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ABSTRACT
Orchids are generally regarded as plants with an insignificant invasive potential and
so far only one species has proved to be harmful for native flora. However, previous
studies on Epipactis helleborine and Arundina graminifolia indicate that the ecological
aspects of range extension in their non-native geographical range are not the same for
all species of orchids. Disa bracteata in its native range, South Africa, is categorized
as of little concern in terms of conservation whereas in Australia it is naturalized and
considered to be an environmental weed. The aim of this research was to determine
the ecological preferences enabling the spread of Disa bracteata in Western and South
Australia, Victoria and Tasmania and to evaluate the effect of future climate change on
its potential range. The ecological niche modeling approach indicates that most of the
accessible areas are already occupied by this species but future expansion will continue
based on four climate change scenarios (rcp26, rcp45, rcp60, rcp85). Further expansion
is predicted especially in eastern Australia and eastern Tasmania. Moreover, there are
some unpopulated but suitable habitats in New Zealand, which according to climate
change scenarios will become even more suitable in the future. The most striking result
of this study is the significant difference between the environmental conditions recorded
in the areas which D. bracteata naturally inhabits and invasive sites—that indicates a
possible niche shift. In Australia the studied species continues to populate a new niche
or exploit habitats that are only moderately represented in South Africa.

Subjects Biodiversity, Conservation Biology, Plant Science, Climate Change Biology, Natural
Resource Management
Keywords Flora of Australia, Orchidaceae, Niche shift, Invasive plants, Ecological niche
modeling, Flora of South Africa

INTRODUCTION
The study of biological invasions has been called ‘‘one of the hottest current topics in
ecology’’ (Sol, 2001), mostly because together with habitat destruction and climate change
the spread of non-native organisms is considered to be a major threat to biodiversity. In
Australasia, invasive (= not native) species are a major problem; for example, the number
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of species of plants reported as introduced, that have been released and may or may not
have become naturalized in Australia exceeds 28,000 (Randall, 2007). A subset of them
have naturalized and are a threat to the rich endemic flora of that continent (Coutts-Smith
& Downey, 2006; Randall, 2007;Duursma et al., 2013) as the populations are self-sustaining
and spreading without human assistance. In addition, the eradication of invasive weeds
is costly (Sinden et al., 2004). Governmental agencies and private landowners invest large
amounts of money in controlling the spread of weeds using various methods to assess risk
of their further spread. One of the emerging techniques is to evaluate the potential future
ranges of invasive species using climatic niche modeling (Peterson, 2003).

In this research we implemented modeling approach to evaluate the possible further
spread of invasive orchid species, Disa bracteata Sw., which was first reported in Australia
relatively recently, in 1944. This plant is listed in the Global Compendium ofWeeds (GCW;
http://www.hear.org/gcw) and is the only weedy representative of the mainly sub-Saharan
genus Disa P.J. Disa bracteata is classified in the GCW as an environmental weed (species
that invade native ecosystems; (Blood, 2001) or a naturalized species (self-sustaining and
spreading populations but not necessarily affecting the environment; Barker et al., 2005;
Hussey et al., 1997). D. bracteata is a South African endemic plant found in both the
Eastern and Western Cape (Foden & Potter, 2005), where it is widespread and common,
especially in areas subject to mild disturbance. In undisturbed vegetation it is somewhat
less frequent. D. bracteata is included on the Red List of South African plants as a taxon
of Least Concern (Raimondo et al., 2009; Foden & Potter, 2005). In the mid-20th-century
it was brought to Australia where it became naturalized (Groves et al., 2003). This orchid
was first formally recorded near Bacchus Marsh, west of Melbourne, in 1944 (Wileman,
2015; Land Management Team, 2015) and since 1945 additional reports came from areas
of the Great Southern Region in Western Australia (vicinity of Albany). Later it was
also recorded in South Australia (in 1988) and Victoria (in 1994). Recently it was found
in Tasmania (Viridans Biological Databases). In Australia D. bracteata was probably
accidentally introduced and it is now growing along roadsides. Invasive populations are
large with up to almost 80 mature individuals in one square meter (Tucker, 2006; Trees For
Life).

The aim of this research was to evaluate the similarities in the bioclimatic niches
occupied by invasive and native populations of D. bracteata and to estimate the potential
further spread of this species in Australia and adjacent areas. The comparison of the
bioclimatic conditions experienced by African and non-native plants was conducted to
explain the nature of this invasion by exploring the possible changes in the bioclimatic
preferences of D. bracteata in early and present stage of its spread in Australia. Currently
it is unclear whether the studied species inhabits similar climatic niches in Australia and
Africa or whether it was able to colonise new niches in Australia. The negative effect of
the introduction of exotic orchid on the native flora was reported only once so far (Recart,
Ackerman & Cuevas, 2013), but the actual impact of invasive Orchidaceae on local plant
communities remains poorly recognized. We do believe that results of our analyses of
possible future spread of D. bracteata will be valuable information that can be used in
planning conservation actions.
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MATERIAL AND METHODS
Localities
A database of localities of D. bracteata was prepared based on the information recorded
on the labels of identified herbarium specimens deposited in MO, WAG, S, NY, AD,
MEL, CANB, HO, NSW, and PERTH. The herbaria acronyms follow Index Herbariorum
(Thiers, 2018). The process of georeferencing followsHijmans et al. (1999). The geographic
coordinates provided on the herbarium sheet labels were verified. If there was no
geolocation data on the herbarium sheet label, the description of the collection place
recorded was assigned coordinates as precisely as possible. In addition, the information
provided by the South African National Biodiversity Institute and Global Biodiversity
Information Facility (GBIF) with a precision value of less than 1,000 m was used. A total
of 187 native (1863–2013) and 747 invasive records (1945–2016) were gathered (File S1).

Niche modeling
The terminology used in this paper follows Peterson & Soberón (2012). The distribution
of the studied orchid was evaluated by including in the analyses numerous parameters
potentially relevant to its occurrence. While the bioclimatic variables were commonly
used as the only predictor in previous studies on invasive plants (e.g., Mainali et al., 2015;
Wang et al., 2017), in our research we also incorporated vegetation, soil, and topographic
factors. Due to the lack of data on distribution of pollinators ofD. bracteata and insufficient
information on the mycorrhizal associations of this species these two ecological aspects
were omitted in the analyses.

Nineteen bioclimatic variables from the CHELSA version 1.1 database (Karger et
al., 2016a; Karger et al., 2016b) were used. The recent study by Bobrowski & Schickhoff
(2017) indicated that this dataset performs better than other available climatic data
in ecological niche modeling. Eighteen soil characters relevant to plant growth were
obtained from Global Soil Information Based on Automated Mapping (Hengl et al., 2014;
http://www.soilgrids.org) with a 250 m2 resolution and upscaled to match the resolution
and extent of the bioclimatic variables. Furthermore, several other georeferenced factors
were used in the analyses: potential vegetation (Ramankutty & Foley, 1999), soil quality
(Fischer et al., 2008) along with six topographic variables based on an altitude raster (File
S2). Because some previous studies (Barve et al., 2011) indicated that usage of a restricted
area in ENM analysis is more reliable than calculating habitat suitability on the global
scale the region of our analysis was clipped using a rectangular mask enclosing known
populations and surrounding regions in order to estimate possible migration and/or
spread. Since this species continues to spread mainly in Australia, the northern border
of the Australian continent was set as the maximum extent of spread in this study. To
account for co-linearity and select the most important bioclimatic variables, the number
of original bioclimatic data was reduced using the R package MaxentVariableSelection
(Jueterbock et al., 2016). The following criteria were applied: correlation threshold was set
at 0.7, contribution threshold at 1 and beta-multiplayer was tested in the range of 1 to 15
using 0.5 steps and in the range of 1 to 1.5 using 0.1 steps. For each setting, the model was
run 10 times and the results were averaged to decrease the possibility of a random selection

Konowalik and Kolanowska (2018), PeerJ, DOI 10.7717/peerj.6107 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.6107#supp-1
http://www.soilgrids.org
http://dx.doi.org/10.7717/peerj.6107#supp-2
http://dx.doi.org/10.7717/peerj.6107#supp-2
http://dx.doi.org/10.7717/peerj.6107


even though all variables were treated a priori as equal. This algorithm evaluates correlation
and contribution mutually and is more objective than selection based on an expert opinion
and correlation which may be not repeatable and biased by the specific preferences of a
researcher.

The modeling was conducted using the maximum entropy method implemented
in Maxent version 3.3.3 k (Phillips, Dudík & Schapire, 2004), which is commonly used
in ecological studies and is known to be reliable (Kolanowska & Konowalik, 2014 and
references therein). The maximum number of iterations was set at 104 and convergence
threshold at 10−5. For each run, 20% of the data was set aside and used as test points
(Suárez-Seoane et al., 2008; Konowalik, Proćków & Proćków, 2017; Walas et al., 2018). The
‘‘random seed’’ option, which provides a random test partition and background subset
for each run was used. The run was performed as a bootstrap with 103 replicates and the
output was set to cumulative.

To evaluate the possible future expansion of D. bracteata within Australia, climate
projections obtained from Coupled Model Intercomparison Project Phase 5 (CMIPP5)
were used. Four ‘‘representative concentration pathways’’ (RCPs: rcp26, rcp45, rcp60,
rcp85), which differ in predicted CO2 concentration (Collins et al., 2013), were analyzed.
We only considered the models covering all four representative concentration pathways
for the year 2070 (average for 2061–2080). These models were obtained from WorldClim
(http://www.worldclim.org) (File S2). To reduce the bias caused by the selection of only
one specific model, they were averaged and the ensemble map for each variable, in
particular RCP, was computed (Konowalik, Proćków & Proćków, 2017). This step simplifies
the interpretation as it shows the general trend specific for a given RCP scenario while
reducing extremes and uncertainties of particular models. Since many soil variables may
be potentially affected by climate warming and due to the absence of such models for the
region studied they were not used for future predictions. For the presentation of results,
output grids with a cumulative scale were converted to binary grids using maximum
training sensitivity plus a specificity threshold (Liu et al., 2005; Liu, Newell & White, 2016).

A range of methods described in previous studies (Kolanowska & Konowalik, 2014) were
used to analyse output from niche modeling and quantify differences between indigenous
and invasive populations. To measure the degree of similarity between occupied niches
of both groups the niche equivalency test (Warren, Glor & Turelli, 2008) was calculated
using ‘ENMTools’ R package (Warren, 2016). Niche overlaps (D and I) were calculated
using methods ofWarren, Glor & Turelli (2008) and Broennimann et al. (2012). Schoener’s
D statistic uses direct measures of species density, which in this study were changed to
measures of densities of occurrence modelled in environmental space. ‘I’ statistic was based
on the modified Hellinger distance that compares two probability distributions. These two
metrics range from 0 (no similarity) to 1 (high similarity). The bias metric (Pressey et al.,
2000) was calculated as described previously (Kolanowska & Konowalik, 2014). It shows
differences in ecological tolerance between invasive and native populations and the value of
this metric can be either positive (when novel conditions with higher values are experienced
by invasive populations) or negative (if conditions recorded in indigenous populations
have higher median than those in newly occupied areas). To visualize interdependence
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of different populations in the simplified (two dimensional) space Principal Component
Analysis (PCA) was performed on all available variables (Appendix 3), as described in
Kolanowska & Konowalik (2014) using R (R Core Team, 2016). All GIS operations were
done in open source software QGis (Quantum GIS Development Team, 2016) and R (R
Core Team, 2016) using packages ‘raster’ (Hijmans, 2016) and ‘rgdal’ (Bivand, Keitt &
Rowlingson, 2016).

RESULTS
Variable selection and model evaluation
According to MaxentVariableSelection (Jueterbock et al., 2016), the lowest AIC, AICc, BIC
scores and highest AUC for training dataset are assigned to themodel with beta-multiplayer
= 1. The final set of the most important and uncorrelated variables included eight of the
original 49 variables: temperature Annual Range (Bio7), Mean Temperature in Wettest
Quarter (Bio8), Precipitation Seasonality (Bio15), Precipitation in Warmest Quarter
(Bio18), Precipitation in Coldest Quarter (Bio19), Sand Content, Soil Organic Carbon
Content, Soil pH.

The calculated value of the area under the curve (AUC) was 0.98 (SD 0.001), which
indicates excellent model performance. Additional summary statistics included the mean
cross-entropy (mxe), which equaled 0.019 (SD 0.001) and root-mean-squared error
(RMSE), which was 0.073 (SD 0.002). Both of these values were very low, which also
indicate a high reliability of created models.

Potential distribution of suitable niches under current climatic
conditions
The model of the current distribution of suitable bioclimatic niches for D. bracteata was
calculated based on all uncorrelated variables and a model in which only climatic factors
were considered exclusively were visually congruent (Figs. 1A, 1B, 2A and 2B). The main
difference concerns the transitional zone between the western and eastern Cape in Africa
and the Nullarbor Plain in Australia. The first region was not indicated as suitable in
the model based on climatic factors, whereas the second one was shown as suitable for
this orchid in this analysis. Otherwise the difference may be seen in the scale of suitable
habitat—while the general trend is very similar, both models differ slightly in the extent of
the predicted suitable niche. Currently, the species is found inmost of the suitable habitats in
both Africa and Australia. Yet there are some areas in Australia that are not colonized—the
Eyre Peninsula and some smaller areas detached from the main distribution. A vast area of
Tasmania was predicted to be suitable but so far the occurrence of D. bracteata has been
reported only from the northern part of the island. Also, there were no records of this
orchid from New Zealand (especially the North and South Islands) although the models
indicate the existence of suitable habitat in this area.

Future changes in the extent of suitable habitat
Future climate scenarios indicate that the extent of the suitable bioclimatic niches in South
Africa will be very similar to the one observed today. Nevertheless, depending on the
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Figure 1 The potential area of the suitable niche forDisa bracteata in Southern Africa. The insets vi-
sualize: (A) Potential niche modelled using current climate and soil variables, (B) Potential niche mod-
elled using current climate variables, (C) Potential niche modelled using rcp26 climate change scenario,
(D) Potential niche modelled using rcp45 climate change scenario, (E) Potential niche modelled using
rcp60 climate change scenario, (F) Potential niche modelled using rcp85 climate change scenario. Blue in-
dicates not suitable and red highly suitable. Green dots denote accessions used in ecological niche model-
ing. Lines show major rivers within the region. Maps were drawn using WGS 1984 (EPSG:4326) coordi-
nate system.

Full-size DOI: 10.7717/peerj.6107/fig-1

climate change scenario used, the extent of native geographical range of the study orchid
can slightly decrease or increase. Twomodels (rcp26 and rcp60) predict that suitable niches
for D. bracteata will become available along the Atlantic coast, near the border of Namibia
and South Africa, in areas around northern Namaqualand, Sperrgebiet and Lüderitz Bay
(Figs. 1C and 1E).
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Figure 2 The potential area of the suitable niche forDisa bracteata in Australia and adjacent islands.
The insets visualize: (A) Potential niche modelled using current climate and soil variables, (B) Potential
niche modelled using current climate variables, (C) Potential niche modelled using rcp26 climate change
scenario, (D) Potential niche modelled using rcp45 climate change scenario, (E) Potential niche modelled
using rcp60 climate change scenario, (F) Potential niche modelled using rcp85 climate change scenario.
Blue indicates not suitable and red highly suitable. Purple dots denote accessions used in ecological niche
modeling. Lines show administrative borders. Maps were drawn using WGS 1984 (EPSG:4326) coordinate
system.

Full-size DOI: 10.7717/peerj.6107/fig-2

Within the invasive range, all models indicate that additional suitable niches could occur
in New Zealand, especially along the southern coast of North Island and the South-eastern
coast of South Island. Simultaneously, all scenarios predict range contraction in Western
Australia, especially in the area north of Leeuwin–Naturaliste Ridge.

Apart from these general trends, each of the future climate scenarios gave specific
information on the future potential range of D. bracteata. The rcp26 scenario prediction is
that more suitable sites will be located in the south-western and south-eastern part of the
Great Dividing Range, south-central and south-eastern part of the Nullarbor Plain, and
in the northern part of New South Wales (Fig. 2C). Scenario rcp45 indicates a potential
expansion of range in south-western and south-eastern part of the Great Dividing Range
and south-western part of the Nullarbor Plain (Fig. 2D). Scenario rcp60, like the rcp26
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scenario, predicts the occurrence of more suitable bioclimate in the south-western and
south-eastern part of the Great Dividing Range, south-central and south-western part of
Nullarbor Plain and in the northern part of New South Wales (Fig. 2E). Rcp85 scenario
indicates that D. bracteata may spread in the south-western part of the Great Dividing
Range and south-central and south-eastern part of Nullarbor Plain (Fig. 2F).

Niche overlap and identity
The overlap between the studied environmental requirements of invasive and the natural
populations is moderate or even low. Statistics calculated according to Broennimann et al.
(2012) were D= 0.35 and I = 0.58. These values were slightly higher using the method
developed by Warren, Glor & Turelli (2008): D= 0.44, and I = 0.73. Also, niche identity
tests reveal that the bioclimatic niches occupied by invasive and natural populations were
different (p< 0.01). Yet visualization using PCA (Fig. 3) indicates a large overlap between
the niches with only a small proportion of which is different.

Analyzed environmental conditions recorded at the sites occupied by this species
are illustrated in Fig. 4. To measure the dissimilarity between invasive and native
populations a bias metric was calculated. It indicates that all invasive populations occupy
relatively different habitats compared to populations in Africa (Chi-squared = 46.031,
p= 4.9×10−4). The same result is obtained when the invasive records are considered as
one dataset or when the records are divided into those for Eastern and Western Australia
(Chi-squared= 73.807, p= 4.9× 10−4). Nevertheless, the suitable niches of both groups of
Australian populations are also different (Table 1). There are, however, two similarities in
the site characteristics of these two Australian regions: there is a greater sand content and
lower precipitation in the warmest quarter in the areas occupied relative to that in areas
occupied by natural populations. Others have either a medium difference (e.g., soil pH)
or a significant dissimilarity (e.g., temperature annual range, mean temperature in wettest
quarter, precipitation seasonality, precipitation in coldest quarter and soil organic carbon
content; Table 1).

DISCUSSION
Orchids are usually not regarded as weeds although some, e.g., Epipactis atrorubens,
E. helleborine and Dactylorhiza majalis, colonize secondary habitats in temperate Europe
(Adamowski, 2006; Rewicz, Kołodziejek & Jakubska-Busse, 2015). Even fewer species are
reported as invasive (e.g., Ackerman, 2007) and so far only one, Spathoglottis plicata, has
been shown to negatively affect native plants (Recart, Ackerman & Cuevas, 2013).

The invasive success of D. bracteata has not been thoroughly investigated and the
mechanisms of this phenomenon remain unclear. The only predictive models are in
Weed Futures (http://www.weedfutures.net; Duursma et al., 2013). Most ground orchids
usually do not have great potential for spreading because of their very specific ecological
requirements. Orchidaceae often have specific insect pollinators and specific mycorrhizal
associations that need to be present in the soil to enable seed germination (e.g., Batty et al.,
2002; Cozzolino & Widmer, 2005;McCormick & Jacquemyn, 2014). Many species of orchids
will only germinate with the aid of one or a few species of fungus, so their distribution,

Konowalik and Kolanowska (2018), PeerJ, DOI 10.7717/peerj.6107 8/20

https://peerj.com
http://www.weedfutures.net
http://dx.doi.org/10.7717/peerj.6107


−10

0

10

20

30

40

50

−50 −25 0 25

PC 1

P
C

 2

population

inv

nat

1000

2000

3000

count

Figure 3 Environmental niche ofDisa bracteata as visualized by principal component analysis (PCA).
Diagram was constructed with environmental values recorded for natural and invasive populations. The
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Native and invasive populations are enclosed by circles encompassing 95% of the data. While native popu-
lations occupy a slightly broader niche some of the invasive populations occupy habitats not present in its
native niche.

Full-size DOI: 10.7717/peerj.6107/fig-3

and hence ecological success, is heavily dependent on suitable conditions for the fungus.
Disa bracteata appears to be able to form an association with a large number of fungal
partners, especially those that can survive in disturbed soils (Bonnardeaux et al., 2007),
thus it is much less limited in terms of the places and conditions in which it may become
established. For this reason, we did not incorporate the distribution of mycorrhizal fungi
in our analyses. It is noteworthy that the incorporation of a fungal factor in any analysis
of orchid distribution is extremely difficult. Most orchid mycorrhizal fungi belong to the
genus Rhizoctonia, a diverse polyphyletic group that is difficult to classify and molecular

Konowalik and Kolanowska (2018), PeerJ, DOI 10.7717/peerj.6107 9/20

https://peerj.com
https://doi.org/10.7717/peerj.6107/fig-3
http://dx.doi.org/10.7717/peerj.6107


∗

∗∗∗∗

ns

∗∗∗∗

∗∗∗∗

ns

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

ns

∗∗∗∗

∗∗∗∗

∗∗

∗∗∗∗

ns

∗∗∗∗

∗∗∗∗

∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗∗∗∗

∗
bio8 Soil.Organic.Carbon Soil.pH Sand.content

bio15 bio18 bio19 bio7

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

na
tu
ra
l

in
va
si
ve

W
−A
U
S

E−
AU
S

20

30

40

60

70

80

90

200

400

600

800

50

60

70

80

50

100

150

200

250

50

100

30

60

90

120

10

15

20

25

population

va
lu
e

A

E

B

F

C

G

D

H

Figure 4 Boxplot diagram of the environmental values recorded in the areas of occurrence of natural
and invasive populations ofDisa bracteata. In addition to examining invasive populations as a whole
they are divided into Western Australia (W-AUS) and Eastern Australia (E-AUS). Bio15 –Precipitation
Seasonality (CoV), bio18 –Precipitation in the Warmest Quarter (mm), bio19 –Precipitation in the
Coldest Quarter (mm), bio7 –Temperature Annual Range (◦C), bio8 –Mean Temperature in the Wettest
Quarter (◦ C), soil.organic.carbon content is expressed in (g per kg), Soil.pH refers to a pH×10 in H2O,
Sand.content is expressed as a mass fraction in percent. Areas are compared to each other using T -tests.
Circles are means, horizontal lines minimum and maximum values, the box represents first and third
quantiles, and vertical line inside delineates the median.

Full-size DOI: 10.7717/peerj.6107/fig-4

methods have become the standard means of assigning these orchid fungi to groups
within the Rhizoctonia alliance (Bonnardeaux et al., 2007). Because of the lack of data on
the distribution of specific fungi it is not possible to use such data in ecological niche
modeling.

As seed production in Disa bracteata is pollinator-independent there was no need to
incorporate the potential distribution of any pollinator in order to get a more realistic
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Table 1 Results of bias metric. If invasive populations would occupy the same habitat as natural the
result will be 0. Negative values indicate occupation of sites below median found in the natural range,
whereas positive values indicate occupation of sites above the median. The greater the number is (or lower
in case of negative values) the greater is the difference.

bio07 bio08 bio15 bio18 bio19 Sand
content

Soil organic
carbon content

Soil
pH

Australia 24.9 −23.6 −6.0 −10.5 −7.1 47.6 14.7 −14.3
Eastern Australia 27.9 −24.9 −8.8 −10.3 −8.0 47.6 16.0 −14.3
Western Australia 6.2 −4.0 11.9 −12.9 10.5 52.4 −2.0 −4.8

potential distribution of this orchid. Disa bracteata appears to be self-pollinating as a result
of the breakup of pollinia in the anther (Kurzweil & Johnson, 1993). Generally, this is not
beneficial for genetic variability, however it does enable it to produce a large number of
seeds. High propagule pressure greatly enhances the chances of the establishment of invasive
species (Colautti, Grigorovich & MacIsaac, 2006). In fact, genetic variability seems to be less
important as many successful invaders reproduce vegetatively. This is frequently the only
mode of reproduction in some invasive species. This is often influenced by environmental
conditions that are not suitable for the full development of a plant e.g., maturation of
seeds. Ideally, even in such cases an invasive species may couple vegetative propagation
with occasional sexual reproduction in order to respond to a suite of selective pressures
and propagate efficiently (Atwater et al., 2017).

The environmental similarity between Australia and South Africa enabled numerous
African plants to naturalize in Australia. 15% of naturalized flora of South Australia
consists of species native to South Africa (Kloot, 1986; Scott & Panetta, 1993). Slightly
higher contribution of African plants was observed in Western Australia (17%; Scott &
Delfosse, 1992; Scott & Panetta, 1993). It is worth to notice that the two species considered
as major environmental weeds in Australia and New Zealand, Chrysanthemoides monilifera
(Asteraceae) and Asparagus asparagoides (Asparagaceae), are of African origin (Thorp &
Lynch, 2000).

Invasive species often experience release from biotic interactions and dispersal barriers
in their non-native ranges (Torchin et al., 2003; Colautti et al., 2004; Jiménez-Valverde &
Peterson, 2011). While the visualization using PCA indicate a large overlap between the
niches of African and invasive populations of D. bracteata they are not the same and that
small difference is important as it influences the results of the niche identity test.

Another interesting result is that the niche of invasive populations has changed over
time as the colonization process has progressed. At the time of the first introduction,
which was around 1944 (date of the first recorded specimen), only a few localities were
known and the conditions there were similar to those in its natural range. However, over
time more populations were established, which eventually gave rise to the colonization
of the eastern part of Australia. The first georeferenced specimen collected in 1989 was
found on the southern Adelaide Plains. Dispersal to the western part of the continent
involved colonizing novel habitats or those that are not available to Disa in its native range
(File S3). This shift is congruent with the Köppen–Geiger climate classification system
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(Peel, Finlayson & McMahon, 2007), which indicates that the difference in niches may
be influenced by the climate availability or different preferences within both ranges. In
Africa, six climatic types were occupied while in Australia two of them were not populated
and the majority of established populations occurred within the Csb climate (Coastal
Mediterranean). The pattern of shifting niche of invasive species was detected in some
previous studies in cases when available evidence suggests use of novel environments
by alien species in the invaded range (Medley, 2010; Petersen, 2012; Di Febbraro et al.,
2013) when those conditions could be unavailable or inaccessible in the native range
(Broennimann & Guisan, 2008; Godsoe, 2010; Guisan et al., 2014; Qiao, Escobar & Peterson,
2017). Additionally, there was a difference between Eastern and Western Australia: in the
former second most frequent climate type is the Cfb (Marine With Mild Winter), while in
the latter this position belongs to the Csa climate (Interior Mediterranean; Fig. 5). Thus
it is not an entirely new climate but rather a shift of the climatic preferences that may
be attributed to the establishment of invasive populations in areas possessing different
composition of available climates. However, it may be related to novel preferences as well
since all climates that are present in Africa are present in Australia. Interestingly, areas of
some types of climate are less frequent in Africa and apparently are sparsely populated
by D. bracteata but mainly by other Disa s.l. species. This may indicate that in its native
distribution there are factors that prevent D. bracteata occupying this niche, such as biotic
interactions (possibly with other closely related species) while in Australia this constraint is
absent and D. bracteata is able to colonize these new sites. Studies on niche shifting species
indicate this occurs in various areas (Broennimann et al., 2007; Elith, Kearney & Phillips,
2010) but it is relevant to fewer than 15% of plant invaders (Petitpierre et al., 2012). There
are significant differences between the climatic niches occupied by invasive and native
populations of another invasive species of orchid, E. helleborine (Kolanowska, 2013), but in
this case, no shift within the Köppen–Geiger climate was found. A study of the niche shifts
of plants introduced into Australia found that none of 26 species included in this study
changed their Köppen–Geiger climatic niche (Gallagher et al., 2010).

In the case of D. bracteata a significant difference in the proportion among climates in
areas occupied inAfrica andAustralia was recorded (Fisher’s Exact Test p= 1.5×10−5). The
same result is obtained when Africa is compared with two regions of Australia considered
separately (Africa vs. Eastern Australia: Fisher’s Exact Test p= 1.4× 10−4, Africa vs.
Western Australia: Fisher’s Exact Test p= 1.3× 10−3). This suggests that irrespective
of invaded region, D. bracteata occurs in Australia in habitats characterized by different
climatic conditions (in terms of climatic zones) than these recorded in Africa. Even though
both contain the same climatic types, they differ in their abundance and relative areas.
This may be influenced by the total available land area which is much smaller in Southern
Africa that is stretched along meridians while Australia is rather stretched along parallels.

Disa bracteata may be the first record of such a shift within Australia. When estimating
niche conservatism and changes in future range, one needs to bear in mind that correct
estimation of the latter is tricky because acquiring a new niche is an active process possibly
linked to novel adaptations that may not be known at the time of a study (Thuiller et
al., 2008; Elith, Kearney & Phillips, 2010). Alexander & Edwards (2010) suggested that the
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Figure 5 Histogram of climates recorded in the known populations divided into: (A) natural (South
African), (B) invasive (Australian), (C) E-AUS (Eastern Australian), and (D)W-AUS (Western Aus-
tralian). Two types of climate present in Africa are not occupied in Australia. Invasive populations occur
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tem: BSh, Hot Semi-Arid; BSk, Cold Semi-Arid; Cfa, Humid Subtropical; Cfb, Marine with Mild Winter;
Csa, Interior Mediterranean; Csb, Coastal Mediterranean. Prior to the analysis, occurrences were rarified
to match resolution of climate map (10 km2).
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probability of a niche shift in invasive species depends primarily upon the ecological
and genetic processes limiting the species in its native range. Unfortunately, during our
studies we did not have access to a sufficient amount of molecular data to explore genetic
differences between African and invasive populations of D. bracteata.

CONCLUSIONS
A South African D. bracteata has become invasive in Australia and it is already present on
a large part of the continent. Created models suggest that area with the suitable niche for
this species is larger than that currently occupied by the studied orchid thus; the spread
of this species will continue. How this expansion will proceed depends on future changes
in the factors influencing its distribution and primarily on the magnitude of the climate
modification. As demonstrated here, it is very likely that a niche shift has occurred in this
case so the further spread of studied orchid should be monitored. Altogether, the results
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of this study indicate the need of further research on the spread of D. bracteata, especially
analyses of genetic differences between native and invasive populations.
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