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Abstract

Background: Different peripheral pathways are implicated in the regulation of the

food ingestion‐digestion cycle.

Methods: Narrative review on gastrointestinal mechanisms involved in satiety and

hunger signalling.

Results: Combined mechano‐ and chemoreceptors, peripherally released peptide

hormones and neural pathways provide feedback to the brain to determine sen-

sations of hunger (increase energy intake) or satiation (cessation of energy intake)

and regulate the human metabolism. The gastric accommodation reflex, which

consists of a transient relaxation of the proximal stomach during food intake, has

been identified as a major determinant of meal volume, through activation of

tension‐sensitive gastric mechanoreceptors. Motilin, whose release is the trigger of

gastric Phase 3, has been identified as the major determinant of return of hunger

after a meal. In addition, the release of several peptide hormones such as glucagon‐
like peptide 1 (GLP‐1), cholecystokinin as well as motilin and ghrelin contributes to
gut‐brain signalling with relevance to control of hunger and satiety. A number of

nutrients, such as bitter tastants, as well as pharmacological agents, such as endo-

cannabinoid receptor antagonists and GLP‐1 analogues act on these pathways to

influence hunger, satiation and food intake.

Conclusion: Gastrointestinal mechanisms such as gastric accommodation and

motilin release are key determinants of satiety and hunger.
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INTRODUCTION: GASTROINTESTINAL
PERSPECTIVE ON HUNGER AND SATIATION

The ingestion and digestion of food is a vital function, which is

controlled by the interplay between the gastrointestinal tract (GIT)

and the brain. Hormonal and neural signals from the GIT are key

players in this bidirectional signalling pathway. When food is absent

from the GIT, hunger signals are generated and food intake is stim-

ulated. Conversely, when food is present in the GIT, satiety signals

will overrule hunger signals and food intake will be inhibited.

Disruption of the delicate balance between hunger and satiety signals

induces an imbalance between energy intake and energy expenditure

which may lead to either weight gain or weight loss. Understanding

which GIT‐derived signals contribute to this mechanism is crucial to

improve our understanding of the pathogenesis of food intake dis-

orders and may create new opportunities to treat these disorders.1

Hunger is expected to be maximal before the start of the meal.

During the meal, hunger decreases and satiation rises, both

contributing to the decision to stop further intake of food. Immedi-

ately after the meal, hunger is expected to be absent and satiation is

maximal. The cycle restarts with the return of hunger and fading of

satiety as preparation for the next meal (Figure 1).1

Different processes controlled by the GIT may contribute to two

crucial aspects of the control of food intake: (1) determination of the

amount of food ingested during a meal and (2) determination of the

return of hunger and the ingestion of the next meal. The last decade

has seen several publications on how the GIT sense absence, pres-

ence and amount of nutrients and how this impacts on food intake.

Based on this progress, it seems timely to take stock by appraising

the current understanding and identifying issues of uncertainty that

indicate directions for future research. The following sections will

summarize our understanding of the role of the GIT in these aspects

of control of hunger and satiety in man. We based the review on our

own research in this area, as well as a Pubmed and Medline search

for English language papers, reviews, meta‐analyses, case series and
randomized controlled trials using the following keywords and their

associations: gastric motility, gastric emptying, gastric accommoda-

tion, nutrient tolerance, hunger ratings, satiety ratings, food intake,

nutrient load test, gastric accommodation, anorexigenic peptides and

orexigenic peptides.

GASTROINTESTINAL SIGNALS INVOLVED IN
DETERMINING MEAL SIZE

Gastric accommodation as a determinant of meal‐
induced satiation

Older studies using the barostat showed that impaired gastric ac-

commodation is associated with early satiation and weight loss in

patients with functional dyspepsia.2,3 Based on these observations,

the hypothesis was put forward that gastric accommodation
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determines meal nutrient volume‐induced satiation. The site of

gastric accommodation and hence the site of most likely satiation

signalling is the proximal stomach.2–4 First in animal studies, a mini-

mally invasive method to quantify gastric accommodation was

developed and validated using intra‐gastric pressure (IGP) moni-

toring.5,6 In man, contrary to what is written in physiology textbooks

(‘gastric accommodation serves to prevent a rise in IGP during food

intake’), it was observed that nutrient ingestion induces an initial

drop in IGP, followed by gradual recovery7 (Figure 2). Fasting IGP in

man fluctuates with the phases of the interdigestive migrating motor

complex (MMC),8 with maximum value during gastric Phase 3 and

minimum value during Phase 1. Artefacts caused by movement,

coughing, sneezing or swallowing are eliminated by calculating a

moving median per channel. From the moving median, a preprandial

baseline value is calculated per channel as the average pressure over

the last 10 min before meal intake.7–9 Upon ingestion of a meal, a

pressure drop of 5–6 mm Hg on average, followed by a gradual re-

covery (Figure 2).

This method was further validated as a measure of gastric ac-

commodation, by showing its dependence on nitric oxide synthase

and its link with meal‐induced satiation during liquid nutrient drink

challenge, identifying the rise in IGP from nadir as a determinant of

satiation.7–9 A combined IGP‐nutrient‐infusion scintigraphy study

confirmed that impaired intra‐gastric distribution of nutrient (less

accumulation in the fundus, more in the antrum), a marker for

impaired accommodation, is associated with suppressed drop in IGP

upon nutrient infusion and earlier satiation.10

The drop in IGP is accompanied by alterations in mechano-

sensitivity signalling from the stomach which allow nutrient volume

tolerance. In theory, gastric mechanoreceptor types comprise both

tension‐ and elongation‐sensitive mechanoreceptors. Based on

analysis of sensitivity to isobaric and isovolumetric balloon disten-

tions, it has been shown that tension‐sensitive mechanoreceptors

mediate gastric filling‐related satiation signals11 (Figure 3). Hence,

relaxation of the stomach will decrease activation of tension‐
sensitive mechanoreceptors, which will be restored as IGP rises

during filling. The mechanosensitive signalling is conveyed to the

brain stem through vagal afferents. In the nucleus of the tractus

solitarius (NTS), leptin signalling is probably involved, as injections of

leptin into the NTS reduce both meal size and increase the efficacy of

vagus‐mediated satiation signals.12

Duodenal gut peptide response

Peristaltic contractions in the stomach advance the fragmented meal

components into the duodenum where mucosal entero‐endocrine
cells sense nutrient composition. This activates a negative feedback

system which enhances gastric accommodation and slows gastric

emptying rate.13–15 Duodenal entero‐endocrine cells respond to

nutrient exposure by the basolateral release of satiation peptides

such as glucagon‐like peptide 1 (GLP‐1) or cholecystokinin (CCK),

which subsequently activate vagal afferents or go into circulation.

GLP‐1 is mainly known as an incretin, but exerts an important

role in the suppression of motility in the antrum and small bowel.16

Subcutaneous administration of the GLP‐1 analogue liraglutide im-

pairs gastric accommodation, while earlier it was shown that intra-

venous GLP‐1 infusion enhances gastric relaxation.17,18 Differences

in agents and methodologies are likely to explain the discrepancy

between both studies. GLP‐1 further delays gastric emptying through
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F I GUR E 2 Representative tracing of high‐resolution manometry in the stomach and adjacent anatomical regions, as shown in the picture
on the left. The infusion of a nutrient drink induces a drop in intra‐gastric pressure, seen as a shift towards dark blue colour. The vertical
appearing lines in the plot before administration of the nutrient drink represent aborally propagated contractions, predominantly in the
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activation of a nitrergic neuronal circuit.18,19 When the truncal vagal

nerves are damaged, GLP‐1 infusion becomes ineffective and pa-

tients even experience an accelerated gastric emptying.20 Lastly,

GLP‐1 infusion at physiological levels results in increased satiety,

making it an important anorexigenic hormone.21

CCK is the gut peptide responsible for the processing of ingested

fat and proteins. It induces gallbladder contraction which releases

bile in the duodenum.19,22 CCK exerts negative feedback on gastric

motility.23 Furthermore, enzyme mixtures are secreted into the du-

odenum by CCK activation. To avoid an overflow of fat and proteins

in the small bowel, CCK has the property to slow down motility. First,

in a rat model was shown that CCK induced relaxation of the prox-

imal stomach by the vagal and splanchnic circuit.24 In a dog study,

CCK also contracted the pyloric sphincter.25 In man, the CCK‐1 re-

ceptor agonist dexloxiglumide has proven to relieve functional

dyspepsia patients from symptoms after a lipid infusion.26 Gastric

emptying time is prolonged by an oral dose of GI18177X, another

CCK‐1 receptor agonist. Moreover, Goyal and colleagues suggested

several CCK‐dependent pathways to influence stomach motility and

stimulate satiety or satiation, but more of these studies should be

performed in humans.27 However, clinical development of ligands for

these receptors has been hampered by rapid development of

desensitization.

Alterations in disease states and role as a target for
therapy

In functional dyspepsia, both in adults and in children, gastric ac-

commodation is impaired in a subset of patients and this is associated

with early satiation and weight loss.2,3,25 In contrast, a subset of

obese children have an increased nutrient volume tolerance, sug-

gestive of enhanced accommodation or decreased sensitivity of

tension‐sensitive mechanoreceptors.28

Gastric accommodation, either measured with the barostat

balloon or as IGP drop during nutrient infusion, has been the topic of

intense research. In animals, peptide YY and pancreatic polypeptide

inhibit the pressure drop during nutrient infusion.5,6 In healthy hu-

man controls, GLP‐1 infused at physiological and supra‐physiological
levels dose‐dependently diminished fundic tone and inhibited fundic

volume waves, increased gastric volumes and suppressed gastric

emptying rate, possibly through inhibition of vagal function.29,30

Somewhat paradoxically, the GLP‐1 analogue liraglutide inhibits

gastric accommodation and this is associated with early satiation.17

These effects were partially reproduced by administration of vilda-

gliptin, an inhibitor of dipeptidyl peptidase IV, the enzyme which

inactivates GLP‐1.31 In addition, the endocannabinoid type 1 recep-

tor antagonist rimonabant and peripherally or non‐selective opioid

receptor antagonists all inhibit gastric accommodation.32,33

The drop in IGP is also sensitive to luminal factors. We observed

that intra‐gastric administration of a bitter agonists, denatonium

benzoate (DB) induces a significant inhibition of gastric accommo-

dation and decreases in nutrient volume tolerance in man.34 The

mechanism is likely to involve activation of bitter taste receptors, but

their exact location and the associated pathway is unknown. In rats,

intra‐gastric administration of DB activates neurons in the NTS,

suggesting involvement of a vagal pathway.35 The effects of DB on

food intake and IGP were mimicked by the bitter tastant quinine

hydrochloride, confirming that this is likely to involve bitter taste

receptor activation.36 In a follow‐up placebo‐controlled, single‐blind,
randomized crossover study in healthy volunteers, intra‐gastric
administration of quinine was superior to DB for inhibiting hunger

and food intake and intra‐duodenal administration of these bitter

tastants had no significant effects.37

In addition, fermentable oligo‐, di‐, monosaccharides and polyols
(FODMAPs) also influence the drop in IGP during food intake and its

subsequent rise, indicating that the size of gastric accommodation

may respond to meal nutrient composition and be involved in trig-

gering of meal‐induced symptoms.38 Traditionally, FODMAPs are

thought to induce bowel symptoms through osmotic and fermenta-

tion effects in the colon, but immediate changes in IGP upon intra‐
gastric administration suggest involvement of a local mechanism.

Taken together, the observation that intra‐gastric FODMAPS and

intra‐gastric, but not intra‐duodenal, administration of bitter tastants
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F I GUR E 3 Overview of the role of gastric pressure drop and recovery in the control of meal volume
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inhibit the drop in IGP indicate, contrary to existing dogma,

involvement of a gastric nutrient sensing capacity.39 The nature and

precise location of the nutrient sensing activity in the stomach re-

mains to be elucidated. Several candidate nutrient sensing are

expressed in the mouse stomach,40 but this has not yet been

addressed in detail in human studies.

GASTROINTESTINAL SIGNALS INVOLVED IN
DETERMINING THE RETURN OF HUNGER

Interdigestive motility and motilin

Upper GIT motility in the fasting state is characterized by a complex

contractility pattern, better known as the MMC, originating from the

proximal GIT and migrating distally.41 This complex is subdivided into

three phases of activity: Phase I is characterized by a lack of

contractility. During phase II, contractility increases steadily in fre-

quency and amplitude to finally reach its maximum state of activity

during Phase III, which is the most distinctive part of the MMC. This

latter phase can either start in the stomach or the small intestine.

Phase I will start immediately after Phase III has stopped and this

cycle will continue at intervals of approximately 130 min until the

next meal is consumed.41

The MMC is controlled by both hormonal and neural factors. The

main hormone involved in the regulation of the MMC is motilin, a

peptide hormone produced in the small intestine. Plasmamotilin levels

fluctuate in accordance with the phases of the MMC and reach a peak

before the occurrence of a Phase III with gastric, but not with small

intestinal onset.42–44 The release and role ofmotilin are poorly studied

as this peptide is not expressed in small rodents such as mice and rats,

nor in cell lines, in which most of the recent experimental work on gut

peptide release and control of food intake is conducted.41,45 Ghrelin, a

well‐established orexigenic gut peptide which shows some homology
with motilin, has been intensely investigated. In terms of the MMC,

motilin is themain regulator in humans, as ghrelin plasma levels do not

fluctuate concurrently with the phases of the MMC in man but

rather rise towards meal times, and infusion of motilin or a motilin

agonist rather than ghrelin provides the closest mimic to sponta-

neous phase III43,46–48 (Figure 4).

Motilin‐induced gastric phase III as a determinant of
the return of hunger after a meal

We have reported fluctuations of hunger ratings during the phases of

the MMC with the occurrence of a ‘hunger peak’ during gastric phase

III (Figure 2).47 Gastric phase III is characterized by at least 3 min of

high amplitude (>50 mm Hg) antral contractions at the maximum

rate of three per minute, which is followed by Phase 1 motor

quiescence and propagates to a duodenal Phase 3 (11 contractions

per minute for at least 3 min).42–44,47 These hunger peaks could be

mimicked by administration of a low dose of erythromycin, a motilin

receptor agonist, and were controlled via a cholinergic pathway.48

Moreover, we found close correlations of fluctuations of hunger

ratings with fluctuations in motilin plasma levels, but not with ghrelin

plasma levels.47 Intravenous administration of erythromycin acti-

vated brain regions involved in homeostatic and hedonic control of

appetite and food intake, and these activations were correlated to

hunger ratings.49

Motilin‐induced gastric phase III: Alterations in
disease states and role as a target for therapy

In patients with unexplained loss of appetite, gastric Phase III ac-

tivity was absent.37 Surprisingly, morbidly obese patients also

lacked the motilin plasma peak prior to Phase III, necessary to

trigger hunger.50 Hunger scores during Phase III were significantly

lower in obese patients, but could still be restored through

administration of the motilin receptor agonist erythromycin. After

Roux‐en‐Y gastric bypass surgery, motilin, but not ghrelin plasma

levels decreased in parallel with lower hedonic hunger scores.50 In a

preliminary report, endocannabinoid type 1 receptor antagonist

rimonabant was also found to inhibit gastric phase III and the

associated hunger peaks.51

The mechanisms controlling the release of motilin from duodenal

entero‐endocrine cells in health and disease are poorly understood

and need to be studied in further detail. Fasting antral contractility

episodes (MMCs) are reduced to zero over a period of 4 h after GLP‐
1 infusion in healthy volunteers.16 It is not known whether the GLP‐1
analogue liraglutide reduces active MMC episodes, or whether this is

motilin‐dependent. Intra‐gastric, but not intra‐duodenal, administra-
tion of bitter tastants, both DB and quinine hydrochloride, was

shown to suppress interdigestive hunger ratings, also through inhi-

bition of motilin release.37,52 Interestingly, at the doses used, these

bitter tastants only showed a significant suppressive effect on

interdigestive hunger ratings in female volunteers, confirming that

the gender difference in bitter sensitivity is not only present on the

tongue, but also in the GIT.52–55 In female healthy volunteers, intra‐
gastric administration of quinine suppressed prospective and actual

food intake, which as associated in changes in activation of homeo-

static and hedonic brain circuits and correlated to changes in ghrelin‐
and motilin plasma levels.56 Taken together, these observations

identify motilin as a potential target for controlling hunger in food

intake disorders, and bitter tastants as potential mediators of an

appetite‐inhibitory action.

FUTURE DIRECTIONS

The concepts above identified a number of novel players and po-

tential targets for the control of hunger and food intake by signals

from the GIT.

The studies demonstrated that food intake by man is associated

with a drop in IGP and a gradual recovery. These events, through
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changes in gastric mechanosensory signaling, underlie meal‐induced
satiation and determine nutrient volume tolerance. Further charac-

terization of the tension‐sensitive mechanoreceptors that mediate

satiation during meal intake is needed. If their molecular nature can

be identified, specific modulators can be considered. Until then,

studies can focus on altering the magnitude and kinetics of IGP

changes after the meal, through pharmacological and nutrient

manipulation.

The return of hunger seems driven by the release of motilin,

which triggers gastric Phase III occurrence, simultaneous with a

hunger peak. These observations identify motilin as a potential

target for suppressing hunger and food intake, either through

motilin receptor antagonism or through modulation of its release.

The mechanisms controlling motilin release are poorly understood

and require additional studies, which will have to focus on man as

motilin and its receptor are not expressed in rodents. Nutrient

sensing receptors, probably expressed on the motilin cells, are a

potentially attractive target for changing the dynamics of motilin

release.

The relevance of these concepts is illustrated by the observation

that both mechanisms, gastric accommodation and motilin release,

are influenced by a number of interventions with already established

effects on hunger and food intake. These include the endocannabi-

noid type 1 receptor antagonist rimonabant, the opioid receptor

antagonists naloxone, the GLP‐1 analogue liraglutide and the

dipeptidyl peptidase‐4 inhibitor vildagliptin.

In addition, bitter tastants were identified as an attractive novel

approach to inhibit both meal‐induced gastric accommodation and

motilin release, thereby enhancing meal‐induced satiation as well as

inhibiting the return of hunger after a meal. Bitter taste receptors are

expressedon entero‐endocrine cells, allowing them to serve as a target

to modulate release of orexigenic an anorexigenic peptides from the

proximal GIT. Our recent research identified the stomach as the site of

action, for bitter tastants to target the two crucial aspects of the

control of food intake: (1) determination of the amount of food

ingested during a meal (GA) and (2) determination of the return of

hunger and the ingestion of the next meal (motilin release). Using

capsules which open up in the stomach will allow their application for
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control of food intakewithout lingual taste effects. Lingual detection of

bitter tastants is often associated with a repellent reaction, a likely

evolutionary necessity to recognize noxious or spoiled food items

before digestion.57 Nowadays, the bitter flavour has gained more

appreciation, is part of our daily diet, being present in cabbages, coffee,

tea and as food additives, and also has hedonic qualities.57,58 Taking

into account the existence of 25 different bitter taste receptors inman,

this offers multiple opportunities but also a high level of complexity.

Additional studies will be required to select suitable ligands. Studies

with repeated administration, in health and obesity will be required to

assess the potential as longer‐term intervention in obesity.
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