
Mechanistic Research for the Student
or Educator (Part I of II)
Rehana K. Leak1* and James B. Schreiber2

1Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States, 2School of Nursing,
Duquesne University, Pittsburgh, PA, United States

Many discoveries in the biological sciences have emerged from observational studies, but
student researchers also need to learn how to design experiments that distinguish
correlation from causation. For example, identifying the physiological mechanism of
action of drugs with therapeutic potential requires the establishment of causal links.
Only by specifically interfering with the purported mechanisms of action of a drug can the
researcher determine how the drug causes its physiological effects. Typically,
pharmacological or genetic approaches are employed to modify the expression and/or
activity of the biological drug target or downstream pathways, to test if the salutary
properties of the drug are thereby abolished. However, experimental techniques have
caveats that tend to be underappreciated, particularly for newer methods. Furthermore,
statistical effects are no guarantor of their biological importance or translatability across
models and species. In this two-part series, the caveats and strengths of mechanistic
preclinical research are briefly described, using the intuitive example of pharmaceutical
drug testing in experimental models of human diseases. Part I focuses on technical
practicalities and common pitfalls of cellular and animal models designed for drug testing,
and Part II describes in simple terms how to leverage a full-factorial ANOVA, to test for
causality in the link between drug-induced activation (or inhibition) of a biological target and
therapeutic outcomes. Upon completion of this series, students will have forehand
knowledge of technical and theoretical caveats in mechanistic research, and
comprehend that “a model is just a model.” These insights can help the new student
appreciate the strengths and limitations of scientific research.
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INTRODUCTION

Students in STEM fields learn research methods, experimental design, and statistical analyses in the
classroom but not necessarily how to interpret data or understand their meaning. Using the analogy
of a child taking apart a watch and studying the individual tiny pieces, but failing in how to tell time,
Bechtel argued, “the full causal account of a mechanismmust include the causal processes at all levels
or it will not be able to account fully for the phenomena” (Bechtel, 2010). Mechanistic reasoning and
cause-versus-effect testing have gained considerable traction with the emergence of “hypothesis
testing,” a relatively intuitive process for beginner students (Mil et al., 2016). However, hypothesis
testing is an exercise fraught with caveats, which may not be appreciated until time, effort, and
monies are lost. Thus, the goal of this two-part series is to highlight a few of the major caveats related
to hypothesis testing and mechanistic reasoning in preclinical disease models.
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THIS EDUCATIONAL SERIES DOES NOT
REPLACE TREATISES ON EXPERIMENTAL
DESIGN, RIGOR, OR STATISTICS
Budding researchers may not initially appreciate that results
are not necessarily biologically meaningful because there is a
statistically “significant” effect, or realize that published data
may have no practical implications (Anderson, 2019).
Conversely, a result with a p value slightly greater than the
accepted 0.05 threshold may have important implications, and
may point the researchers toward repeating the entire
experiment (Berry et al., 1998). For discussions of the
history behind hypothesis testing and the challenges in
determining statistical significance vis-à-vis practical
importance, the reader is guided to the work of statisticians
(Marino, 2014; Greenland et al., 2016; Anderson, 2019;
Greenland, 2019; Ioannidis, 2019; Curran-Everett, 2020;
Schreiber, 2020).

For guidelines on the reporting of in vivo experiments on
animals, the reader can consult the ARRIVE guidelines (Percie
du Sert et al., 2020a; Percie du Sert et al., 2020b). The ARRIVE
guidelines were introduced to the bioscience research
community to improve the reproducibility and rigor of
animal work, by encouraging detailed descriptions of the
following: 1) experimental design, 2) sample size, 3)
inclusion and exclusion criteria, 4) randomization of
experimental units to minimize confounders (e.g., order of
treatment, animal cage location, etc.), 5) blinding of
investigators (during group allocation, testing, or data
analyses), and 6) statistical methods, including assumptions
of normality and homoscedasticity, etc. Additional helpful
guidelines on reporting biomedical research have been
published by Schlenker (2016), Weissgerber et al. (2018).

It is not the goal of this brief commentary to reiterate the
abovementioned, comprehensive work or to replace any texts on
statistics. Rather, our foci in Part I are on a few common caveats
of preclinical experimentation on pharmaceutical drug action.
Also out of scope of this series is a discussion of the historical
origin of mechanistic thought in physiology (e.g., Claude
Bernard’s work), the distinction between mechanistic,
mathematical, or narrative thinking, and some of the roots of
the scientific process in Hellenic and Hebraic traditions (de Leon,
2018).

PEDAGOGICAL GAP

STEM educators are responsible for training students in the
rigorous conduct and evaluation of mechanistic research.
However, the PubMed search terms “(education) AND
(mechanistic) AND (hypothesis)” or the alternate search terms
“(teaching) AND (mechanistic) AND (hypothesis)” do not
capture publications focused on teaching students how to
identify mechanisms of drug action or the associated caveats.
To fill this gap, we will discuss problems related to testing two
commonly-encountered hypotheses, using preclinical drug
testing as a teaching tool:

Hypothesis 1. The pharmaceutical drug candidate (or any kind of
intervention) reduces the toxic effects of preclinical disease by
upregulating the function of a protein

Hypothesis 2. The pharmaceutical drug candidate (or any kind of
intervention) reduces the toxic effects of preclinical disease by
downregulating the function of a protein

To test these hypotheses, it is necessary to determine if the
therapeutic effects of the drug can be abolished (or at least
attenuated) when the proposed mechanism of action has been
interfered with. This is discussed in detail in Part II of this two-
part series. In our examples, the null hypotheses state that the
drug continues to mitigate the toxic effects of preclinical disease,
even when the function of the protein is experimentally
manipulated. However, rejection or retention of the null
hypothesis will not be argued further in this series (Greenland,
2019). Rather, the focus is on the test hypothesis—as in a modern
grant proposal.

The reader may wonder if the researcher really needs a
mechanistic hypothesis to commence their laboratory work.
The short answer is, “Of course not.” The beginner does not
even need a non-mechanistic hypothesis—they can perform a
study to simply observe and describe a biological phenomenon.
Unlike mechanistic work, descriptive and observational studies
are not dependent upon crafting any a priori hypothesis.
Although this type of descriptive research may be viewed less
favorably by reviewers of papers and grant applications, it can be
less biased than hypothetico-deductive research, by virtue of its
exploratory and open-ended nature (Marincola, 2007; Casadevall
and Fang, 2008). The beginner may find that descriptive research
is essential in the initial phases of the project, and without it, they
might not be able to formulate a rational mechanistic hypothesis
for follow-up work. Descriptive and hypothesis-driven research
are complementary, rather than mutually exclusive, as they serve
to propel each other forward (Kell and Oliver, 2004).

For drug discovery, drug development, and identification of
the biological mechanism of action of a drug candidate, scientists
rely upon the use of in silico computational methods, in vitro
studies on cells grown as monolayers in culture dishes (including
high-throughput screening work) or as three-dimensional
organoids, ex vivo studies on organs or organ slices, and in
vivo studies in whole animals (usually small rodents). These
models share some of the flaws discussed below.

PROBLEM1: UNDERSTANDINGTHEBASIC
FLAWS OF DISEASE MODELING

Humans and wild animals are difficult to model in the lab because
they display greater genetic diversity than animal colonies at
research institutions and do not live in tightly controlled
temperature conditions or have ad libitum access to clean food
and water. Inbreeding and substrain effects in animal colonies
have long plaguedmechanistic research (Bryant et al., 2008; Boleij
et al., 2012; Zhao et al., 2019). The fallacy of “standardization” of
research models (Würbel, 2000; Voelkl et al., 2018) is not widely
discussed in the biological, pharmaceutical, or biomedical
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sciences (nor are atypical housing and nutritional conditions), but
the more often a given physiological effect is observed across
strains, species, and otherwise heterogeneous models, the more
generalizable the effect is—and the more likely to translate to
humans.

The evolutionary divergence of rodent vs. hominid ancestors
need not stymie the study of physiological processes in the
laboratory. Despite the great divergence of the telencephalon
of these two groups, the common refrain that rodents are too
different from humans to be useful is incorrect. Because we do not
yet understand the etiology of many human diseases, it is difficult
to know what to “induce” in the rodent (or even the nonhuman
primate) to feasibly model the human condition. Hence, the
pitfalls may lie in what we fail to do to cultured cells or animals to
model the disease, not in lack of translation of physiological
principles across species or models.

Some exceptions to the above might involve inherited or
genetic conditions, as DNA sequences are relatively easy to
manipulate. For example, investigators have leveraged disease-
causing mutations in human induced pluripotent stem cells in the
hope of avoiding the pitfalls of using nonhuman species (Chen
et al., 2020; Schutgens and Clevers, 2020; Tran et al., 2020).
Although studies in human induced pluripotent stem cells have
the limitation of being conducted in vitro, cell culture affords
exquisite control over the independent variables (i.e., the factors
that the scientist changes systematically to study their effects on
the dependent variables/measurement outcomes).

Both preclinical cellular and animal models occupy essential
places in mechanistic research, as they allow for the appropriate
randomization of groups andmanipulation of environmental and
genetic independent variables, which are difficult to achieve or
unethical in human subjects. Nonetheless, it is important for the
student to understand that “a model is a model.” By definition, a
model can never be the human disease itself, even if enthusiasm
runs high when it is introduced. In sum, fully generalizable or
clinically translatable observations are difficult to attain,
especially when financial, technical, or human resources are
limited. It is therefore prudent to adopt a skeptical but also
forgiving attitude.

PROBLEM 2: MISAPPLYING THE DOGMA
OF “FORM FOLLOWS FUNCTION”

In both descriptive and mechanistic studies, multiple technical
approaches should be used to confirm the data from different
angles to ensure generalizability—including independent
measurements of anatomical structure and physiological
function. Although structure clearly reflects function, this
doctrine can be misapplied, because technical assays are not
all-encompassing and only measure specific aspects of structure
or function. For “structural” measurements of cellular viability,
cell numbers are typically counted by microscopy. For functional
measurements of cellular viability, it is common to measure the
energy capacity of cultured cells (Posimo et al., 2014). However,
the therapeutic intervention might stimulate energy production
per cell; the conventional assumption that bioenergetic supplies

are in proportion to cell counts is then invalid. Conversely, cell
counts might show that the drug therapy prevents cell loss in vitro
or in vivo, but none of the preserved cells might be functioning
properly—perhaps the cells are structurally present, but they
might be incapacitated by low energy levels.

For in vivo studies involving drug testing, functional
assessments of measurement outcomes are often used to
complement the structural data. For example, a battery of
behavioral tests can rule out the possibility that brain cells are
structurally protected by the intervention at the histological level
of analysis, but unable to fulfill their physiological roles. Aside
from counting cells, scientists can also record electrophysiological
properties, such as, for example, long-term potentiation as one of
the bases of memory formation, using live animals or slices of the
brain (Lynch, 2004).

Although many texts claim that structural changes need to be
profound to be manifested as observable changes in organismal
behavior, cell loss probably does not need to be dramatic to
generate a clinical syndrome, as was once held (Cheng et al.,
2010). In addition, neural control over behavior is not mediated
by unitary brain regions as is sometimes presented, but, as argued
by electrophysiologists as far back as 1970: “the available evidence
indicates that the substrate for control of behavior must be
located within a variety of sites in the central nervous system”
(Andersen et al., 1970).

It is also underappreciated that biochemical, behavioral, and
histological assays can be confounded by the stress and anxiety
that the investigator provokes in the animal, an effect that may be
greater for male researchers (Sorge et al., 2014). To combat this,
frequent animal handling is recommended to temper activation
of the hypothalamic-pituitary-adrenal axis (van Bodegom et al.,
2017). Experiments should also not be performed soon after a
drastic change in animal housing conditions, such as animal
transportation to a new vivarium. For additional factors that can
confound interpretations of animal work, please see the writings
of Stacey Rizzo et al. (2018).

PROBLEM 3: INSENSITIVE
MEASUREMENT TOOLS READILY BEGET
FALSE OUTCOMES
Assay validation is an important first step in any preclinical
research, as insensitivity of measurement tools can result in Type
II errors (i.e., false negatives). For example, when relying on
viability assays of cells plated on a dish, seeding cells in the wells
of the dishes at a wide range of densities can help ensure that the
assay resolves changes in cell numbers accurately (Figure 1). As
an example, if we assume that the dynamic range of a particular
viability assay only spans 0 to 125,000 cells per well, cell densities
above 125,000 cells/well will not be resolved as a proportional
change in the readout (Figure 1A). In this example, the
investigator would not be able to observe effects of treatment
on viability at the highest cell densities, and might report a false
negative.

In Figure 1B, there is a perfect correlation between cell density
and the viability readout, because the idealized data points
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converge upon a straight line. In real-life examples, the scatter of
individual data points is higher than shown in Figures 1A,B,
which would reduce the coefficient of determination (abbreviated
r2), defined as the proportion of variance in the dependent
variable (the outcome measurement, plotted on Y axis) that is
predictable from the independent variable (cell density, plotted
on X axis).

Although the data in Figure 1B are linear and the coefficient of
determination lies at the maximum of 1.0, the viability assay is too
insensitive. The slope of the red line is low, and the background
noise is high. As the density of the cells doubles from 25,000 to
50,000, the readout shifts from 6 to 7, a mere 17% change. Ideally,
the assay readout should increase by twofold when cell numbers
double.

Background values could be subtracted from the other
readings in this example, because the readout in empty wells
cannot be attributed to cellular material and, therefore, do not
reflect viability. On the other hand, when background noise is
high, it is better to identify and remove its source, such as cell
culture media-coloring agents (Ettinger and Wittmann, 2014), or
to find an alternative assay. In Figure 1A, the Y-intercept is zero

when there are no cells plated in the wells, signifying lack of
background noise.

PROBLEM 4: UNDERVALUING THE
TEMPORAL DIMENSION

The importance of timing is often underestimated in biomedical
research, because therapeutic interventions may only be effective
in patients before irreparable damage (e.g., irreversible cell loss)
has taken root. On the other hand, if the intervention is tested
before any clinical symptoms have surfaced, the translatability of
the study is compromised, as patients seek treatment only once a
recognizable syndrome has emerged.

Ideally, the optimal temporal windows for drug delivery and
the temporal kinetics of biological responses should both be
identified; if drug-induced protection is only measured at
acute stages but wanes over time, then the therapeutic
intervention is less clinically meaningful. Merely transient
protection would not benefit the patient in the long run. For
example, when modeling acute brain injuries, waiting for a

FIGURE 1 | Sensitivity of the in vitro viability assay in cultured cells: (A) Correlation between cell culture plating densities (X axis) and cellular viability measurements
(Y axis). Note the measurement plateau at plating densities >125,000 cells per well. The sensitivity of the assay is inadequate in this range and, therefore, the student will
fail to observe any effects of treatment on viability at high cell densities. (B) A perfect correlation between plating densities and viability measurements is obtained, but
background noise accounts for too much of the positive signal plotted on the Y axis. High background noise masks the size of differences across groups. (C)
Concentration-response or concentration-effect curve for the disease-inducing stimulus in a cell culture-based viability assay, plotted on a linear scale. (D)Concentration
vs. effect curve for the disease-inducing stimulus in a cell culture-based viability assay, plotted on a logarithmic scale. The LC50 (or IC50) in this example is 4 μM of the
toxicity-inducing stimulus. Two-fold (rather than ten-fold) changes in concentration are employed to promote greater confidence in the LC50 measurements.

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 7756324

Leak and Schreiber Preclinical Mechanistic Research

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


minimum of 1 month post-intervention is recommended, to
ensure that the therapeutic effects are not fleeting, according
to RIGOR guidelines (Lapchak et al., 2013).

Aside from examining the temporal progression of the disease
and testing the characteristics of drug delivery [time of initiation
of treatment, frequency of delivery, circadian time of drug
delivery (Esposito et al., 2020), etc.], the amplitude (intensity)
of the experimental disease and the dose of the therapeutic drug
also need to be titrated, if the lab can afford the increased cost. For
example, researchers need to avoid models with intense
pathology that cannot be tempered by any form of
intervention, or else the hypothesis that the drug is protective

is untestable. In sum, the timing and intensity of disease
induction and therapeutic interventions should be chosen with
an eye toward clinical translation, wherever technically and
financially feasible.

PROBLEM 5: TITRATING THE INTENSITY/
DOSE OF THE EXPERIMENTAL DISEASE
AND THE PHARMACEUTICAL DRUG
CANDIDATE

One important outcome of disease modeling may be the loss of
cells from a particular organ. If the disease model is severely toxic
and cell loss is massive, it will be difficult or impossible to find an
effective intervention (see above section on “Undervaluing the
Temporal Dimension”). Thus, it is common to titrate the
intensity of the disease model, such that cell viability
approximates 50% of the control values observed in control,
non-diseased cells or animals.

An example of viability data designed to explore the in vitro
toxicity of a cellular disease model is displayed using a linear scale
in Figure 1C and a logarithmic scale in Figure 1D. Two-fold
changes in concentration of the toxicity-inducing stimulus were
applied in this example. Although ten-fold changes in dose/
concentration are common in the literature, two-fold changes
promote greater confidence in the LD50 or LC50 estimate, defined
as the lethal dose or concentration leading to loss of ~50% of the
biological population under study, respectively. With transgenic
animal models of disease, the two-fold titration approach
described above is not feasible. Instead, one can test the
intervention at early disease stages, before the syndrome
becomes too severe.

Next, in order to find the most effective (in this example,
protective) concentration or dose of the pharmaceutical drug
candidate, a foreshortened concentration-effect curve is often
plotted (Figure 2A), while clamping the intensity of the disease
model at LD50 or LC50 values. Full dose-response or “dose vs.
effect” curves are not commonly completed in preclinical animal
research, often for sake of economy, and the limited range of
doses is sometimes based only on previous literature or tradition.
It is more common to test a wide range of concentrations in cell
culture studies, but the effective concentrations in cell culture
media do not always translate to the plasma or interstitial fluid of
the animal, presenting another barrier to clinical translation.

In Figure 2A, the in vitro disease model leads to 50% loss of
cellular viability in the first set of bars, and the drug prevents this
toxic effect in a concentration-dependent manner, in the second
to fourth set of bars. Not all drugs will display 100% efficacy in
mitigating the sequelae of the toxic disease, as shown in the fourth
set of bars of this idealized figure. The graph is also incomplete,
because virtually all drugs—including those designated as
therapies—will reduce viability if applied in sufficiently high
quantities (Figure 2B), leading to an inverted U-shaped
pattern, rather than the sigmoidal curves favored in textbooks.
In short, the dose or concentration of the candidate drug will
determine whether or not it has poisonous qualities, as noted

FIGURE 2 | Idealized versus realistic versions of concentration-effect
graphs for the pharmaceutical drug candidate. (A) A sensitive and specific
viability assay is used to measure the impact of the pharmaceutical drug
candidate on the survival of cultured cells in an experimental model of
disease. Here, the toxicity-inducing stimulus is applied to induce the disease
model at LC50 values (4 μM from Panels 1C,D; shown as orange bars). An
equivalent volume of vehicle is applied as the negative control (shown as green
bars). In this example, the drug candidate alleviates the toxicity of the
preclinical disease model at relatively high concentrations, ranging from 25 to
100 nM. (B) A more complete concentration-effect graph reveals that higher
concentrations of the drug candidate are toxic to basal viability (green bars) in
cultured cells and also exacerbate the toxicity of the experimental disease
(orange bars). Only the more complete version of the concentration-effect
graph in panel (B) reveals that drug candidate has a low therapeutic index,
defined as the ratio of the concentration that elicits off-target toxicity to the
concentration that elicits the desired therapeutic effect.
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centuries ago by the toxicologist von Hohenheim (commonly
known as Paracelsus) (Leak et al., 2018).

PROBLEM 6: CHOOSING THE
APPROPRIATE CONTROLS

Assay specificity is as important as assay sensitivity and is
partly addressed by the choice of controls. The inclusion of
positive control groups helps to ensure that the assay can
indeed resolve the expected differences. Conversely, negative
control groups serve to confirm that the assay does not report
differences when none are supposed to exist. In our example,
the drug was applied in the presence of the disease-inducing
stimulus as well as in the presence of its vehicle (the non-
diseased negative control). Often, the control or in vitro vehicle
of choice is dimethyl sulfoxide, due to its miscible properties.
As stated above, “the dose makes the poison,” and dimethyl
sulfoxide can be toxic above a surprisingly low threshold
(Galvao et al., 2014). It is, therefore, sometimes necessary to
include an “untreated” control, in addition to dimethyl
sulfoxide.

All experimental groups should receive the same final volume
and concentration of vehicle. If the group treated with the highest

concentration of a drug also receives the greatest amount of
vehicle, but the controls fail to account for this, the researcher
might erroneously conclude that the effects are due to the drug,
when they are actually attributable to a higher volume of vehicle
than in the “control” group.

The importance of administering the pharmaceutical drug
candidate in both the absence and presence of the disease model is
displayed in Figure 3A. If the drug increases viability in cell
culture under baseline conditions, even in non-diseased control
cells, and it increases cell viability to a similar degree under
disease conditions, then the conclusion that “the drug changes the
impact of disease” is false. This conundrum is addressed by
choosing the proper test, a two-way ANOVA on Gaussian and
homoscedastic data, as per the assumptions of this
parametric test.

The two-way ANOVA is used to assess the impact of two
independent variables (factors) on a dependent variable (outcome
measurements), as well as any statistical interaction between the
two independent variables. In this simplified, cell culture-based
example, the first factor is “disease state,” of which there are two
levels: i) Administration of vehicle (e.g., saline) to the non-
diseased control group, or ii) delivery of the toxicant stimulus
that induces the disease model at LC50 values. This factor is
plotted as green versus orange bars in Figure 3.

FIGURE 3 | Testing if the pharmaceutical drug candidatemodifies the impact of the experimental disease on cellular viability in vitro. (A,B) The drug candidate raises
the viability of cultured cells at the indicated concentration of 100 nM (chosen fromPanels 2A,B), regardless of experimental disease (orange bars) or control (green bars)
conditions. The drug only raises baseline viability; it does not truly protect cells against the loss of viability under disease conditions, even if the two orange bars are
significantly different in post hoc pairwise comparison tests. (C) The drug completely prevents the loss of cellular viability with disease at the indicated concentration.
The impact of the experimental disease on cellular viability is therefore modified by the drug candidate. (D) If one of the control groups is not included [second green bar
from panel (B) is missing], the data might appear as shown in this panel. This drug candidate may fail to modify the toxic impact of disease, but that would not evident
from these three groups alone. If the primary readout involves pathological markers that are truly absent (zero) in the non-diseased control group, then the experimental
design in panel (D) and a one-way ANOVA might be sufficient to test the hypothesis.
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The second factor is “treatment,” of which there are also two
levels: i) Vehicle or ii) the pharmaceutical drug candidate that is
being tested for its protective properties. For simplicity, only one
concentration of the latter is displayed in Figure 3 and plotted on
the X axis.

Factors should not be confused with levels. If more
concentrations of the drug or the disease stimulus were added,
a two-way ANOVA would nevertheless be employed, as the
influence of only two factors—disease state and treatment—is
still being tested.

The dependent variable in Figure 3 is the preclinical outcome
(in vitro cellular viability). In Figure 3A, there is no statistical
interaction between the drug and disease when cellular viability is
measured. In simpler words, the drug improves cellular viability
by the same degree,whether or not the cells are diseased. When the
data are graphed as red lines connecting the means, they lie in
parallel, because the two independent variables do not influence
each other’s impact on viability (Figure 3A).

In Figure 3B, the red connecting lines are not exactly parallel,
but in neither Figure 3A nor Figure 3B can the investigator
conclude that the drug is protective against disease. Even though
there is a statistically significant interaction between the two
variables in Figure 3B, the loss of viability with disease is still 50%
of control, non-diseased values, in both the absence and presence
of the drug.

Figure 3C reveals a protective effect of the drug and an
interaction between the two variables. Even if the protective
efficacy of the drug was not as high as in idealized Figure 3C,
but reproducible, the drug might show promise in the battle
against preclinical disease.

A word of caution—a simple pairwise comparison test after
the ANOVA will not account for the change in baseline viability
in the non-diseased group. Rather, the post hoc test might reveal a
statistically significant difference between the two groups colored
orange in Figures 3A,B, whether or not the drug is truly
protective.

Finally, beginners may fail to include the non-diseased control
group treated with the therapeutic drug candidate (second green
bar, Figures 3A–C) and perform a one-way ANOVA on three
groups only, as in Figure 3D. The latter experimental design is
sometimes justified, but it will fail to reveal if the increase in
viability with the drug is due to an increase in basal viability, or is
attributable to actual modification of disease processes. Only the
full-factorial, two-way ANOVA can reveal whether the drug
modifies the impact of the disease in this example.

For a more extended discussion of ANOVAs, please refer to
the classic descriptions by Ferguson and Takane (1989) or more
recent work by Schreiber. For discussion of the importance of
reporting statistical interactions, the reader should also consult
the writings of Garcia-Sifuentes and Maney (2021).

PROBLEM 7: IDENTIFYING A SUITABLE
BIOLOGICAL TARGET

The potential biological targets of a rationally designed drug may
first be identified with computational tools (e.g., molecular

modeling) and then biologically validated at the bench
(Silakari et al., 2021). The modeling of the interaction between
a drug and its target is based on the three-dimensional structure
of each molecule, which is represented in a mathematical fashion
by leveraging the equations of quantum and classical physics.
Computer simulations can help predict the thermodynamic and
physicochemical properties of the drug-target interaction, usually
at an atomistic level. Molecular modeling can be an economical
alternative to using a series of binding assays to find a membrane
receptor target out of dozens of possibilities. Thus, molecular
modeling is useful to narrow down the list of possible targets
engaged by the drug.

Even when testing a relatively new drug, there is not usually a
complete vacuum of knowledge about potential biological effects.
Besides molecular modeling, one way to steer the wet bench work
is to read the literature and determine if there exist any data
linking the candidate drug—or similar classes of drugs—with the
protein in question, or with homologous proteins. Even if the
drug was never tested in, for example, the brain, it may have been
studied in models of breast cancer. The latter knowledge is then
easy to leverage in brain tissue or neural cells as a basis for
repurposing the drug. If the candidate drug is entirely new, RNA
sequencing or proteomic analysis can be used to identify the
biological pathways that are directly or indirectly engaged by the
drug, including at the single-cell level with the use of
bioinformatics (Haque et al., 2017; Stark et al., 2019). These
collective methods will help the student sketch the biological
pathways that are directly and indirectly engaged by the drug,
including those pathways downstream of receptor binding, as
discussed in Part II. The proteomic analyses will shed light on the
post-translational modifications elicited by drug application, and
the transcriptomic analyses will shed light on gene expression
changes.

While characterizing the pharmacological impact of the drug,
the timing of the assay is critical (see section on Undervaluing the
Temporal Dimension). If receptor activation, protein cleavage, or
protein phosphorylation is hypothesized as the mechanism of
action, to name a few, measurements must be made close in time
to application of the drug. If changes in gene expression are
expected, the cells must be allowed sufficient time to engage the
transcription and translation machinery. Either way, the protein
will usually need to be assessed at multiple time points.
Furthermore, a vehicle control may need to be included for
every time point, if the vehicle exerts time-dependent effects
of its own. Students may only include a “0 h” time point as a
substitute for a vehicle control, but this will not capture potential
time-dependent changes induced by the vehicle itself. For
example, vehicle administration in vivo may activate the stress
axis in animals, and the investigator would ideally need to control
for this variable, in a manner that a “0 h” control time point
cannot.

While searching for a candidate protein that is affected by the
drug, it is important to distinguish between protein “induction”
and “activation,” because proteins can be activated without
induction and vice versa. Protein induction is examined by
measuring levels of the mRNA. However, cells might increase
mRNA levels without any change in protein expression—if the
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protein is also degraded more rapidly. Thus, protein
concentrations do not necessarily parallel mRNA levels, and,
for this reason, it is insufficient to show that mRNA levels are
affected by the drug.

In the two hypotheses mentioned above, the function of the
protein is up or downregulated by the drug. When the overall
expression of a protein is increased, there is no guarantee that it is
also more active or that its function is enhanced. As an example, a
pharmaceutical drug candidate might indirectly promote
dephosphorylation-mediated inactivation of the protein, which
may subsequently result in a compensatory increase in total
protein levels, but without a net increase in the numbers of
functional protein molecules. If the student was unaware of the
dephosphorylation-mediated inactivation of the protein, as well
as the compensatory nature of the delayed increase in total
protein expression, they might assume that the drug increases
the function of the protein and downstream pathways, when the
opposite is true. For these reasons, the student is encouraged to
use a number of technical tools to assess upregulation or
downregulation of the protein from multiple angles.

CONCLUSION

To summarize, the student is encouraged to titrate the amplitude
of the experimental disease and identify the optimal dose of the
drug candidate prior to combining these two factors in a full-
factorial experiment. It is helpful to include sensitive and specific
functional assays of the protein target across time after drug
administration, as well as negative and positive control groups. In
Part I of this series, students have learned how to avoid some of
the pitfalls common in biomedical research. In Part II of this
series, the reader will learn how to test the hypothesis that a
particular molecular target of the drug (a protein) mediates its
protective effects, while avoiding common errors in data
interpretation. To link to Part II, please see this hyperlink

https://www.frontiersin.org/articles/10.3389/fphar.2022.741492/
abstract.
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