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ABSTRACT
Background and the purpose of  the study: Hospital-acquired methicillin-resistant Staphylococcus  
aureus (MRSA) has been a major problem worldwide in chemotherapy of infection disease. 
This study was designed to assess the enhancing effects of a new group of dihydropyridine-3,5-
dicarboxamides, in combination with cloxacillin with distinctly different mechanisms of action 
against MRSAs.
Material and methods:  Dihydropyridine-3,5-dicarboxamides with 2-methylsulfonylimidazole 
at 4 position 6a-k were synthesized by  the reaction of corresponding aldehyde 5 with different 
N-aryl acetoacetamides 3 in  the presence of ammonium hydroxide. Agar disc diffusion method 
was used to determine the antibacterial and potentiating activity of different synthetic compounds 
in the presence and absence of cloxacillin to evaluate their activity as modulators of multidrug-
resistant (MDR).
Results and major conclusion: The antibacterial effect of cloxacillin was enhanced by compounds 
6g and 6h against cloxacillin-resistant strains (MRSA1 and MRSA2). The potentiation was found 
to be statistically significant (p<0.01). Compound 6g at concentration of 1000 µg/disc, caused a 
329 percent potentiation of the activity of cloxacillin against MRSA1.
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INTRODUCTION
One of the major problems in hospitals and community 
is the emergence and spread of MDR organisms such 
as Staphylococcus aureus that display resistance to 
methicillin; cloxacillin and other narrow-spectrum 
beta-lactamase-resistant penicillin antibiotics as 
well as cephalosporins (1, 2). These bacteria are 
labeled as methicillin-resistant Staphylococcus 
aureus (MRSA). The hospital MRSA is usually 
multi-drug resistant, demonstrating resistant to other 
classes of antibiotics. Overuse of antibiotics and the 
use of improper drugs may be some of the reasons 
for development of virulent strains. Infections with 
these organisms represent a serious challenge to the 
practitioner as therapeutic options are limited and 
associated mortality is high (3). Many institutions 
have observed an increase in blood culture isolates 
of MRSA over the past two decades.
There is a clear and urgent need to discover and 
develop new effective and non-toxic drugs that are 
able to overcome MDR. Some of the medicines have 
been reported to enhance the antibacterial activity 

of different antibiotics against different resistant 
strains (4-6). 1,4-Dihydropyridine derivatives have 
been found as multidrug-resistance (MDR) reversal 
agents in tumor cells (7). In continuing investigation 
on 1,4-dihydropyridine compounds (8, 9) and  to 
characterize new synthetic compounds with activity 
as modulators of MDR in Staphylococcus aureus 
(10), some new N, N-diaryl-2,6-dimethyl-4-(2-
methyl-sulfonylimidazol5-yl)-1,4-dihydropyridine-
3,5-dicarboxamide derivatives were synthesized and 
their antibacterial properties were evaluated.

 MATERIAL AND METHODS

Chemistry
Melting points were determined using a Kofler 
hot stage apparatus and are uncorrected. 1H-NMR 
spectra were run on a Bruker FT-80 and FT-500 
spectrometers (Brukers, Rheinsteetteen, Germany). 
TMS was used as internal standard. Mass spectra 
were measured with a Finnigan TSQ-70 spectrometer 
(Finnigan Mat, Bremen, Germany). Infrared spectra 



were acquired on a Nicolet 550-FTIR spectrometer 
(Maidson, WI, USA). 
The synthesis of 1,4-dihydropyridine derivatives 
6a-k was achieved following the steps outlined 
in Scheme 1. Reaction of amine 1 with 2,2,6-
trimethyl-4H-1,3-dioxine-4-one 2 afforded the 
corresponding acetoactamide 3 (76-92% yield) 
(11). Oxidation of 4 with manganese (IV) oxide 
in chloroform afforded the desired aldehyde 5 in 
90% yield (12, 13). Symmetrical dihydropyridine 
analogues 6 were prepared by classical Hantzsch 
condensation in which the aldehyde 5 was reacted 
with the corresponding N-aryl actoacetamide 3a-k 
and ammonium hydroxide in ethanol.
  
Antibacterial and enhancement effect of the 
synthesized compounds
Minimum inhibitory concentration of cloxacillin was 
determined by conventional agar dilution method 
against 2 clinically isolated cloxacillin-resistant 
Staphylococcus aureus.
For determination of enhancing effect of the 
synthetic compounds, a stock solution of cloxacillin 
was prepared in dimethylsulfoxide (DMSO; 1 ml) 
which was added to molten Mueller-Hinton (MH) 

agar (19 ml) at 50°C to give the sub-inhibitory 
concentration of 12.5 µg/ml. The bacteria inocula 
were prepared by suspending overnight colonies 
from MH agar media in 0.85 % saline. The inocula 
were adjusted photometricaly at 600 nm to a cell 
density equivalent to approximately 0.5 McFarland 
standard (1.5×108 CFU/ml) (10, 14). MH agar plates 
were seeded individually with bacterial suspensions 
using a sterile cotton swab. Two-fold dilution of the 
test compounds were prepared in DMSO and 20 µl of 
each dilute was added to blank discs to give the final 
concentrations of 1000, 500, 250 and 125 µg/disc. Discs 
containing synthetic compounds were applied on the 
surface of seeded MH agar plates. Similar loaded discs 
were applied to agar plates without any antibacterial 
agents. To insure that the solvent had no effect on 
bacterial growth, a control test was performed with 
test medium supplemented with DMSO at the same 
dilutions as used in the experiment. Blank discs 
containing 20µl DMSO were used as negative 
controls. The plates were incubated at 30-35°C for 
18 hrs. After incubation, the mean inhibition zone 
diameter for each concentration was determined. 
The diameters of inhibition zones produced due 
to individual and combined effects of effective 
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Comp. Ar. Yield (%) m.p. (°C) Physical data

6a 52 238-239

IR (KBr): 1648(NHC=O), 1HNMR (DMSO-d6) δ: 9.52 (s, 
2H, NH), 8.22 (s, 1H, N1-H DHP), 7.56 (d, J=7.6 Hz, 4H, 
aromatic), 7.26 (t, J=7.6 Hz, 4H, aromatic), 7.02 (t, J=7.6 
Hz, 2H, aromatic), 6.98 (s, 1H, C4-H imidazole), 5.15 (s, 1H, 
C4-H DHP), 3.84 (s, 3H,NCH3), 3.13 (s, 3H, SO2CH3), 2.09 
(s, 6H, 2,6 CH3). Mass: m/z (%) 504 (M+-1, 0.5%), 385 (43), 
371 (98), 292 (100), 253 (98), 186 (70), 160 (97), 119 (64).

6b
F

54 230-231

IR (KBr): 1649(NHC=O), 1HNMR (DMSO-d6) δ: 9.27 
(s, 2H, N-H), 8.47 (s, 1H, N1-H DHP), 7.14 (m, 8H, 
aromatic), 6.84 (s, 1H, H-C4 imidazole), 5.14 (s, 1H,H-C4 
DHP), 3.87 (s, 3H, N-CH3), 3.40 (s, 3H, SO2-CH3), 2.15 
(s, 6H, 2,6 CH3). Mass: m/z (%) 541 (M+, 3), 463 (47), 325 
(61), 292 (100), 214 (72), 188 (100), 137 (100), 80 (100).

6c
Cl

44 231-232

IR (KBr):  1654(NHC=O), 1HNMR (DMSO-d6) δ:  9.08 (s, 2H, 
N-H), 8.46 (s, 1H, N1-H DHP), 7.50 (dd, J=8Hz, J=1.5 Hz, 2H, 
aromatic), 7.45 (dd, J=8Hz, J=1.5 Hz, 2H, aromatic), 7.29 (td, 
J=8Hz, J=1.5 Hz, 2H, aromatic), 7.17 (td, J=8Hz, J=1.5 Hz, 
2H, aromatic), 6.87 (s, 1H, C4-H imidazole), 5.16 (s, 1H, - C4-H  
DHP), 3.90 (s, 3H, N-CH3), 3.31 (s, 3H, SO2-CH3), 2.20 (s, 
6H, 2,6  CH3), Mass: m/z (%) 574 (M++1, 7), 495 (48), 448 
(40), 420 (27), 341 (100), 266 (100), 186 (100), 106 (100).

6d Cl 51 248-249

IR (KBr):  1629(NHC=O), 1HNMR (DMSO-d6) δ: 9.65 (s,2H, 
N-H), 8.44 (s, 1H, N1-H DHP), 7.60 (d, J=9 Hz, 4H, aromatic), 
7.30 (d, J=9 Hz, 4H, aromatic), 6.82 (s, 1H, C4-H imidazole), 
5.12 (s, 1H, C4-H  DHP), 3.83 (s, 3H, N-CH3), 3.31 (s, 3H, SO2-
CH3), 2.09 (s, 6H, 2,6 CH3). Mass: m/z (%) 573 (M+, 2), 495 
(32), 342 (58), 295 (100), 226 (60), 188 (100), 98 (100), 55 (100).

6e
Cl Cl

68 211-212

IR (KBr): 1619(NHC=O), 1HNMR (DMSO-d6) δ: 9.35 (bs, 2H, 
NH), 8.53 (s, 1H, N1-H DHP), 7.45 (m, 4H, aromatic), 7.31 
(t, 2H, aromatic), 6.86 (s, 1H, C4-H imidazole), 5.17 (s, 1H, 
C4 –H  DHP), 3.89 (s, 3H, NCH3), 3.34 (s, 3H, SO2CH3), 2.19 
(s, 6H, 2,6 CH3). Mass: m/z (%) 644 (M++3, 3), 641 (M+,0.5), 
563 (28), 482 (60), 375 (100), 322 (85), 266(100), 160 (100).

6f

Cl

Cl
88 228-229

IR (KBr):  1622(NHC=O), 1HNMR (DMSO-d6) δ: 9.15 (s, 2H, 
NH), 8.62 (s, 1H, N1-H DHP), 7.69 (d, J=2.5 Hz, 2H, C6 -H  
phenyl), 7.50 (d, J=9 Hz, 2H, C3 -H phenyl), 7.26 (dd, J=9 Hz, 
J=2.5 Hz, 2H, C4-H phenyl), 6.87 (s, 1H, C4-H imidazole), 5.14 
(s, 1H, C4-H  DHP), 3.90 (s, 3H, NCH3), 3.33 (s, 3H, SO2CH3), 
2.20 (s, 6H, 2,6 CH3). Mass: m/z (%) 644 (M++3, 3), 641 (M+,1), 
565 (49), 482 (58), 375 (100), 266 (100), 186(100), 109 (100).

6g Cl
Cl

89 263-264

IR (KBr): 1624(NHC=O), 1HNMR (DMSO-d6) δ: 9.80 (s, 2H, 
NH), 8.59 (s, 1H, N1-H DHP), 7.94 (s, 2H, aromatic), 7.53 
(s, 4H, aromatic), 6.81 (s, 1H, C4-H imidazole), 5.11 (s, 1H, 
C4-H  DHP), 3.812 (s, 3H, NCH3), 3.33 (s, 3H, SO2CH3), 2.10 
(s, 6H, 2,6 CH3). Mass: m/z (%) 644 (M++3, 2), 641 (M+,0.5), 
375 (28), 321 (45), 266 (67), 188 (100), 159(100), 106 (100).

6h Cl
Cl

Cl
98 152-153

IR (KBr): 1670(NHC=O), 1HNMR (DMSO-d6) δ: 9.23 (s, 
2H, NH), 8.65 (s, 1H, N1-H DHP), 7.89 (s, 2H, aromatic), 
7.87  (s,2H, aromatic), 6.86 (s, 1H, C4-H imidazole), 5.12 (s, 
1H, C4-H  DHP), 3.89 (s, 3H, NCH3), 3.34 (s, 3H, SO2CH3), 
2.20 (s, 6H, 2,6 CH3). Mass: m/z (%) 709 (M+, 7), 516 (2), 
410 (24), 295 (20), 223 (64), 198 (32), 153(100), 109 (100).

Table 1. Physical data for compounds 6a-k
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Table 1. continued

6i NO2 67 163-164

IR (KBr):  1680(NHC=O), 1HNMR (DMSO-d6) δ: 10.14 (s, 2H, 
NH), 8.74 (s, 1H, N1-H DHP), 8.18 (d, J=9 Hz, 4H, aromatic), 
7.83 (d, J=9 Hz, 4H, aromatic), 6.84 (s, 1H, C4-H imidazole), 
5.17 (s, 1H, C4-H  DHP), 3.84 (s, 3H, NCH3), 3.32 (s, 3H, 
SO2CH3), 2.14 (s, 6H, 2,6 CH3). Mass: m/z (%) 595 (M+, 2), 564 
(9), 456 (40), 318 (17), 292 (100), 266 (30), 212(33), 108 (68).

6j
NO2

NO2
97 200-201

IR (KBr): 1680(NHC=O), 1HNMR (DMSO-d6) δ: 8.64 (d, 
J=2.5 Hz, 2H, C3-H phenyl), 8.45 (dd, J=9 Hz, J=2.5 Hz, 
2H, C5-H phenyl), 7.89 (d, J=9 Hz, 2H, C6-H phenyl), 
6.84 (s, 1H, C4-H imidazole), 5.11 (s, 1H, C4-H  DHP), 
3.81 (s, 3H, NCH3), 3.29 (s, 3H, SO2CH3), 2.27 (s, 6H, 
2,6 CH3). Mass: m/z (%) 685 (M+, 2), 502 (37, 475 
(12), 411 (10), 318 (15), 293 (100), 183 (27), 81 (40).

6k O
O

41 200-202

IR (KBr): 1623(NHC=O), 1HNMR (DMSO-d6) δ:9.42 (s, 
2H, NH), 8.14 (s, 1H, N1-H DHP), 7.24 (d, J=2 Hz, 2H, 
aromatic), 6.95 (dd, J=8.3 Hz, J=2 Hz 2H, aromatic), 6.82 
(s, 1H, C4-H imidazole), 6.80 (d, J=8.3 Hz, 2H, aromatic), 
5.95 (s, 2H, O-CH2-O), 5.09 (s, 1H, C4-H  DHP), 3.82 
(s, 3H, NCH3), 3.37 (s, 3H, SO2CH3), 2.07 (s, 6H, 2,6 
CH3). Mass: m/z (%) 685 (M+-1, 18), 434 (21), 394 (28), 
308 (100), 258 (63), 180 (100), 109 (100), 50 (100).

compounds were recorded. The increase in the surface 
area (πr2) due to a combination of effects was 
statistically evaluated by determining student’s t-test 
for its level of significance (15).

General procedure for the synthesis of N, N′-diaryl-
2,6-dimethyl-4-(2-methylsulfonyl-1-methylimidazol-
5-yl)-1,4-dihydropyridine-3,5-dicarboxamides     
(6a-k ).
A solution of ammonium hydroxide (26%, 0.5 
ml) was added to a stirring solution of compound 
4 (240 mg, 1.26 mmoles) and corresponding 
N-arylacetoacetamide 3 (2.54 mmoles) in methanol 
(5 ml). The mixture was protected from light and 
refluxed under argon overnight. After cooling 
the precipitate was filtered and crystallized from 
methanol to give the title compounds 6.
The physical data for compounds 6a-k are given in 
table 1.

RESULT  AND  DISCUSSION 
The MIC value of 50 µg/ml for cloxacillin was 
obtained by agar dilution method for two 
clinically isolated cloxacillin-resistant organisms 
(MRSA1, MRSA2). A sub-inhibitory concentration 
of cloxacillin (12.5 µg/ml) was selected for further 
experiments. The antibacterial activity of synthetic 
compounds was evaluated against MRSA1 and 
MRSA2. No inhibitory effect was observed at 
all concentrations ≤1000 µg/disc. Synthesized 
compounds were evaluated for bacterial resistance 
modifying activity of cloxacillin against two 
MRSA strains using the agar disc diffusion method. 

Compound 6g showed enhancing effect with 
sub-inhibitory concentration of cloxacillin (12.5 µg/ml) 
at all tested concentrations and compound 6h 
enhanced antimicrobial activity of cloxacillin 
at concentration of 250 µg/disc or higher. None 
of the other synthetic compounds showed any 
effect. As cloxacillin was used in a sub-inhibitory 
concentration (12.5 µg/ml) and compounds 6g 
and 6h did not show any antibacterial activity 
in the absence of cloxacillin, the appearance of 
inhibition zones in combination of cloxacillin 
and synthetic compounds indicated the enhancing 
effect of the compounds and it was found to be 
statistically significant (p<0.01).
Compound 6g significantly restored the bacterial 
sensitivity to the antibiotic which was showed 330 
percent increase in the inhibition zone area on the 
cloxacillin supplemented plates when applied in 
1000 µg/ml. However in the lower concentration 
of 6g (500 µg/ml) against MRSA1 and at 1000 µg/ml 
and 500 µg/ml against MRSA2 the inhibition 
zones showed 190-250 percent potentiation 
increase. Compound 6h showed enhancing effect 
at concentrations of 250 µg/ml or higher (60-150 
percent potentiation). The results demonstrated 
that modification of classical structure of 3,5-
diester of 1,4-dihydropyridines to 3,5-diamides 
could be a good way to combat cloxacillin 
resistant strains. Comparison of the activities of 
symmetrical amides indicates that the presence of 
electron withdrawing groups on  the phenyl ring 
is essential for enhancement of the activity of 
cloxacillin. It seems that presence of halogen at 3 
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and 4 positions of phenyl in 3,5-diarylcarboxamide 
structure resulted in enhancement of  the activity. 
However existence of a substitute on ortho position 
of phenyl reduced the effect. It is noteworthy to 
mention that the cause of enhancing effect is not 
known and require further investigation. Though 
several inverstigations have been carried out to 
overcome the microbial resistance by combination 
of synthetic and natural compounds with different 
antibiotics against resistant bacterial strains (4-6, 
10),  this paper is the first report on the potentiating 

effect of cloxacillin antibacterial activity with 1,4-
dihydropyridine derivatives. It is also of interest to 
continue this study by modifying other parts of the 
structure in order to find more potent modulating 
agents.  

ACKNOWLEDGMENT
This study was supported by grants from the 
Research Council of Tehran University of Medical 
Sciences and INSF (Iran National Science 
Foundation).

Table 2. Increase (%) in effects of cloxacillin with effective synthetic compounds compared with their individual activity based on the 
surface area of inhibition zone.
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