sites, diseases, and other conditions.

This is a PLOS Computational Biology Methods paper.

Introduction

The human microbiome—trillions of microbes residing in and on human bodies—plays an

essential role in many important physiological processes. Studies that are part of the Human

Microbiome Project and others have significantly expanded our knowledge of the human

microbiota and its implications for human health [1–5]. However, most microbiome studies

performed to date have been cross-sectional, using single time-point data to examine the

potential role of the microbiome in human health. While cross-sectional studies are a logical

first step, these analyses are largely descriptive and provide little information about microbial

community dynamics with respect to disease development. A possible way to elucidate system

dynamics in this context is to assemble time-series data through repeated sampling of the

same cohort of subjects across a defined disease process. This could provide a wealth of

insights into pathogenesis that is unattainable through a static experimental design. However,

due to economical and logistical constraints, time-course studies have generally been limited

by the number of samples examined and the time period followed, and consequently data col-

lected may only cover a partial picture of microbial dynamics [6–9]. This is particularly true

when studying chronic diseases (i.e., Crohn’s disease or periodontitis), the development of

which can take decades. Consequently, it has been difficult to study microbial community

dynamics and their possible contribution to the initiation and progression of human chronic

diseases.

As cost-effective DNA sequencing technology continues to advance, large-scale epidemio-

logical studies are providing access to data from many thousands of microbiome samples. This

provides us with a unique opportunity to develop an analytical strategy that uses massive

cross-sectional data, instead of time-course data, to study microbial community dynamics in

disease. The strategy is based on the rationale that each static sample provides a snapshot of

the disease process, and if the number of samples is sufficiently large, the footprints of individ-

ual samples populate progression trajectories, which in turn enables the recovery of microbial

community dynamics by using computational approaches. To demonstrate the validity of the

proposed strategy, we developed a bioinformatics pipeline and applied it to a gut microbiome
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dataset available from a Crohn’s disease (CD) study [7]. CD is a chronic inflammatory disease

characterized by discontinuous lesions that can affect the entire gastrointestinal tract. It tends

to start in the teens and twenties, though it can occur at any age [10], and as there are no cura-

tive interventions currently available [11], it is considered a lifelong illness. At diagnosis, most

patients present with a clinical inflammatory behavior, but stricturing or penetrating compli-

cations develop as the disease progresses [12, 13]. The extent of CD lesions also changes over-

time, initially involving either the ileum or the colon and later progressing to the ileocolonic

region [12]. Previous metagenomics studies suggested that CD results from aberrant immune

responses to the intestinal microbiota [14, 15], but details of how microbiome shifts initiate or

promote disease development, progression and symptom exacerbation are lacking. Our analy-

sis using the developed bioinformatics pipeline revealed a double bifurcating model of micro-

bial alterations that occur during disease development. The constructed model was validated

by aligning it with clinical and molecular traits. The analysis suggested that the identified

microbiome trajectories reflected changes in CD behavior, location and severity associated

with disease progression. To further demonstrate the utility of the model, we projected the

samples onto the identified progression paths to form pseudo-time series data and performed

a series of analyses to characterize dysbiosis and microbiome functional shifts, to infer micro-

bial interactions, and to identify key bacteria associated with CD development. By overcoming

the sampling restrictions inherent to slowly progressive diseases, our approach provides a

novel way to study microbial community dynamics associated with human chronic diseases.

Results

Overview of the developed bioinformatics pipeline

Fig 1 presents the flowchart of the proposed bioinformatics pipeline for microbial community

dynamics analysis. Briefly, given a table of operational taxonomic units (OTUs) that summa-

rizes the microbiome compositions of individuals, either healthy or presenting with different

stages of a disease, we first perform feature selection to identify disease-related microorgan-

isms. Then, by using the relative abundances of the selected microorganisms, we perform clus-

tering analysis to group samples with homogenous microbial compositions and conduct

embedded structure learning to construct a principal tree to mathematically describe the

dynamic changes in microbial compositions associated with disease development. Finally, by

using the principal tree as a backbone, we combine the principal-tree and clustering results

to build a microbial progression model. See Methods for details. The software and user

manual of the proposed bioinformatics pipeline are freely available at www.acsu.buffalo.edu/~

yijunsun/lab/MicroDynamics.html.

Fig 1. Overview of the proposed bioinformatics pipeline for microbial community dynamics analysis. The pipeline

offers an integrated suite of computational tools that allow researchers to identify disease-related microorganisms,

stratify samples into clinically relevant subtypes, construct disease progression models, and delineate disease-specific

community dynamics at both organism and functional levels.

https://doi.org/10.1371/journal.pcbi.1010373.g001
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Constructing a microbial progression model of Crohn’s disease

To demonstrate the utility of the proposed bioinformatics pipeline, we applied it to a human

gut microbiome dataset obtained from a Crohn’s disease study [7]. The dataset contains 312

microbiome samples collected from 49 CD patients and 9 healthy controls (HCs). The disease

duration of the CD patients ranged from recent onset to 58 years. By using the Montreal classi-

fication system [16], each patient was stratified into one of three disease phenotypes: inflam-

matory (B1), stricturing (B2), and penetrating (B3). Patients were also classified by bowel

lesion location as colonic CD (cCD), ileal CD (iCD), or ileocolonic CD (icCD), and by whether

they had undergone resective surgery. See S1 Table for the summary of the study cohort and

S2 Table for the detailed clinical information. For each individual, a fecal sample was collected

every three months for up to two years, and the V4 hyper-variable region of the 16S rRNA

gene was PCR amplified and sequenced, resulting in 90,456,980 reads with an average length

of 98 bps. We used the QIIME pipeline [17] for data pre-processing and OTU table construc-

tion. Since a sample with an insufficient sequencing depth may not enable accurate estimation

of microbial composition, we excluded 37 samples with less than 104 reads from downstream

analysis (S1 Fig). By grouping the sequences into OTUs at the 3% distance level, we obtained a

total of 77,286 species-level OTUs. See Methods for details.

Since only a small fraction of microorganisms are likely to be involved in disease develop-

ment, the first step toward progression modeling is to identify disease-related microorgan-

isms. We formulated it as a feature-selection problem for supervised learning and used the

disease phenotypes that reflect disease severity as class labels to detect relevant microorgan-

isms. For the purpose of the study, the LOGO algorithm [18] was employed (see Methods).

This is one of the most competitive feature-selection algorithms derived to date, with excel-

lent accuracy and computational efficiency. Since the disease progression is defined as the

development of B2 or B3 in patients with B1 at diagnosis [12] and there were only 7 patients

diagnosed as B3, we combined the samples in the B2 and B3 groups, forming a three-class

supervised-learning problem (i.e., HC, B1, and B2/B3). The parameters of LOGO were esti-

mated through ten-fold cross-validation (S2(A) Fig). By applying a cutoff of 0.001 to the

obtained feature weights, a total of 172 OTUs were detected to be related to disease develop-

ment (S2(B) Fig).

By using the relative abundance data of the identified OTUs, we next performed a cluster-

ing analysis to detect sample groups with homogenous microbial compositions. To this end,

the k-means method [19] was employed. The number of clusters was estimated to be five by

gap statistic [20] (Fig 2A). It is known that using k-means may result in a local optimal solution

[21]. To obtain a stable and robust clustering assignment, a resampling-based consensus clus-

tering analysis [22] was performed, where k-means clustering was repeated 1,000 times and in

each time 80% samples were drawn randomly without replacement from the entire dataset.

The results of the 1,000 runs were aggregated into a consensus matrix, providing a visual

representation of the frequency of two samples being grouped into the same cluster. From

the consensus matrix, we can clearly identify five blocks along the anti-diagonal line (Fig 2B),

suggesting a reliable data partition. To further assess the clustering robustness, the silhouette

width of each sample was calculated, which is defined as the difference between its average

similarity with samples in the same cluster and the largest average similarity with samples in

different clusters [23]. A cluster with an average silhouette width larger than 0 is generally con-

sidered stable. In our analysis, 255 of 275 (93%) samples had a positive silhouette width, the

average silhouette widths of the five clusters ranged from 0.06 to 0.18, and the average silhou-

ette width of all the samples equaled to 0.1, demonstrating the stability of the detected clusters

(Fig 2C).
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After we grouped samples with similar microbial compositions, we next performed an

embedded structure learning to construct a principal tree to mathematically describe microbial

dynamics and to infer the potential progression relationships of the detected clusters. For the

purpose of the study, our recently developed DDRTree algorithm [24] was employed. The

basic idea is to fit a given dataset by using a minimum spanning tree with a bounded length

(Fig 1C). The method can automatically determine the number and presence of branches and

is robust against noise, rendering it particularly suitable to detect a complex tree structure hid-

den in a high-dimensional space. See Methods for details. We used the elbow method [25] to

tune the parameters of the DDRTree method (S3 Fig).

Fig 2. Microbial community dynamic analysis performed on a human gut microbiome dataset (n = 275) obtained

from a Crohn’s disease study. (a) The number of clusters was estimated to be five by gap statistic. (b) Resampling-

based consensus clustering analysis identified five robust and stable clusters. (c) Silhouette width analysis further

confirmed the robustness of clustering assignment. A total of 255 of 275 (93%) samples had a positive silhouette width,

and the average was equal to 0.1. (d) By combining the principal-tree and clustering results, a microbial progression

model of Crohn’s disease was constructed, and four progression paths were identified. Each node represents an

identified cluster, and the pie chart in each node depicts the percentage of the samples in the node having one of the

CD behaviors (left panel) or belonging to one of the CD subtypes (right panel). (e-g) Visualization analysis provided a

general view of sample distribution supported by the selected microorganisms. Each point represents a sample, which

was projected onto a three-dimensional space by using the DDRTree method. Each sample was color-coded by its

cluster index (e), CD behavior (f), and CD subtype (g), respectively. The solid line represents the constructed principal

tree. HC: healthy control, cCD: colonic Crohn’s disease, iCD: ileal Crohn’s disease, icCD: ilealcolonic Crohn’s disease,

r/nr: with/without ileocaecal resection.

https://doi.org/10.1371/journal.pcbi.1010373.g002
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Finally, by using the constructed principal tree as a backbone, we combined the clustering

and principal-tree results to build a microbial progression model of CD (Fig 2D). We present

the constructed model as an undirected graph, where each node represents a cluster, and the

node size is proportional to the number of samples in the corresponding cluster. An edge con-

necting two nodes indicates a possible progressive relationship, and the length of the edge is

proportional to the distance of the curve connecting the centers of the two nodes. The pie

chart in each node depicts the percentage of the samples in the node having one of the CD

behaviors or belonging to one of the CD subtypes. Our modeling analysis revealed a double

bifurcating structure with four potential microbiome progression paths, starting from two dis-

tinct health-associated clusters and evolving toward two disease endpoints (Fig 2D).

We performed a series of interrogations that provided support for the constructed model.

Fig 2E–2G presents the data distribution in a three-dimensional space learned by the

DDRTree method. To help with visualization and to put the result into context by referring to

previous studies, each sample was color-coded by its cluster index, CD behavior or CD sub-

type, respectively. We noticed that the overall structure of the constructed model is consistent

with the data visualization result (i.e., double bifurcating), suggesting that the model faithfully

reflected the data distribution. As mentioned above, changes in CD behavior are part of the

natural course of CD, with the disease progression being defined as patients shifting from

inflammatory (B1) to a complex behavior (either B2 or B3) [12, 13, 26]. Notably, the identified

progression paths accurately reflected the changes in CD behaviors associated with disease

progression. As shown in Fig 2D and 2F, the constructed model starts from two health-associ-

ated clusters, converges to Cluster 3 that is dominated by samples with an inflammatory

behavior, and finally diverges to Clusters 4 and 5 that consist primarily of samples with stric-

turing and penetrating behaviors. It is worth noting that samples with various CD behaviors

(e.g., B1) are present in nearly all the detected clusters (Fig 2D). This is possibly due to the fact

that microbial compositions of CD patients are highly unstable and can be heavily influenced

by various factors such as dietary changes and medications (discussed below). Changes in

bowel lesion location have also been documented to occur during long-term follow-up of CD

patients, with initial presentations localized to colon or ileum only and eventually involving

both locations [12]. Notably, our microbial progression model captured changes in lesion loca-

tion (Fig 2D and 2G). Specifically, Cluster 3 was composed mostly of patients with involve-

ment in a single location (cCD and iCD), and Cluster 5 had a large proportion of patients with

ileocolonic involvement. This suggests that there are microbial shifts associated with location

changes. Our progression model also captured increased disease severity, as measured by the

proportion of patients who underwent a resective procedure. Specifically, while there are only

18.8% patients in Cluster 3 having a resection, the proportions are increased to 87.0% and

88.6% for Clusters 4 and 5, respectively (Fig 2D). Taken together, the above results suggest that

the constructed model recapitulates the natural history of CD and can provide a representation

of the longitudinal progression of dysbiosis during the clinical trajectory of the disease.

Changes in microbiome alpha diversity along identified progression paths

Having depicted the general trend of microbiome shifts during CD development, we assessed

the changes in microbiome alpha diversity along the four identified progression paths. We

observed that the alpha diversity, as measured by Chao1 [27] and Shannon metrics [28],

decreased significantly along each progression path (Fig 3A). We found that Cluster 3, com-

prised mainly of samples from B1—the early stage of the disease, showed a significantly lower

alpha diversity compared with HC Cluster 1 (p-value < 0.001, ANOVA test), but not with HC

Cluster 2 (Fig 3B). Furthermore, compared with the HC groups and Cluster 3, the clusters of
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Fig 3. Changes in microbiome alpha diversity along identified progression paths and clinical characteristics of healthy states and disease

endpoints. (a) Spearman’s rank correlation analysis of alpha diversity as measured by Chao1 index and Shannon index along the four

identified progression paths (see Fig 2D). To aid in visualization, each sample was annotated by its clinical behavior. (b) Comparison of alpha

diversity of five detected clusters. The asterisks indicate the levels of significance determined by ANOVA. �: p-value< 0.05, ��: p-value< 0.01,
���: p-value< 0.001. Also see S3 Table. (c) Enterotype analysis of the HC samples in Cluster 1 (HC-C1) and Cluster 2 (HC-C2). HC-C1 and

HC-C2 correspond to the enterotypes driven by Bacteroides and Prevotella, respectively. (d-e) Comparison of clinical characteristics of patients

in two disease endpoints (i.e., Clusters 4 and 5). Cluster 5 contained a significantly higher proportion of patients with active inflammation

(fecal calprotectin>150 μg/g) compared with Cluster 4 (p-value = 0.016, χ2 test). Clusters 4 and 5 exhibited significantly different female-to-

male ratios and CD behavior compositions (p-value< 0.01, χ2 test).

https://doi.org/10.1371/journal.pcbi.1010373.g003
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the late-stage CD (Clusters 4 and 5) exhibited a significant reduction in alpha diversity (p-

value < 0.05, ANOVA test). However, the difference in alpha diversity between Clusters 4 and

5 was not significant. The above results are consistent with the observations from prior studies

[29–31] that reported a reduction in microbiome diversity with progressive CD, which pro-

vides further support for the validity of the constructed model.

Characteristics of healthy and disease endpoints

Since the modeled microbiome progression started from two distinct health-associated clus-

ters and evolved toward two disease endpoints, we next evaluated the clinical characteristics of

the starting and terminal microbial states. Several studies have demonstrated that human gut

microbiota of healthy individuals can be stratified into enterotypes, which are associated with

long-term diet and mainly driven by the abundances of Bacteroides (termed as ET-B) or Prevo-
tella (termed as ET-P) [32, 33]. Notably, in our study, we observed that the HC samples were

grouped into two clusters corresponding to ET-B and ET-P, respectively (Fig 3C), and the two

clusters converged to the CD-associated Cluster 3 (Fig 2D). This suggests that CD may have

two distinct disease origins depending on the enterotypes of individual patients. We noticed

that the relative abundance of Prevotella in ET-P is much higher than that observed in the orig-

inal enterotype paper [33]. The discrepancy may be explained by the differences in individual

diets, lifestyles, and countries of origin, as reported in [34–36].

The constructed model also depicted two disease endpoints (i.e., Clusters 4 and 5) with dis-

tinct clinical characteristics. Specifically, Cluster 5 exhibited a significantly higher proportion

of samples showing active inflammation compared with Cluster 4 (p-value = 0.016, χ2 test), as

measured by fecal calprotectin > 150μg/g [37, 38] (Fig 3D). We also observed a gender differ-

ence in the two clusters with a female-to-male ratio of 1.31 in Cluster 5 and 0.05 in Cluster 4

(p-value� 8.2 × 10−6, χ2 test, Fig 3E). Moreover, there was a significant difference between the

two clusters in terms of CD behavior (p-value� 2.7 × 10−3, χ2 test, Fig 3E). Specifically, Cluster

5 was dominated by B2 cases—patients with stricturing CD. In contrast, patients with either

stricture or penetration were dominant in Cluster 4. To rule out the possibility that the differ-

ence in inflammation levels between Clusters 4 and 5 was related to disease behavior, we com-

pared fecal calprotectin levels of patients with the same disease behavior in the two clusters.

Our analysis showed that within each CD behavior Cluster 5 always demonstrated a higher

portion of samples with active inflammation (S4 Fig) and thus Cluster 5 can be considered as a

more severe phenotype. In summary, our analysis suggests that there may be two forms of

late-stage CD, with different microbiome compositions, inflammation severities, CD behaviors

and subtypes (Fig 2D).

Characterizing overall dysbiotic shifts during CD progression

In the progression modeling analysis, we performed supervised learning to detect disease-

related microorganisms. However, due to the use of the ℓ1 regularization (see Eq (6)), if multi-

ple microorganisms had similar microbial profiles across samples, only one microorganism

was retained (that is, we intended to construct a parsimonious model to minimize the chance

of overfitting). To comprehensively search for disease-related microorganisms, we performed

a Spearman’s rank test to detect OTUs that showed significant changes in relative abundance

along at least one identified progression path. We used the DS-FDR method [39] to control

the false discovery rate and filtered out OTUs with average relative abundance < 0.001 and

Spearman’s rank correlation coefficient |ρ| < 0.3 (i.e., those with a weak or no correlation). At

an FDR of 0.01, a total of 90 species-level OTUs were retained (Fig 4 and S5 Fig).
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Consistent with previous findings [7, 40, 41], we observed an overall decrease of benefi-

cial bacteria including Faecalibacterium prausnitzii, Roseburia, Subdoligranulum and Lach-
nospiraceae, as well as members of Ruminococcus and Oscillospiraceae as disease severity

progressed (S6 Fig). By producing butyric acid, the beneficial bacteria, such as F. prausnitzii,
may protect the host by up-regulating anti-inflammatory cytokines [42]. Thus, the reduc-

tion of these clades may impair the ability of the host to repair the epithelium and regulate

inflammation. In contrast, the relative abundances of pro-inflammatory bacteria, including

Escherichia coli and Ruminococcus gnavus, were significantly increased along the disease

progression paths (S7 Fig). Our data confirms previous findings that suggested that E. coli
and R. gnavus may play a role in CD development [43]. In addition, OTUs classified as

Fig 4. Heatmap of microorganisms for which the relative abundances were detected to be highly correlated with

at least one of the four identified CD progression paths. Each row represents an OTU, and each column represents a

sample. The samples were first ordered by cluster labels and then by progression distances. For the purpose of

visualization, the relative abundance of each OTU was log-transformed and scaled into the range of [0, 1]. See S5 Fig

for additional details.

https://doi.org/10.1371/journal.pcbi.1010373.g004
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Tyzzerella sp. and Clostridium bolteae were found by our pipeline to be associated with CD

progression through all paths (S7 Fig).

Importantly, our analysis also detected path-specific microbial variations. A decrease in

Prevotella copri was associated with the path starting from ET-P, while Clostridia CAG-354,

Bacteroides cellulosilyticus and Akkermansia muciniphila decreased with disease progression

from ET-B. Notably, Ruminococcus torques, which is known to degrade gastrointestinal mucin

[44, 45] and is more frequently found in relatives of CD patients compared with healthy indi-

viduals [46], was positively correlated with the disease progression paths leading to Cluster

4. Fusobacterium ulcerans, which has been previously isolated from skin ulcers, was also

increased in a specific manner along progression paths 1 and 3 leading to Cluster 4. Microbial

changes leading to Cluster 5—a severe disease status—included a decrease in the beneficial gut

commensal Anaerostipes, which may protect against colon cancer by producing butyric acid

[47], and an increase in the oral commensals Fusobacterium nucleatum subsp. animalis, Lacto-
bacillus acidophilus and Anaeroglobus micronuciformes along both paths 2 and 4, leading to

Cluster 5.

Inferring microbial interaction networks associated with CD progression

Once a microbial progression model was constructed, we projected each sample back onto the

identified progression paths. Here, the projection of a sample was defined as a point on a pro-

gression path that is closest to the sample. By using the healthy controls as the baseline, the

static samples were ordered along a path according to the extent to which the disease pro-

gressed from an inflammatory phenotype toward intestinal stricture and penetration (S8 Fig).

The ordered samples can be viewed as pseudo-time series data, which provides a unique oppor-

tunity to perform a microbial interaction network analysis to identify key bacteria potentially

responsible for the alterations of microbiota associated with disease development. In this

study, we used the generalized Lotka-Volterra (gLV) method [48, 49] to infer pairwise interac-

tions between microorganisms (see Methods). Following the work of [50], we evaluated the

influence of each microorganism (or node) affecting others on the network by its out-degree—

the number of edges directed out of the node. We found that a decrease in Prevotella copri was

an important event associated with disease development along all paths (Fig 5 and S9 Fig). Our

analysis also revealed that a decrease in Parasutterella excrementihominis and Veillonella aty-
pica and an increase in E. coli are key events in the progression toward Cluster 4, while the pro-

gression leading to Cluster 5 appears to be primarily driven by an increase in F. nucleatum
subsp. animalis.

Characterizing functional shifts associated with CD progression

The constructed progression model also enabled us to investigate how the shifts in functional

potential of the microbiome were associated with disease development. To this end, we applied

PICRUSt2 [51] to predict the functional content of microbial communities and performed a

Spearman’s rank correlation test to identify KEGG pathways that showed significant changes

in pathway activities along at least one progression path (see Methods). As with the dysbiosis

analysis, we employed the DS-FDR method [39] to control the false discovery rate and filtered

out the functional pathways with average relative abundance < 0.001 and Spearman’s rank

correlation coefficient |ρ|< 0.3. At an FDR of 0.01, a total of 101 KEGG pathways were identi-

fied (S10 and S11 Figs and S4 Table). Consistent with previous studies [52–55], we found that

the activities of pathways such as galactose metabolism, pentose and glucuronate interconver-

sions, sulfur metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and

phenylalanine metabolism were significantly increased with CD severity. Conversely, pathways
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including fatty acid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and D-

glutamine and D-glutamate metabolism were negatively correlated with the disease progres-

sion paths. Through comparative analysis of pathway activities along different progression tra-

jectories, we found that progression paths leading to Cluster 4 were associated with decreased

amino acid and nucleotide metabolism along with increased metabolism of several carbohy-

drates, glycan degradation and primary and secondary bile acid biosynthesis, while the pro-

gression paths that end at Cluster 5 were linked to a decline of antimicrobial biosynthesis and

an enrichment in glutathione metabolism, and xylene and dioxin degradation. Path 4 in partic-

ular was associated with an increase in two-component systems, ABC transporters, the phos-

photransferase system, and the butyrate and propionate metabolic pathways. These results

highlight the ability of the proposed bioinformatics pipeline to identify microbiome functional

shifts along disease progression paths toward distinct disease phenotypes.

Longitudinal microbiome shifts in individual subjects during disease

progression

The study cohort was collected from participants every three months for up to two years,

which provided us with an opportunity to examine variations in the microbiome of individual

patients across the sampling period. Since it is not reliable to estimate variations using a small

number of samples, we excluded from the analysis the individuals with < 5 serial samples. In

total, data from 34 participants were examined. Since both ET-B and ET-P can be used as the

disease origin, the progression distance of a sample could vary depending on the origin used.

To address this issue, we scaled the curve distance between Clusters 2 and 3 (i.e., the shorter

Fig 5. Microbial interaction networks inferred by the gLV method applied to pseudo-time series data recovered from four identified CD

progression paths. Each node represents an OTU, its size is proportional to the number of edges directed out of the node (i.e., out-degree), and its face

color represents the sign of the correlation of the relative abundance of the OTU with a progression path (red: positive, blue: negative). Only the nodes

with out-degrees larger than 10 were annotated. Since compositionality was not considered in the analysis, artificial links might arise. See S9 Fig for

detailed annotations.

https://doi.org/10.1371/journal.pcbi.1010373.g005
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branch) by a constant of 1.66 in downstream analysis so that the calculation of the progression

distance of a given sample is independent of the disease origin used. Our analysis showed that

CD samples significantly deviated from HCs (p-value< 0.001, Student’s t-test, Fig 6A). Specif-

ically, the icCD-r cases attained the largest progression distances, in line with reported clinical

severity, followed by icCD-nr and iCD-r. We can also see that the microbial communities of

healthy individuals are much more stable than those of CD patients. In addition to physiologi-

cal conditions, other factors (e.g., dietary changes and medications) can also significantly alter

the human gut microbiome. For example, in a patient who was diagnosed with cCD and

placed on corticosteroids, we found that in the period of receiving the medication the gut

microbiome moved backward along the progression path toward the healthy microbiome, but

after corticosteroids were stopped, the microbiome moved forward along the progression path

toward the initial microbial status, at which point corticosteroids were again administered

(Fig 6B). This result indicates that the constructed progression model correlates well with

Fig 6. Microbial community dynamics analysis of individual patients. (a) The progression distances of the samples

collected from individual participants over a two-year period. The participants were first ordered by CD subtypes and

then by median progression distances. (b) The microbiome composition of a patient was significantly altered by

medication. Sample 0 contained only a few hundreds of reads and thus was omitted. (c) Samples collected from a two-

year study provided only a partial picture of microbial community dynamics associated with disease development.

Each circle represents a patient, the face color represents the CD subtype, and the radius equals 1.5 MAD of the

progression distances of the samples collected from the patient. MAD: median absolute deviation.

https://doi.org/10.1371/journal.pcbi.1010373.g006
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the clinical trajectory of CD and supports the potential of such tools to monitor treatment

responses and disease remission.

To further assess the sample variation of each patient, we computed the median absolute

deviation (MAD) of the progression distances of the samples from each patient (1.5 MAD is a

robust measure of one standard deviation) and mapped the samples back onto the progression

model (Fig 6C). We found that the radii of the circles representing CD patients ranged from

0.13 to 2.13 (average: 0.83), which equals to 5.9%–9.1% of the total length of the progression

path, respectively. This analysis shows that while the gut microbiome of CD patients is highly

unstable and influenced by various factors, the samples collected from a two-year longitudinal

study provided only a partial picture of the progressive clinical course of CD. This underscores

the importance of the development of novel approaches, such as the bioinformatics pipeline

proposed in this study, to overcome the sampling limitations that impede longitudinal studies

of microbiome-related chronic diseases.

Discussion

As with any biological system, a microbial community is a dynamic system undergoing con-

stant change in response to internal and external stimuli. The composition of the human gut

microbiota, for example, can be modulated by the introduction or extinction of particular

microbial groups, or by a change in population structure caused by various factors [56]. In

turn, such changes can have significant implications for human health [57]. The delineation of

system dynamics of a microbial community can provide a wealth of insights not accessible

through a static experiment, and lay a critical foundation for the development of probiotic,

prebiotic, antibiotic, and other strategies to manipulate the microbiome. However, due to the

difficulty in obtaining longitudinal samples, most existing microbiome studies have been

cross-sectional and largely descriptive. Here, we present a novel computational strategy that

leverages massive static sample data to study microbial dynamics associated with chronic

human disease development. We applied the developed pipeline to a Crohn’s disease micro-

biome dataset and constructed one of the first microbial progression models of the disease.

Our analysis revealed that CD may have two disease origins depending on the enterotypes of

individual patients, and two disease endpoints with distinct clinical characteristics and micro-

bial compositions. Since there is currently no established progression model for comparison,

model validation poses a challenge. Our strategy was to align the model with established clini-

cal and molecular traits. Our analysis suggested that the constructed model recapitulated the

longitudinal progression of microbial dysbiosis during the known clinical trajectory of CD.

This study has several limitations worth discussing. It has been reported that the composi-

tional nature of microbiome data could induce biases in data analysis [58–60]. While there are

several strategies (e.g., modeling with data after centered log-ratio (CLR) transformation) that

can be used to alleviate the issue [59], the analysis of compositional microbiome data remains

a challenge [60]. Due to the lack of microbial biomass data of samples, our approach assumed

that there was no significant variation in absolute abundances between samples. Thus, the

compositionality was not factored into the modeling. Out of interest, we performed an experi-

ment using CLR transformed data for modeling, and we observed a similar double bifurcating

structure. However, we should point out that in the microbial interaction network analysis,

artificial links might arise since compositionality was not considered. In the software package,

we provided users with an option to use CLR transformed data for the proposed analysis. As

more data becomes available, we will perform in-depth analysis to assess potential biases that

compositional data might introduce into a model. In this study, we used the k-means method

to detect patient groups with homogenous microbial compositions. While k-means is one of
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the most widely methods for clustering analysis, there are several other methods that might be

more suitable for microbiome data sets (e.g., Dirichlet multinomial mixtures [61] and partition

around medoids [62]). Another limitation of the study is that the model was derived from a

dataset with a relatively small sample size. When larger datasets become available, the develop-

ment of robust models encompassing the microbiome variability across individuals and popu-

lations will become possible. In this study, we used the sequence data obtained from the V4

hyper-variable region of the 16S rRNA gene for OTU table construction, which may not pro-

vide sufficient taxonomic resolution at the species level and can affect model resolution. A

possible way to address the issue is to use whole metagenome or full-length 16S rRNA gene

sequence data to estimate microbial compositions, which could significantly refine constructed

models. We should emphasize that the constructed model ultimately needs to be verified

through wet-lab experiments. However, interrogation of a computational model will allow

researchers to generate and test novel hypotheses in silico and help to prioritize resources and

inform focused and detailed investigations experimentally.

We expect that our approach will find wide applications. Although here we focused on

Crohn’s disease, the approach can be used to study other microbe-related chronic diseases,

where the lack of longitudinal data is a ubiquitous problem. Compared to resource-intensive

or impractical time-course studies, it is much easier to conduct a cross-sectional study;

researchers only need to be concerned with recruiting patients presenting various stages of a

disease, and the recent development of sequencing technology has already made large-scale

sequencing projects feasible. The application of our approach to large cross-sectional popula-

tions will significantly advance our understanding of microbiome dynamics during chronic

disease development and help to identify novel diagnostic and therapeutic strategies.

Materials and methods

Data pre-processing and OTU table construction

We used the QIIME pipeline (v1.9.0) [17] for data pre-processing and OTU table construction.

Specifically, we first removed low-quality reads by filtering out sequences that contained

ambiguous bases, had a Phred quality score less than 3, or had more than three consecutive

low-quality base calls. A total of 90,456,980 sequences were retained for further analysis. Then,

we performed a taxonomy-independent analysis using USEARCH [63] to group sequences

into OTUs at the 3% distance level, and removed chimeric sequences using UCHIME [64].

We calculated the relative abundance of each sample by dividing the number of reads in each

OTU by the total read counts in the sample. We added a small constant 10−6 to the relative

abundances and performed a 10-base logarithmic transformation [65]. We performed the tax-

onomy annotation of each OTU by using BLAST [66] against the Genome Taxonomy Data-

base (v86) [67], and conducted a functional analysis by using PICRUSt2 [51]. The functional

analysis yielded 8,602 KEGG orthologies, which were grouped into 204 KEGG pathways [68]

by MinPath [69].

Bioinformatics pipeline for microbial community dynamics analysis

Feature selection to identify disease related microorganisms. We used the LOGO algo-

rithm [18] to identify disease-related microorganisms. It represents one of the most competi-

tive feature-selection algorithms derived to date, with excellent accuracy and computational

efficiency. The basic idea is to decompose a complex nonlinear problem into a set of locally lin-

ear ones through local learning, and then learn feature relevance globally within the large mar-

gin framework. Below, we present a detailed description of the method.
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Let fðxn; ynÞg
N
n¼1

be a dataset, where xn is the n-th data sample and yn is the corresponding

label. We aim to select a subset of features so that the class labels of unseen samples can be cor-

rectly predicted. We start by defining the margin of xn. Given a distance function, we find two

nearest neighbors of xn, one from the same class (called nearest hit or NH), and the other from

a different class (called nearest miss or NM). The margin of xn is defined as ρn = d(xn, NM(xn))

− d(xn, NH(xn)), where d(�) is a distance function. In this study, we used the Manhattan dis-

tance to define the margin, while other distance function can also be used. By the large margin

theory [70], a classifier that minimizes a margin-based error function usually generalizes well

on unseen test data. Let w� 0 be a feature weight vector, where the magnitude of each element

represents the relevance of the corresponding feature. Our goal is to find a weighted subspace

specified by w so that a margin-based error function in the induced space is minimized.

The margin of xn, computed with respect to w, is given by

rnðwÞ ¼ dðxn;NMðxnÞjwÞ � dðxn;NHðxnÞjwÞ ≜ wTzn ; ð1Þ

where zn = |xn − NM(xn)| − |xn − NH(xn)|, and |�| is an element-wise absolute operator. A

major issue with the above margin definition is that the nearest neighbors of a given sample

are unknown before learning. To account for the uncertainty in defining local information, we

develop a probabilistic model, where the nearest neighbors of a given sample are treated as hid-
den variables. Following the principles of the expectation-maximization algorithm [71], we

estimate the margin by computing the expectation of ρn(w) via averaging out the hidden vari-

ables:

rnðwÞ ¼ wTð
P

i2Mn
Pðxi ¼ NMðxnÞjwÞjxn � xij �

P
i2Hn

Pðxi ¼ NHðxnÞjwÞjxn � xijÞ ≜ wT�zn ; ð2Þ

where Mn ¼ fi : 1 � i � N; yi 6¼ yng, Hn ¼ fi : 1 � i � N; yi ¼ yng, and P(xi = NM(xn)|w)

and P(xi = NH(xn)|w) are the probabilities of sample xi being the nearest miss or hit of xn,

respectively. The probabilities are estimated via the standard kernel density estimation:

P xi ¼ NMðxnÞjwð Þ ¼
Kðdðxn; xijwÞÞP
j2Mn

Kðdðxn; xjjwÞÞ
; 8i 2Mn ; ð3Þ

and

Pðxi ¼ NHðxnÞjwÞ ¼
Kðdðxn; xijwÞÞP
j2Hn

Kðdðxn; xjjwÞÞ
; 8i 2 Hn ; ð4Þ

where K(�) is a kernel function. In this study, we employed the Epanechnikov kernel [72],

given by

K d xn; xijwð Þð Þ ¼

3

4
1 �

dðxn;xi jwÞ
dðxn;x̂kþ1jwÞ

� �2
� �

if
dðxn; xijwÞ
dðxn; x̂kþ1jwÞ

� 1

0 otherwise;

8
><

>:
ð5Þ

where x̂kþ1 is the (k + 1)-th nearest neighbor of xn in a feasible set. To reduce the number of

parameters to be tuned, we simply set k = 10.

Once we define the margins, we solve the problem of learning feature weights within the

large-margin framework. Specifically, we perform the estimation using the logistic-regression
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formulation, and obtain the following optimization problem:

min
w

XN

n¼1

log ð1þ expð� wT�znÞÞ þ lkwk1
; subject to w � 0 : ð6Þ

Here, we impose an ℓ1 constraint on w to achieve a sparse solution [73], and λ is a regulariza-

tion parameter that can be estimated by using ten-fold cross-validation. Problem (6) can be

solved iteratively. Briefly, we first make a guess on w. Then, we find the nearest neighbors of

each sample and compute �zn. Finally, we update w by solving Problem (6). The iterations are

carried out until convergence.

Embedded structure learning to delineate microbial community dynamics. After we

identified groups of samples with similar microbiome compositions, we built a model to math-

ematically describe the microbial dynamics associated with disease development. To this end,

principal curve fitting methods were used. Formally, a principal curve is a nonlinear generali-

zation of the first principal-component line passing through data cloud. In the last decade, a

dozen methods have been developed for principal curve fitting. However, they are generally

limited to learn a curve that is embedded in a low-dimensional space and does not intersect

itself, which is quite restrictive for real applications. We have recently developed a new graphic

model-based method, referred to as DDRTree [24], that addresses some limitations of prior

work.

Let X = [x1, � � �, xN] be a dataset in the input space X � RD
and xn be the n-th sample. We

assume that the structure to be learned lies in a latent space Y � Rd
with d� D, and use an

undirected graph G = (V, E) to represent the structure, where V = {v1, � � �, vN} is a set of verti-

ces and E is a set of edges. We introduce a set of latent variables Z = [z1, � � �, zN] to explicitly

represent the graph, and associate zn with vertex vn. Following the work of Gaussian mixture

models [21], we assume that the observed data X are generated through a random process.

Specifically, we first randomly select a data point residing on the graph, then corrupt the data

with some random noise, and finally map the corrupted data back onto the input space. Let

Y = [y1, � � �, yN] be the corrupted data. Our goal is to find the latent variables Z and a map-

ping function f : Rd ! RD that projects data in the latent space back onto the input space so

that the reconstruction error is minimized. Without explicitly specifying a form for f, it is

generally difficult to learn the structure of a graph. For the purpose of the study, we use a lin-

ear mapping function f (yn) = Wyn, where W 2 RD�d
is a projection matrix and WTW = I. To

avoid the difficulty of learning a general graph, we consider G to be a minimum spanning

tree (MST) [74], where the costs of the edges are defined to be the squared Euclidean dis-

tances of the latent variables. By combining all the above considerations, we obtain the fol-

lowing formulation:

min
W;Z;Y;fbijg;fpijg

XN

n¼1

kxn � Wynk
2
þ g
XN

i;j¼1

pijðkyi � zjk
2
þ s log pijÞ

subject to
XN

i;j¼1

bijkzi � zjk
2
� ‘;WTW ¼ I;

XN

j¼1

pij ¼ 1; pij � 0; 8i; j;

ð7Þ

where pij is the probability of assigning yi to zi, σ is a parameter for soft assignment using

negative entropy regularization [75], γ is a parameter that controls the tradeoff between the

data reconstruction error and the quantization error, and bij is constrained to be a feasible

solution of an MST that takes a value of 1 if (vi, vj) 2 E and 0 otherwise. The above formula-

tion can be interpreted as fitting a dataset by using an MST with a length bounded by ℓ (see
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Fig 1C). For ease of optimization, we moved the length constraint to the objective function:

min
W;Z;Y;fbijg;fpijg

XN

n¼1

kxn � Wynk
2
þ
l

2

XN

i;j¼1

bijkzi � zjk
2
þ g
XN

i;j¼1

pijðkyi � zjk
2
þ s log pijÞ

subject to WTW ¼ I;
XN

j¼1

pij ¼ 1; pij � 0; 8i; j;

ð8Þ

where λ is a regularization parameter. For the purpose of data visualization, we projected the

samples onto a three-dimensional space (i.e., d = 3). In order not to tune too many parame-

ters, following the work of [24], we set γ = 2 and estimated the kernel width σ and the regu-

larization parameter λ by using the elbow method [25]. Problem (8) can be efficiently solved

by using alternating structure optimization [24, 76]. Briefly, we first fix {bij} and {pij} and

find a solution for W, Z, and Y via convex optimization. Then, we fix W, Z, and Y and find a

solution for {bij} by solving an MST problem using Kruskal’s method [77] and solve {pij} ana-

lytically. The two steps iterate until convergence.

Constructing a microbial progression model. We combined the clustering and princi-

pal-tree results to build a progression model and extract progression paths. We represented a

progression model as an undirected graph, where the vertices were the centroids of the clus-

ters identified in the cluster analysis and they were connected based on the progression trend

inferred from the principal curve. Specifically, we first projected each sample back onto the

principal tree, and then extracted the progression paths by finding the shortest path from a

designated root vertex to all the leaf vertices of the principal tree. In this study, we used the

leaf node of the healthy control samples as the root vertex to represent the origin of the dis-

ease. By using the same procedure, we mapped the centroids of the clusters onto the princi-

pal tree and constructed an undirected graph. Two projected centroids were connected if

there were no other centroids between them along a progression path, and the length of the

edge was proportional to the curve distance of the two centroids measured along the progres-

sion path.

Microbial interaction network analysis

By using the pseudo-time series data recovered from the identified progression paths, we built

generalized Lotka-Volterra (gLV) models to study microbial interactions associated with dis-

ease development. The gLV model has been successfully applied to several longitudinal studies

to uncover pairwise interactions between microorganisms and to identify key bacteria possibly

responsible for the alterations of microbiota associated with the development of a disease [48,

49]. Let xi(t) be the relative abundance of the i-th OTU, measured at time t, 1� t� T. A gLV

model can be represented as a set of first-order ordinary differential equations, given by

dxiðtÞ
dt
¼ xiðtÞ ai þ

XJ

j¼1

bijxjðtÞ

 !

; 1 � i � J; ð9Þ

where J is the number of OTUs, αi is the growth rate of the i-th OTU, and βij is the strength of

the pairwise interaction between the i-th and j-th OTUs. To simulate a biologically realistic

ecological system where interacting species may have a wide range of relationships including

competition, cooperation, or neutralism, we assume that the growth rates are positive (i.e.,

αi> 0) and the self-intersection rates are negative (i.e., βii< 0) [78]. Dividing both sides of
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Eq (9) by xi(t) yields

d ln xiðtÞ
dt

¼ ai þ
XJ

j¼1

bijxjðtÞ; 1 � i � J ; ð10Þ

which can be further approximated as a linear system, given by

d ln xiðtÞ
dt

� ðln xiðtÞÞ
0
� ai þ

XJ

j¼1

bijxjðtÞ; 1 � i � J ; ð11Þ

where (ln xi(t))0 is the gradient of ln xi(t) at time t. We used a two-step estimation procedure

[79] to solve the above linear system. Specifically, we first estimated the log-transformed rela-

tive abundances and the corresponding gradients of each OTU along a progression path using

cubic smoothing spline, and then estimated the variables of a gLV model using Bayesian Adap-

tive Lasso [79] implemented by the MDSINE package [78] with default settings. Once the lin-

ear system was solved, we built a gLV interaction network of the OTUs for each identified

disease progression path.

Alpha diversity estimation

We used alpha diversity, specifically Chao1 index [27] and Shannon index [28], to assess the

species richness of the gut microbial communities of individual patients. Since the estimation

of alpha diversity can be biased for communities with different sequencing depth [80], we per-

formed a rarefaction analysis by sampling 10,000 reads from each community and then calcu-

lated the corresponding alpha diversity. The process was repeated 1,000 times and the average

value was reported.

Statistical analysis

We performed the Spearman’s rank correlation analysis to test the association between a

ranked variable and a measurement variable (e.g., the change in the relative abundance of an

OTU along an identified progression path), and the Wilcoxon rank-sum test to evaluate the

difference of the microbial compositions between two groups of samples. We performed the

χ2 test to explore the dependence between two sets of categorical variables. If necessary, p-val-

ues were adjusted by the DS-FDR method [39] for multiple testing correction. We performed

the ANOVA analysis to compare the alpha diversities of the identified clusters.

Supporting information

S1 Fig. Removing samples containing less than 104 reads. A total of 37 samples were

excluded from downstream analysis.

(PDF)

S2 Fig. Identifying disease-related microorganisms using the LOGO algorithm. (a)The reg-

ularization parameter λ was estimated through ten-fold cross-validation. (b) By using a cutoff

of 0.001, a total of 172 OTUs were identified to be related to disease development.

(PDF)

S3 Fig. Estimating regularization parameter λ and kernel width σ of the DDRTree algo-

rithm using the elbow method. The optimal σ and λ were estimated to be 0.5 and 150, respec-

tively.

(PDF)
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S4 Fig. Comparison of inflammation activities of patients with the same CD behaviors in

Cluster 4 and Cluster 5. Active inflammation was measured by fecal calprotectin >150 μg/g.

(PDF)

S5 Fig. OTUs with significant changes in relative abundance along at least one progression

path.

(PDF)

S6 Fig. Spearman’s rank correlation analysis of selected OTUs for which the relative abun-

dances were significantly decreased along the four modeled progression paths.

(PDF)

S7 Fig. Spearman’s rank correlation analysis of selected OTUs for which the relative abun-

dances were significantly increased along the four modeled progression paths.

(PDF)

S8 Fig. Toy example illustrating how to use static samples to form pseudo-time series

data. Each point presents a sample, and the solid line represents the identified progression

paths. The static samples were projected onto the identified progression paths. Here, the pro-

jection of a sample was defined as a point on a progression path that is closest to the sample.

By using the healthy controls as the baseline, the static samples were ordered along a path

according to the extent to which the disease progressed from an inflammatory phenotype

toward intestinal stricture and penetration. The ordered samples can be viewed as pseudo-

time series data.

(PDF)

S9 Fig. Microbial interaction networks inferred by the gLV method applied to pseudo-time

series data recovered from modeled disease progression paths. Each node represents an

OTU, its size is proportional to the number of edges directed out of the node (i.e., out-degree),

and its face color represents the sign of the correlation of the relative abundance of the OTU

with a progression path (red: positive, blue: negative).

(PDF)

S10 Fig. Heatmap of KEGG pathways that were significantly disrupted along at least one

of the modeled disease progression paths. Each row represents a pathway, and each column

represents a patient sample. The samples were first ordered by cluster labels and then by pro-

gression distances. For the purpose of visualization, the pathway activity was log-transformed

and scaled into the range of [0, 1].

(PDF)

S11 Fig. KEGG pathways that were significantly disrupted along at least one disease pro-

gression path.

(PDF)

S1 Table. Summary of the study cohort used in the analysis.

(PDF)

S2 Table. Detailed clinical information of the study cohort used in the analysis.

(XLSX)

S3 Table. Pairwise comparisons of alpha diversities of identified clusters. The level of sig-

nificance was assessed by ANOVA. ns: not significant.

(PDF)
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S4 Table. KEGG pathways that were significantly disrupted along at least one of the mod-

eled progression paths.
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