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Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an
important global health challenge. Microorganisms residing in the human GI tract, termed gut
microbiota, encompass a large number of living organisms. The role of the gut in the regulation
of the gut-mediated immune responses, metabolism, absorption of micro- and macro-
nutrients and essential vitamins, and short-chain fatty acid production, and resistance to
pathogens has been extensively investigated. In the past fewdecades, it has been shown that
microbiota imbalance is associated with the susceptibility to various chronic disorders, such
as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid
arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has
shown that oral administration of various strains of probiotics can protect against cancer
development. Furthermore, clinical investigations suggest that probiotic administration in
cancer patients decreases the incidence of postoperative inflammation. The present review
addresses the efficacy and underlyingmechanisms of action of probiotics against GI cancers.
The safety of the most commercial probiotic strains has been confirmed, and therefore these
strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and
improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies
are still needed for a better understanding of the properties and mechanisms of action of
probiotic strains in mitigating GI cancer development.
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INTRODUCTION

The incidence of gastrointestinal (GI) neoplasms is rapidly increasing globally (Ashrafizadeh et al.,
2020; Pourhanifeh et al., 2020; Shafabakhsh et al., 2021). GI cancers are a complex set of
heterogenous diseases and disorders (Wang et al., 2021) and are classified into more frequent
sporadic and rare inherited forms. Environmental and genetic risk factors can cooperatively alter
normal tissue into a precursor or a premalignant injury, culminating in malignancy. While the
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precise genetic mechanisms are somewhat understood in a tissue-
type– and cell-type–specific context, many common aspects exist
between GI cancers of heterogenous origin (Wang et al., 2021).
Consistent with the advances made in developing new diagnostic
and therapeutic approaches for GI cancers, several probiotic
strains are being used as nutritional supplements.

Probiotics are a group of viable microorganisms including
bacteria and yeasts that if consumed in sufficient amounts, may
afford health benefits to the host (Ganguly et al., 2011; Tamtaji et al.,
2019a; Tamtaji et al., 2019b; Alipour Nosrani et al., 2021;
Davoodvandi et al., 2021). The major advantage of probiotic
administration is its ability to maintain gut microbial
homeostasis, reduce pathogenic microorganisms in the GI tract,
and restores homeostasis of intestinal microorganisms (Floch et al.,
2011; Butt and Epplein, 2019). Moreover, by modulating microbiota
and immune responses, decreasing bacterial translocation,
promoting the function of the gut barrier, inducing anti-
inflammatory properties, triggering anti-pathogenic activity, and
decreasing tumor development and metastasis, probiotics might
contribute to the prevention and treatment of GI cancers (Servin,
2004; Cotter et al., 2005; Javanmard et al., 2018). Considering the
potential roles of Helicobacter pylori (H. pylori) in the initiation of
colorectal (Teimoorian et al., 2018; Butt and Epplein, 2019) and
gastric cancers (Alfarouk et al., 2019), the possible properties of
probiotics against GI neoplasm in humans have been investigated in
relation to their suppressive effects on H. pylori (Taremi et al., 2005;
Sanders et al., 2013; Russo et al., 2014; Khoder et al., 2016; Rasouli
et al., 2017). By triggering immune activity, probiotics, as functional
dietary supplements, may mitigate neoplastic predisposition and
development of GI cancers (Liong, 2008; Zuccotti et al., 2008; Kumar
et al., 2010; De Preter et al., 2011; Zhang et al., 2011).

CLINICAL OVERVIEW ON GI NEOPLASMS

Carcinogenesis is a multistage process characterized by genetic
mutations (Nowell, 1976; Yuasa, 2003; Vogelstein and Kinzler,
2004). In the past, initiation and progression of tumors were
considered as distinct processes. A critical observation that led to
the multistage hypothesis was that neoplasm was clonal, with
each neoplastic cell originating from a single progenitor (Nowell,
1976; Cahill et al., 1999). This model implied that genetic
mutations required for neoplastic transformation did not
occur at once, but rather progressively. With each stage in this
process, the transforming cell obtained a new mutation that
promoted cell survival or proliferation.

A cell clone was developed with all of the necessary aspects for
neoplastic transformation through evolution or natural selection.
Selection is a critical element of this process because mutations are
random events; thus, only rare mutations result in activation of cell
survival and growth-promoting pathways or inactivation of
apoptotic pathways or tumor suppressors (Ponder, 2001). These
mutations impart a selective survival and growth dominance to
that cell and its progeny. This leads to the expansion of that cell into
a clonal population. Further mutations that occur in cells of that
clonal population provide a few rare cells with new superiority.
These daughter cells are subjected to an additional round of clonal

expansion. This process continues, building on round after round
of clonal expansion, till a mass is generated, and neoplastic
transformation has taken place (Nowell, 1976; Cahill et al., 1999).

The specific number of somatically acquired gene mutations
necessary for neoplastic transformation is dependent upon which
genes and tissues are targeted. In common solid tumors, such as
those derived from the colon or pancreas, an average of 33–66
genes displays subtle somatic mutations that would be expected to
alter their protein products. About 95% of these mutations are
single-base substitutions (such as C > G), whereas the remainder
are deletions or insertions of one or a few bases (such as CTT >
CT). Of the base substitutions, 90.7% result in missense changes,
7.6% result in nonsense changes, and 1.7% result in alterations of
splice sites or untranslated regions immediately adjacent to the
start and stop codons (Vogelstein et al., 2013).

Typically, benign dysplastic intermediates develop before GI
neoplasm. Indeed, they do not originate from normal tissues
directly, and the dysplastic lesions are characterized by their
morphology and categorized based on certain pathological
indicators (Said, 2012). For example, in the colon, the
adenoma–carcinoma pattern shows this promotion from normal
mucosa to invasive carcinoma via dysplastic intermediates. This
pattern has been well supported by many pathological and animal
studies (Kim and Lance, 1997; Lynch and Hoops, 2002).

The same multistep pattern from normal tissue via dysplastic
intermediates to malignancy has been shown for human
pancreatic, esophageal, and gastric cancers (Hruban et al., 2001;
Yuasa, 2003; Hruban et al., 2004; Lin and Beerm, 2004). Cancer
always emerges in a dysplastic precursor lesion that is histologically
or grossly apparent. Current models have shown that the sequence
of events prior to intestinal gastric cancer is as follows: atrophic
gastritis, intestinal-metaplasia, and adenomas, which develop into
carcinomas (Yuasa, 2003). Precursor lesions that lead to pancreatic
cancer have been formally agreed upon, and the characteristics
necessary for their classification have been established (Hruban
et al., 2001; Hruban et al., 2004). These criteria classify the
pancreatic lesions for both scientific and clinical uses.

The concept of cancer stem cells highlighted new perspectives
in understanding this disease. Although it is tempting to explain
tumor formation and metastasis by the presence of stem cells,
after almost a decade of intense research, it seems that cancer
stem cells fail to explain how neoplasia evolves. It seems most
likely that this population of cells is not a defined group of cells
resting in a niche and populating the tumor with amplifying cells,
but rather, that few or maybe multiple cells within the tumor can
function as cancer stem cells if induced, yet also revert to the state
of a “normal” cancer cell. In general, cancer stem cells resulting
from mutations in stem/progenitor cells most likely undergo
uncontrolled proliferation (Li and Neaves, 2006; Abdul Khalek
et al., 2010; Welte et al., 2010).

PROBIOTIC AND CANCER THERAPY

Advances have been made over the last century to develop
anticancer drugs that lead to drastically reducing of the side
effects of medications (Falzone et al., 2018). However, the
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beneficial effects of probiotics on metabolic profiles and
biomarkers of inflammation and oxidative stress were
previously reported (Asemi et al., 2012a; Asemi et al., 2012b;
Tajadadi-Ebrahimi et al., 2014; Bahmani et al., 2016). Modifying
the intestinal microbiome with oral probiotics has been applied to
decrease side effects associated with drugs. The adverse effects
caused by anticancer treatments mainly include mucositis and
diarrhea. Among the advantages of probiotics are their low cost
and general safety (Rondanelli et al., 2017). Probiotic application
in clinical practice has displayed a wide range of advantages, such
as improving antibiotics and Clostridium difficile-related diarrhea
and respiratory tract infections (Rondanelli et al., 2017).
Populating the gut microbiota in cancer patients with
probiotics re-establishes both the functionality and quantities
of commensal bacteria, which are reduced after treatments
(Zitvogel et al., 2018). Nonetheless, probiotic administration in
several clinical trials has been shown to re-establish healthy
intestinal microbiota composition and to diminish diarrhea
and other treatment-related damages to the gut, such as
mucositis (Mego et al., 2013). Consistently, Lactobacillus
containing probiotics prevent diarrhea and mucositis in
individuals, who received chemotherapy/radiotherapy for
pelvic malignancy (Gianotti et al., 2010; Lalla et al., 2014).

The specific mechanism associated with the antitumor
properties of probiotics remains unclear. Gut microbiota affect
a variety of pathways, which are considered to play a central role
in this process. Primarily, probiotic bacteria play an essential role
in the preservation of homeostasis, thus maintaining sustainable
physicochemical conditions in the colon. Reduced pH causing
inter alia by the excessive presence of bile acids in feces may be a
direct cytotoxic factor affecting colonic epithelium leading to
colon carcinogenesis. Regarding their involvement in the
modulation of the pH and bile acid profile, probiotic bacteria,
such as L. acidophilus and B. bifidum, have shown efficacy in
cancer prevention (Biasco et al., 1991; Bernstein et al., 2005; Jia
et al., 2018).

Probiotic strains are also responsible for maintaining the
balance between the quantity of other participants of natural
intestinal microflora and their metabolic activity. Putrefactive
bacteria, such as Escherichia coli and Clostridium perfringens,
naturally present in the gut, have been proven to be involved in
production of carcinogenic compounds using enzymes such as
β-glucuronidase, azoreductase, and nitroreductase (Górska et al.,
2019).

Another cancer-preventing strategy involving probiotic
bacteria, such as chiefly Lactobacillus and Bifidobacillus strains,
has been linked to the binding and degradation of potential
carcinogens. Mutagenic compounds associated with the
increased risk of colon cancer are commonly found in
unhealthy food, especially fried meat. Ingestion of the
Lactobacillus strain by human volunteers alleviated the
mutagenic effect of diet rich in cooked meat, which resulted in
decreased urinary and fecal excretion of heterocyclic aromatic
amines (HAAs) (Lidbeck et al., 1992; Hayatsu and Hayatsu, 1993;
Górska et al., 2019).

Many beneficial compounds produced and metabolized by gut
microbiota have been demonstrated to play an essential role in

maintaining homeostasis and suppressing carcinogenesis. A
specific population of gut microbiota is dedicated to the
production of short-chain fatty acids (SCFAs) such as acetate,
propionate, and butyrate as a result of the fermentation of fiber-
rich prebiotics. Except for their principal function as an energy
source, SCFAs have also been proven to act as signaling molecules
affecting the immune system, cell death, and proliferation as well
as intestinal hormone production and lipogenesis, which explains
their crucial role in epithelial integrity maintenance (Garrett,
2015; Requena et al., 2018; Górska et al., 2019).

Figure 1 shows both the advantages and potential
disadvantages of probiotic administration as adjuvants during
cancer treatments. The figure highlights show probiotics’
regulation of the gut’s subtle equilibrium, from microbial
imbalance (dysbiotic) to functional and healthy microbiota.

EFFECTS OF PROBIOTICS ON
GASTROINTESTINAL CANCER CELLS

Probiotics and Gastric Cancer
H. pylori-mediated inflammation is one of the potential factors in
the induction of gastric cancer in infected populations (Moss,
2017). Evidence evaluating the anti-gastric cancer effects of
probiotics has focused on H. pylori-induced pathophysiology
of this type of cancer. Maleki-Kakelar and others reported that
by mediating numerous molecular pathways, Lactobacillus
plantarum (L. plantarum) caused significant inhibitory effects
on the H. pylori growth rate. Upon downregulation of the AKT
gene and upregulation of the phosphatase and tensin homolog
(PTEN), Bcl-2–associated X (Bax), and toll-like receptor 4
(TLR4), L. plantarum significantly inhibited the proliferation
of AGS and CRL-1739 human gastric cell lines (Maleki-
Kakelar et al., 2020). Interleukin-8 (IL-8) is an inflammatory
chemokine that plays critical roles in inflammatory pathways
(Meniailo et al., 2018). In the human gastric epithelial cell line-1
(GES-1), Lactobacillus bulgaricus (L. bulgaricus) inhibited the
production of IL-8. In addition, Lactobacillus acidophilus (L.
acidophilus) and L. bulgaricus inhibited adhesion of H. Pylori
to GES-1 cells that attenuated inflammation in these cells (Song
et al., 2019). Lin et al. reported that supplementation with
Lactobacillus fermentum P2 (L. bacillus P2), L. casei L21, L.
rhamnosus JB3, or their combination in H. pylori-infected
mice reduced the expression level of interferon gamma (IFN-
γ) along with interleukin-1 beta (IL-1β). Besides, H. pylori
concentrations in the stomach of infected mice were decreased
after probiotic supplementation (Lin et al., 2020). Another study
demonstrated that L. acidophilus, L. plantarum, and L.
rhamnosus supplementation significantly attenuated H. pylori-
induced inflammation in vivo (Asgari et al., 2020). As mentioned
earlier, most of the anti-gastric cancer studies have been directed
at the inhibitory effects on H. pylori infection. Further
experimental studies are needed for evaluating the effects of
probiotic on gastric cancer inhibition mechanistically.

Ornithine decarboxylase is a crucial enzyme in the polyamine
biosynthesis pathway and is responsible for catalyzing the
decarboxylation of ornithine into putrescine (Svensson et al.,
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2008). Ornithine decarboxylase is a neovascularization agent in
tumoral cells and has been overexpressed in tumors of epithelial
origin including colorectal, prostate, and gastric cancers (Ma
et al., 2007). Russo and others demonstrated that treatment
with L. rhamnosus GG homogenate and cytoplasm extracts
significantly decreased the activity of ornithine decarboxylase,
reducing the polyamine content of HGC-27 human gastric cancer
cells. Furthermore, in comparison with the untreated control
group, probiotic treatment considerably increased the ratio of
Bax/Bcl-2 (Russo et al., 2007). Xie and others reported that 8-day
postoperative probiotic supplementation in gastric cancer
patients significantly reduced diarrhea occurrence.
Furthermore, in probiotic-induced patients, the expression
level of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor
necrosis factor alpha (TNF-α) was significantly decreased
compared with that in patients in the control group (Xie et al.,
2018).

The urokinase plasminogen activator (uPA) is an important
serine proteinase enzyme which catalyzes the production of active
protease plasmin from its proenzyme plasminogen (Pavón et al.,
2016; Mahmood et al., 2018). The activation of the uPA is
dependent on the expression of the uPA receptor (uPAR) in
the cell surface. By increasing the activity of matrix
metalloproteinases (MMPs), plasmin degrades extracellular
matrix components, contributing to cancer metastasis and
invasion (Beamish et al., 2019). Therefore, the activation of
the uPA/uPAR system plays crucial roles in the induction of
invasiveness and metastatic features in cancerous cells (Rubina

et al., 2017). Rasouli et al. reported that treatment with
Lactobacillus reuteri (L.reuteri), in AGS gastric cancer cells,
downregulated the expression level of the uPA/uPAR gene
(Rasouli et al., 2017). Table 1 provides a summary of studies
on probiotics and gastric cancers. Nami et al. studied the
anticancer effects of Lactobacillus plantarum species on human
cancer cell lines (cervical, HeLa; gastric, AGS; colon, HT-29; and
breast, MCF-7) and on a human normal cell line (HUVEC). The
strain exhibited desirable probiotic properties and anticancer
activity against the tested human cancer cell lines; no
significant cytotoxic effects on normal cells were exhibited
(Nami et al., 2014).

Probiotics and Colon Cancer
Probiotics and Colon Cancer in Human Studies
One of the important goals in treating colorectal cancer patients is
improving their quality of life. The role of probiotics in decreasing
the symptoms and improving the quality of life in colorectal
cancer patients has been evaluated at different stages of the
disease. Lacidofil supplementation for 12 weeks in patients
with colorectal cancer reduced the frequency of bowel
symptoms while promoted functional well-being scores
compared with those of patients in the placebo group (Lee
et al., 2014). Zonulin (haptoglobin 2 precursor) is a regulator
of tight junctions and intestinal permeability in the wall of the
digestive tract (Sturgeon and Fasano, 2016). The increased serum
level of zonulin was associated with autoimmunity, inflammatory
diseases, and gastrointestinal cancers (Mörkl et al., 2018).

FIGURE 1 | Risks and benefits of probiotics associated with cancer treatment. Schematic depiction of healthy gut microbiota in humans, occupied by symbiotic
bacteria (top left box) against tumor-affected microbiota and dysbiosis of the gut (top right box). Anticancer treatment may negatively influence gut microbiota, leading
to dysbiotic unbalance (bottom right square). Probiotic administration may re-adjust the dysbiotic conditions mediated by tumor growth and treatment. Probiotics may
improve gastrointestinal therapy–related side effects, so they re-establish the intestinal symbiosis (bottom left square). The application of probiotics in anticancer
therapy has benefits and risks (central bottom box).
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Supplementation for 16 days (6 days preoperatively and 10 days
postoperatively) with an admixture of L. plantarum, L.
acidophilus-11, and B. longum-88 in colorectal cancer patients
caused significant reduction in serum concentrations of zonulin
as well as the duration of postoperative pyrexia, antibiotic
therapy, and infectious complications in comparison with
those in the placebo group. In addition, probiotic intervention
inhibited the p38 mitogen-activated protein kinase signaling
pathway (Liu et al., 2012). Yang and others reported that
probiotic intervention with an admixture of B. longum, L.
acidophilus, and Enterococcus faecalis (E. faecalis) for 12 days
(5 days preoperatively and 7 days postoperatively) reduced the
number of days to first defecation, days to first flatus, and
diarrhea in the probiotic-treated group (Yang et al., 2016). 5-
Fluorouracil (5-FU) is one of the most effective drugs for
chemotherapy in colorectal cancer patients (Fu et al., 2019).
However, its use is associated with diarrhea (Cheng et al.,
2020). In a recent study, 24-week supplementation with L.
rhamnosus GG in colorectal cancer patients who received 5-
FU, the frequency of diarrhea was significantly decreased
(Osterlund et al., 2007). Aisu et al. reported that
supplementation with a probiotic mixture containing
Enterococcus faecalis T110, Clostridium butyricum TO-A, and
Bacillus mesentericus TO-A in colorectal cancer patients (n � 75)
significantly diminished the occurrence of superficial incisional
infection compared with that in untreated patients (Aisu et al.,
2015). Fusobacterium is an important bacterial pathogen, which
causes overexpression of E-cadherin/β-catenin and subsequent
colorectal cancer proliferation (Zhou et al., 2018). Using an

admixture of B. longum, L. acidophilus, and Enterococcus
faecalis (E. faecalis) in colorectal cancer patients (n � 11) for
5 days significantly altered mucosa-associated microbiota of the
intestine. Furthermore, probiotic intervention reduced the
secretion of taxon assigned to the Fusobacterium (Gao et al.,
2015). The treatment of colorectal cancer patients (n � 84) with a
combination of probiotics, which consisted of L. acidophilus, L.
plantarum, B. lactis, and Saccharomyces boulardii (1 day
preoperatively and 15 days postoperatively), significantly
decreased pneumonia, surgical site infections, anastomosis
leakage, and need for mechanical ventilation compared with
those who did not receive probiotic supplementation
(Kotzampassi et al., 2015). Other studies evaluating the
properties of probiotics in colorectal cancer patients are
summarized in Table 2.

Probiotics and Colon Cancer in Animal Studies
Probiotics exert their effects via activation or inhibition of cellular
and molecular pathways (Figure 2). TNF-α is a pro-
inflammatory cytokine which is produced by macrophages and
T-cells and has numerous immunological roles in the regulation
of inflammation (Farajzadeh et al., 2017). Mi et al. reported that
chemotherapy induced significant increases in the levels of
interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and TNF-α
expression in rats. In turn, treatment with Bifidobacterium
infantis (B. infantis) decreased the level of the aforementioned
cytokines. Furthermore, probiotic treatment reduced the
expression of cytokines related to Th17 and Th1 cells, and
these changes led to decreased chemotherapy-induced

TABLE 1 | Probiotics and gastric cancer.

Cancer cell line Probiotic agent Probiotic
concentration

Duration
of the
study

Effect (s) Model Sample
(n)

Ref.

AGS Lactobacillus reuteri 1.5 × 108 CFU/ml 24, 48,
and 72 h

Inhibited cell proliferation and
decreased uPA and uPAR

In vitro NA Rasouli et al.
(2017)

HGC-27 Lactobacillus paracasei
IMPC2.1 and Lactobacillus
rhamnosus GG

1 × 108 CFU/ml 24 or 48 h Induced apoptosis and
inhibited tumor growth

In vitro NA Orlando et al.
(2012)

NCI-N87 and AGS Lactobacillus acidophilus 74-2
and Bifidobacterium lactis 420

8.24 × 107 and 2.20 ×
108 CFU, respectively

NA Upregulated the expression
of COX-1

In vitro NA Mahkonen
et al. (2008)

HGC-27 Lactobacillus rhamnosus GG
(ATCC 53103)

1 × 108 CFU/ml 24 and 48 h Reduced the polyamine
content and neoplastic
proliferation

In vitro NA Linsalata et al.
(2010)

HGT-1 Propionibacterium
freudenreichii ITG P9

9 × 1012 CFU/ml 24, 48,
or 72 h

Induced caspase activation
and cytochrome c release

In vitro NA Cousin et al.
(2012)

AGS Lactobacillus fermentum UCO-
979C and Lactobacillus casei
Shirota

1.5 × 109 CFU/ml 0–48 h Inhibited urease activity of H.
pylori

In vitro NA Salas-Jara
et al. (2016)

AGS Lactobacillus plantarum 5BL NA 12, 24,
and 48 h

Induced anti-proliferative
effects and apoptosis

In vitro NA Nami et al.
(2014)

Postoperative
patients with gastric
cancer

NA NA 7–8 days Decreased the expression of
IL-6, IL-8, and TNF-α

Human 70 Xie et al.
(2018)

Gastric cancer
patients

Bifidobacterium NA 4 weeks Decreased SIBO and
symptoms of gastric cancer
in the intervention group

Human 112 Liang et al.
(2016)

uPA, urokinase-type plasminogen activator; uPAR, urokinase-type plasminogen activator receptor; COX-1, cyclooxygenase 1; H. pylori, Helicobacter pylori; IL-6, interleukin 6; IL-8,
interleukin 8; TNF-α, tumor necrosis factor alpha; SIBO, small intestine bacterial overgrowth.
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TABLE 2 | Probiotics and colon cancer in human studies.

Subject Probiotic agent Probiotic
concentration

Duration of
the study

Effect (s) Sample
(n)

Ref.

Postoperative
patients with
colorectal cancer

Lactobacillus acidophilus LA-5,
Lactobacillus plantarum,
Bifidobacterium lactis BB-12,
and Saccharomyces boulardii

1.75 × 109, 0.5 ×
109,1.75 × 109, and
1.75 × 109 CFU per
capsule, respectively

16 days (1 day prior
to operation and
15 days after
operation)

Modulated the gene
expression of SOCS3 and
significantly decreased
postoperative complications
including mechanical
ventilation, infections, and
anastomotic leakage

84 Kotzampassi
et al. (2015)

Colorectal cancer Bifidobacterium lactis 1 × 109 CFU/gr 4 weeks The amounts of IL-1β, IL-2, IL-
12, and hs-CRP in the
probiotic group was
significantly lower than those
in symbiotic and prebiotic
intervention groups

19 Worthley et al.
(2009)

Perioperative
patients with
colorectal cancer

Bifidobacterium longum
(BB536) and Lactobacillus
johnsonii (La1)

2 × 107 CFU/d and 2 ×
109 CFU/d (two
separate doses)

8 days (3 days before
operation and 5 days
after operation)

The count of CD3, CD4, and
CD8 in both of the intervention
groups was greater than that
in the placebo group

11 and 10
(two

groups)

Gianotti et al.
(2010)

Perioperative
patients with colon
cancer

Bifidobacterium bifidum 1 × 1010 CFU 17 days (7 days
before operation and
10 days after
operation)

Surgical site infection in the
probiotic group significantly
decreased compared to that
in the antibiotic group

100 Sadahiro et al.
(2014)

Colorectal cancer Bifidobacterium NA 4 weeks Decreased the symptoms of
colorectal cancer in the
intervention group

88 Liang et al.
(2016)

Colorectal cancer Lactobacillus rhamnosus
R0011 and Lactobacillus
acidophilus R0052

2 × 109 CFU 12 weeks Attenuated bowel symptoms
and improved quality of life in
colorectal cancer subjects

28 Lee et al. (2014)

Perioperative
patients with
colorectal and
colon cancer

Bacillus natto and Lactobacillus
acidophilus

NA 3 months In the colonic group,
defecation frequency, anal
pain, and the Wexner score
were significantly better than
those in patients in the rectal
cancer group

77 Ohigashi et al.
(2011)

Perioperative
patients with
colorectal cancer

Enterococcus faecalis T110,
Clostridium butyricum TO-A,
and Bacillus mesentericus
TO-A

2 mg, 2 mg, and
10 mg, respectively,

per each tablet

6–30 days
(3–15 days prior to
and after the surgery)

Enhanced the immune
responses and improved the
intestinal microbial
environment in the probiotic
group

75 Aisu et al.
(2015)

Healthy subjects Bifidobacterium longum
(BB536-y)

NA 5 weeks Inhibited colorectal
carcinogenesis

14 Ohara and
Suzutani,
(2018)

Colorectal cancer Lactobacillus acidophilus and
Lactobacillus plantarum

NA NA Reduced the severity of
colorectal cancer

25 Zinatizadeh
et al. (2018)

Perioperative
patients with
colorectal cancer

Bifidobacterium longum,
Lactobacillus acidophilus, and
Enterococcus faecalis

0.21 gr (1 × 108 CFU/
gr) in each capsule

3 days before
operation

Promoted the expression
levels of IgG and sIgA, while
diminished the IL-6 and CRP
serum in the intervention
group

30 Zhang et al.
(2012)

Perioperative
patients with
colorectal cancer

Lactobacillus acidophilus,
Lactobacillus casei,
Lactobacillus lactis,
Bifidobacterium bifidum,
Bifidobacterium longum, and
Bifidobacterium infantis

3 × 1010 CFU 7 days before
operation

Hospital stay duration in the
probiotic-administrated
patients was shorter than that
of the patients in the placebo
group

20 Tan et al.
(2016)

Colorectal cancer Bifidobacterium longum,
Lactobacillus acidophilus, and
Enterococcus faecalis

6 × 107 CFU 5 days Probiotic treatment altered the
mucosal microbial flora

11 Gao et al.
(2015)

Perioperative
patients with
colorectal cancer

Lactobacillus plantarum,
Lactobacillus acidophilus, and
Bifidobacterium longum

2 g⁄ day in a
concentration of 2.6 ×

1014 CFU

16 days (6 days
preoperatively and
10 days
postoperatively)

Probiotic treatment
upregulated the mucosal tight
junction protein expression

50 Liu et al.
(2011a)

Patients with
colorectal tumors

Lactobacillus casei Shirota 1 × 1010 CFU/gr 4 years Occurrence of tumors much
significantly decreased in

99 Ishikawa et al.
(2005)

(Continued on following page)
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mucositis (Mi et al., 2017). Ras-p21 is an oncoprotein and plays
critical roles in the induction of different cancers (Banys-
Paluchowski et al., 2018). In rats with azoxymethane-induced

colorectal cancer, Bifidobacterium longum (B. longum)
administration significantly suppressed the tumor volume,
tumor incidence, cell proliferation, and the expression of ras-

TABLE 2 | (Continued) Probiotics and colon cancer in human studies.

Subject Probiotic agent Probiotic
concentration

Duration of
the study

Effect (s) Sample
(n)

Ref.

probiotic-administrated
subjects compared with that
in other groups

Perioperative
patients with
colorectal cancer

Bifidobacterium longum,
Lactobacillus acidophilus, and
Enterococcus faecalis

≥3 × 107 CFU/gr 12 days (5 days
preoperatively and
7 days
postoperatively)

The incidence of diarrhea in
the probiotic group was lower
than that in the placebo group

30 Yang et al.
(2016)

Perioperative
patients with
colorectal cancer

Lactobacillus plantarum,
Lactobacillus acidophilus
11,and Bifidobacterium
longum 88

2.6 × 1014 CFU 16 days (6 days
preoperatively and
10 days
postoperatively)

Treatment with the probiotic
decreased the infection rate,
serum zonulin concentration,
and duration of antibiotic
therapy

75 Liu et al. (2012)

Healthy subjects Lactobacillus rhamnosus
LC705 and Propionibacterium
freudenreichii ssp. shermanii JS

4 × 1010 CFU (2 ×
1010 CFU of each strain

per day)

4 weeks Probiotic supplementation
decreased the activity of
β-glucosidase

37 Hatakka et al.
(2008)

SOCS3 suppressor of cytokine signaling 3; IL-1β, interleukin 1 beta; IL-2, interleukin 2; IL-12, interleukin 12; hs-CRP, high-sensitivity C-reactive protein; IgG, immunoglobulin G; sIgA,
sensitive immunoglobulin A; CRP, C-reactive protein.

FIGURE 2 | Physiological nonspecific mechanisms of probiotics for preventing and treating colorectal cancer (CRC). Probiotics produce short-chain fatty acid
(SCFA) and mediate apoptotic and anti-proliferative reactions in CRC cells. Produced SCAFs by probiotics protect the intestinal tract by preventing the histone
deacetylases (HDACs) and overexpression of mucins, includingMUC1, MUC3, andMUC4. SCFAs activate 5′-adenosinemonophosphate-activated protein kinase. This
is a critical factor in keeping the hypoxia-inducible factor via SCAFs, which improves the epithelial duct’s survival and function. Probiotics elevate antimicrobial
peptides, including defensin and (LL-37) cathelicidin, from the intestinal mucosal layer. These peptides protect them against bacterial inoculation and invasion. Probiotics
inhibit enzymatic activity of pathogenic bacteria, including enzymes such as nitroreductase, β-glucuronidase, azoreductase, and β-glucosidase. They also decrease the
production of carcinogenic agents. Probiotics inhibit carcinogenic agents (N-nitrous and heterocyclic aromatic amines [HCA]) by two mechanisms (deactivation and
binding). They are potent mutagens and result in carcinogenic mutations in intestinal cells. Moreover, probiotics increase the antioxidant enzyme production and
inactivate carcinogen-deactivating agents, including glutathione reductase, glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase, and
catalase (CAT), and decrease their adverse effects. Besides, probiotics eliminate the risk of CRC development due to metabolites that have effects on the cytochrome
p450. This figure is adapted from Eslami et al., (2019).
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p21 (Singh et al., 1997). Administration of L. plantarum and L.
rhamnosus promoted the expression of anti-oxidant enzymes
such as glutathione, superoxide dismutase, catalase, glutathione
reductase, glutathione peroxidase, and glutathione-S-transferase
in rats with 1,2-dimethylhydrazine-induced colorectal cancer.
Furthermore, the treatment increased the concentrations of
pro-apoptotic agents, such as p53, B-cell lymphoma 2 (Bcl-2),
BCL2-associated X (Bax), caspase-9, and caspase-3, which are
involved in the p53-mediated apoptotic pathway (Walia et al.,
2018). Walia and others demonstrated that 16-week
supplementation with L. plantarum and L. rhamnosus
decreased the expression of cyclooxygenase-2 (COX-2).
Therefore, it appears that suppressing COX-2 is a potential
protective mechanism against colon cancer development,
leading to decreased tumor volume and incidence (Walia
et al., 2015). Ki-67 is a tumor proliferative marker that is
associated with the upper proliferation rate in various types of
cancers (Sun and Kaufman, 2018). An admixture of L. fermentum
and L. acidophilus in the mouse model of colorectal cancer
reduced tumor growth, survival, and proliferation and
decreased the expression of Ki-67 compared with those of the
placebo group. Concomitantly, probiotic supplementation had
no significant effects on the expression of cleaved caspase-3,
E-cadherin, and β-catenin in comparison with that of the
other group (Kahouli et al., 2017). In the dimethylhydrazine-
induced colon cancer model, the probiotic strain L. rhamnosus
GG suppressed the expression of β-catenin, COX-2, and TNF-α.
Moreover, probiotic supplementation upregulated the expression
of pro-apoptotic proteins Bax, p53, and caspase 3 and
downregulated the expression of Bcl-2 as an anti-apoptotic
agent (Kumar et al., 2012). Agah and others compared the
efficacy of L. acidophilus and B. bifidum probiotic strains
against the azoxymethane-induced mouse model of colon
cancer. The results showed that the colonic lesions incidence
was decreased after probiotic intervention compared with that of
the control group, and these effects were more potent for L.
acidophilus than for B. bifidum. Serum concentrations of tumor
markers CEA and CA19-9 were reduced after treatment with
probiotics, while the expression of interferon gamma (IFN-γ),
interleukin-10(IL-10), and the count of CD4+ and CD8+ cells
were upregulated upon intervention (Agah et al., 2019a). Wang
et al. evaluated the efficacy of 12-week probiotic VSL#3
supplementation on azoxymethane/dextran sulfate sodium-
induced colitis-associated carcinogenesis (1.5 × 109 CFU).
Compared with that of the untreated group, probiotic
supplementation downregulated the expression level of IL-6
and TNF-α in a considerable manner. Furthermore, probiotic
intervention decreased the Oscillibacter and Lachnoclostridium
genera, coupled with increased presence of Bacillus and
Lactococcus genera in the fecal microbial composition of mice
samples (Wang et al., 2018a). The c-Jun NH2-terminal kinase
(JNK) is a major protein kinase which belongs to the MAPK
signaling pathway and plays pivotal functions in the regulation of
cell proliferation, cell death, apoptosis, and other features of
cancerous cells (Wu et al., 2019). Considering its interfering
role in different molecular pathways including NF-kB, JNK
has binary roles in cancer development/progression (Tournier,

2013). By inhibiting the phosphorylation of glycogen synthase
kinase 3 beta (GSK3β), JNK has suppressive effects on the
expression of β-catenin (Hu et al., 2009). Ali et al. reported
that L. casei probiotic supplementation in mice with 1,2-
dimethylhydrazine-induced colon cancer significantly reduced
the number of aberrant crypt foci compared with that in
untreated animals. Furthermore, by upregulating the
expression of phosphorylated JNK-1, L. casei regulated the
expression of β-catenin and phosphorylated GSK3β, leading to
significant protective effects against colon cancer (Ali et al., 2019).
Sakatani and others have demonstrated that a L. brevis-derived
polyphosphate significantly promoted the activation of the ERK
signaling pathway, expression of cleaved PARP, and the ratio of
cleaved PARP/PARP in SW620 colon cancer cells and mice
bearing SW620 tumor xenografts. These changes led to
increased apoptosis and inhibition of colon cancer growth
(Sakatani et al., 2016a). By increasing the level of various
inflammatory cytokines including IL-18, TNF-α, and TGF-β1,
the NLR family pyrin domain–containing 3 (NLRP3)
inflammasome can trigger metastasis in colon and colorectal
cancer samples (Shaima’a Hamarsheh, 2020). The results of a
recent study demonstrated that probiotic supplementation with
the E. faecalis strain caused inhibitory effects on the activation of
caspase-1 and maturation of IL-1β in vivo. Furthermore, E.
faecalis suppressed the activation of NLRP3 inflammasome,
and thereby protected animals from intestinal inflammation in
dextran sodium sulfate-induced colitis-associated colorectal
cancer (Chung et al., 2019a). Two-week intervention with L.
casei in 1,2-dimethylhydrazine dihydrochloride-induced colon
cancer in mice reduced the occurrence of chemical-induced
aberrant crypt foci and the activity of ornithine decarboxylase.
As noted previously, by promoting the polyamine metabolism
in tumoral cells, ornithine decarboxylase has a pivotal function
in the induction of cell proliferation. Hence, suppression of this
enzyme in vivo diminished colon cancer growth and
proliferation (Irecta-Nájera et al., 2017a). Numerous
investigations have demonstrated that the expression level of
insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-
1R) in colorectal cancer patients is associated with poor
prognosis, chemoresistance, and increased invasiveness
features (Shiratsuchi et al., 2011; Vigneri et al., 2015).
Valadez-Bustos and others demonstrated that probiotic
intervention with B. longum BAA-999 in the colorectal
murine model reduced the expression level and activity of
IGF-1/IGF-1R in a considerable manner. Furthermore, after
probiotic supplementation, the expression level of insulin-like
growth factor-binding protein-3 (IGFBP3) was normalized.
Overall, the noted alterations led to reduction in the tumor
volume and size (Valadez-Bustos et al., 2019). In a
comprehensive in vivo investigation, Jacouton and others
found that by decreasing the expression grade of IL-22 as a
pro-inflammatory cytokine and upregulating the expression of
caspase-7, caspase-9, and Bik, probiotic treatment with L. casei
BL23 had significant anti-proliferative effects in the
azoxymethane-induced colorectal cancer model (O’Mahony
et al., 2001). Table 3 provides a summary of in vivo
investigations on the efficacy of probiotics in colorectal cancers.
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TABLE 3 | Probiotics and colon cancer in animal studies.

Probiotic agent Probiotic concentration Duration
of the study

Effect (s) Ref.

Bifidobacterium longum BAA-999 8.992 × 1010 CFU/ml 16 weeks Regulated IGF-1, IGF-1R, and IGFBP3
protein expressions

Valadez-Bustos et al.
(2019)

VSL#3 1.5 × 109 CFU 3 months (5 days
weekly)

The level of TNF-α and IL-6 was reduced
in colon tissue and tumor load after
probiotic intervention

Wang et al. (2018b)

VSL#3 109 CFU daily 18 weeks Altered the microbial composition Arthur et al. (2013)
Lactobacillus plantarum 1 × 109 CFU/ml 8 months Reduced β-galactosidase and

β-glucuronidase activities. Besides,
reduced the number of total coliforms

Čokášová et al. (2012)

Lactobacillus casei strain Shirota 2.1 × 1010 8, 12, and
25 weeks

Significantly inhibited aberrant crypt foci
and colon carcinogenesis

Yamazaki et al. (2000)

Lactobacillus fermentum and
Lactobacillus plantarum

2 × 108 CFU/g and 2 ×
108 CFU/g

21 days Decreased the number of crypts in the
mice and the activities of β-galactosidase
and β-glucuronidase

Asha and Gayathri,
(2012)

VSL#3 1.3 × 106 CFU 44 days Protected against carcinogenesis
through regulating the IL-6/STAT3
signaling pathway

Do et al. (2016)

Saccharomyces boulardii 3 × 108 CFU/ml and 6 ×
108 CFU/ml

9 weeks Suppressed HER-2, HER-3, IGF-1R,
EGFR-Erk, and EGFR-Akt expression
levels and intestinal tumor growth

Chen et al. (2009)

Lactobacillus delbrueckii subsp.
bulgaricus and Streptococcus
thermophilus

less than 1 × 102 CFU/ml 5 months Reduced β-glucuronidase and
nitroreductase activity

de Moreno de LeBlanc
and Perdigón, (2005)

Lactobacillus casei ATCC 393 106 CFU 2 weeks Showed protective effects against
ornithine decarboxylase activities

Irecta-Nájera et al.
(2017b)

Lactobacillus acidophilus and
Lactobacillus rhamnosus GG

1 × 109 lactobacilli/0.1 ml 18 weeks Caused decrease in Bcl-2 and K-ras and
increase in Bax and p53 expression
levels. Promoted Bax-mediated
apoptosis in colon carcinogenesis

Sharaf et al. (2018)

Lactobacillus rhamnosus GG MTCC
#1408, Lactobacillus caseiMTCC #1423,
and Lactobacillus plantarum MTCC
#1407

1 × 109 CFU/0.1 ml 7 weeks Probiotic administration decreased the
activity of β-glucosidase

Verma and Shukla,
(2013)

Lactobacillus casei BL23 5 × 109 CFU/ml 53 days Decreased the expression of IL-22 while
increased the expression of caspase-7,
-9, and Bik

Jacouton et al. (2017)

Lactobacillus salivarius ssp. salivarius
UCC118

NA 16 weeks Reduced the number of fecal coliform and
enterococci levels

O’Mahony et al. (2001)

Enterococcus faecium CRL 183 NA 42 weeks Increased the immune response by
promoting the expression of NO, IL-4,
IFN-γ, and TNF-α

Sivieri et al. (2008)

Lactobacillus acidophilus LaVK2 and
Bifidobacterium bifidum BbVK3

2 × 109 CFU/g of each
strain (20 g)

32 weeks Probiotics decreased the pre-neoplastic
lesions and PCNA expression level

Mohania et al. (2014)

VSL#3 333 × 109 CFU/g 115 days Promoted angiostatin, VDR, and alkaline
sphingomyelinase expression

Appleyard et al. (2011)

Bifidobacterium longum, Lactobacillus
acidophilus, and Enterococcus faecalis

1 × 107 CFU of each 9 weeks Alleviated colitis through regulating
CXCR2 signaling

Song et al. (2018)

Enterococcus faecalis KH2 17 mg/kg 2 weeks Modulated the activity of the NLRP3
inflammasome and ameliorated colitis-
associated colorectal cancer

Chung et al. (2019b)

B. bifidum (Bla/016P/M) and Lactobacillus
acidophilus

1 × 109 CFU/g of each strain 10 days before
tumor induction and
5 months after it

IFN-γ and IL-10 serum levels and the
number of CD4+ and CD8+ cells were
decreased after probiotic administration

Agah et al. (2019b)

Lactobacillus acidophilus, Lactobacillus
rhamnosus, and Bifidobacterium bifidum

0.6 × 106 CFU of each strain 1 week Reduced the expression of RANTES,
eotaxin, p-IKK, and TNF-α while
increased IL-10 expression

Mendes et al. (2018)

Lactobacillus salivarius Ren 5×108 and 1 × 1010 CFU/kg 2 weeks Prevented carcinogenesis by regulating
the intestinal microflora

Zhu et al. (2014)

Lactobacillus rhamnosus GG CGMCC
1.2134

1 × 109 CFU/1 ml 25 weeks β-catenin, Bcl-2, NFkB-p65, COX-2, and
TNF-α expression levels were decreased
after probiotic intervention

Gamallat et al. (2016)

Lactobacillus plantarum AS1 109 CFU/ml 26 weeks Had antioxidant-induced prevention of
colon carcinogenesis

Kumar et al. (2012)

(Continued on following page)
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TABLE 3 | (Continued) Probiotics and colon cancer in animal studies.

Probiotic agent Probiotic concentration Duration
of the study

Effect (s) Ref.

Lactobacillus casei Zhang 4 × 109 CFU NA Suppressed tumorigenesis through
modulating various adiponectin-elevated
signaling pathways

Zhang et al. (2017)

Lactobacillus casei BL23 and
Lactococcus lactis MG1363

1 ± 0.4 × 109 CFU/mouse 6 months Along with the modulation of regulatory
T-cells, promoted the expression of IL-6,
IL-17, IL-10, and TGF-β

Lenoir et al. (2016)

Bacillus subtilis-SKm (KFCC11520P) and
Lactococcus lactis-GAm (KFCC11510P)

106 CFU/g of Bacillus subtilis-
SKm and 106 CFU/g of
Lactococcus lactis-GAm

4 weeks Probiotics decreased the expression of
iNOS, COX-2, and Bcl-2 while increased
Bax, p21, and p53 expression levels

Jeong et al. (2012)

VSL#3 333 × 109 CFU/g 2 weeks Reduced the expression of TNF-α, IL-1β,
IL-6, and COX-2 while increased IL-10
expression

Talero et al. (2015)

Propionibacterium freudenreichii TL133 2 × 1010 CFU/ml 18 days Increased the induction of apoptosis Lan et al. (2008)
VSL#3 1.2 × 109 bacteria per day 32 days Increased the expression of TNF-α,

angiostatin, IL-17, and PPAR-γ
Bassaganya-Riera et al.
(2012)

Lactobacillus acidophilus and
Bifidobacterium animalis subsp. lactis and
both of them

5 × 107 CFU/g and 5 ×
107 CFU/g and both strains
(2.5 × 107 CFU/g for each

strain)

10 weeks Increased the expression of caspase-3
and decreased the expression of Bcl-2

Lin et al. (2019)

Lactobacillus acidophilus 1010 CFU/ml 12 weeks Adenomas have been reported to be
decreased after probiotic administration

Urbanska et al. (2009)

Streptococcus thermophilusCRL807 and
Lactobacillus delbrueckii subsp.
bulgaricus CRL864

NA 5 days Prevented colitis and carcinogenesis via
modulating anti-inflammatory responses

Del Carmen et al. (2016)

Lactobacillus plantarum (AdF10) and
Lactobacillus rhamnosus GG (LGG)

1 × 1010 CFU 16 weeks Regulated COX-2 expression Walia et al. (2015)

VSL#3 1.3×106 bacteria 8 weeks Diminished the severity of colitis and
tumor growth

Chung et al. (2017)

Lactobacillus acidophilus 2 × 108 CFU/ml 1 month Attenuated COX-2, iNOS, and c-Myc
expression levels

Deol et al. (2018)

Lactobacillus plantarum (AdF10) and
Lactobacillus rhamnosus GG (LGG)

1010 CFU/ml 16 weeks Had chemopreventive effects Walia et al. (2018)

Lactobacillus acidophilus CL1285,
Lactobacillus casei LBC80R, and
Lactobacillus rhamnosus CLR2

At least 50 × 109 CFU/g of
strains

12 weeks Decreased the activity of β-glucosidase
and β-glucuronidase along with the
reduction in aberrant crypt foci counts

Desrouillères et al. (2015)

Lactobacillus plantarum A and
Lactobacillus rhamnosus b

1 × 108 CFU for 14 consecutive
days, then 1 × 109 CFU for

3 weeks

5 weeks Increased production of IFN-γ and
promoted Th1-type CD4+ T differentiation

Hu et al. (2015a)

Streptococcus thermophilus CRL807,
Streptococcus thermophilus CRL807,
Streptococcus thermophilus CRL807,
Lactococcus lactis subsp. cremoris
MG1363, Lactococcus lactis subsp.
cremoris MG1363, and Lactococcus
lactis subsp. cremoris MG1363

1 × 1010 CFU/ml 6 months Exerted anti-tumorigenic properties via
increasing antioxidant enzymes and IL-10
expression level

Del Carmen et al. (2017)

Lactobacillus acidophilus (NCK 2025) 5 × 108 CFU 4 weeks Regulated inflammation and prevented
colonic polyposis

Khazaie et al. (2012)

Lactobacillus acidophilus (Delvo Pro LA-
1), Lactobacillus rhamnosus (GG),
Bifidobacterium animalis (CSCC 1941),
and Streptococcus thermophilus (DD145)

1010 CFU/g 4 weeks Suppressed DMH-induced colon cancer
in rats

McIntosh et al. (1999)

Bifidobacterium longum NA NA Exerted anti-proliferative and anti-
oxidative properties

Allen et al. (2015)

Bifidobacterium adolescentis SPM0212 1 × 108 CFU 3 weeks Inhibited activity of harmful enzymes and
proliferation

Kim et al. (2008)

IGF-1, insulin-like growth factor 1; IGF-1R, insulin-like growth factor 1 receptor; IGFBP3, insulin-like growth factor-binding protein 3; TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6;
STAT3, signal transducer and activator of transcription 3; HER-2, human epidermal growth factor receptor 2; HER-3, human epidermal growth factor receptor 3; EGFR, epidermal growth
factor receptor; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2–ssociated X; IL-22, interleukin 22; Bik, Bcl-2–interacting killer; IL-4, interleukin 4; IFN-c, interferon gamma; PCNA, proliferating cell
nuclear antigen; CXCR2, CXC chemokine receptor 2; NLRP3, NLR family pyrin domain–containing 3; RANTES, regulated upon activation, normal T cell expressed, and presumably
secreted; IL-10, interleukin 10; NF-κB, nuclear factor kappa B; COX-2, cyclooxygenase 2; IL-17, interleukin 17; TGF-β, transforming growth factor beta; iNOS, inducible nitric oxide
synthase; IL-1β, interleukin 1 beta; PPAR-c, peroxisome proliferator-activated receptor gamma.
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Probiotics and Colon Cancer in In Vitro Studies
As mentioned earlier, caspase-3 is a pro-apoptotic factor and its
decreased levels are associated with the shortened survival time in
various types of cancers (Vince et al., 2018). Bacillus coagulans (B.
coagulans) Unique IS2 exerted anti-proliferative and pro-
apoptotic properties in the COLO 205 human colon cancer
cell line. By activating the p-53-mediated apoptotic pathway,
treatment with probiotics increased the expression of BAX,
activation of caspase-3, cleavage of poly (ADP-ribose)
polymerase, and release of cytochrome C. Furthermore, B.
coagulans reduced the mitochondrial membrane potential and
Bcl2 expression level (Madempudi and Kalle, 2017). Orlando and
others reported that L. rhamnosus GG intervention in Caco-2,
HT-29, and SW480 colon cancer cell lines upregulated the Bax/
Bcl-2 ratio, increasing apoptosis in these cells (Orlando et al.,
2016). The cyclin family is a group of cell cycle regulators. Their
aberrant expression is associated with tumorigenesis (Wood and
Endicott, 2018). Intervention with L. paracasei subsp. paracasei
reduced the expressions of cyclin D1 and cyclin E1 X12 in HT-29
colon cancer cells. In addition, probiotic intervention upregulated
the expression of p27 as a cyclin-dependent kinase (CDK)
inhibitor (Huang et al., 2016). CKD inhibition represents a
potential mechanism for suppressing over proliferation of
cancer cells induced by aberrant regulation of the cyclin family
(Sánchez-Martínez et al., 2019). PTEN (phosphatase and tensin
homolog) has been demonstrated to be a prominent tumor
suppressor gene, which plays critical roles in the
dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate
(PIP3) (Di Cristofano et al., 1998). The additional evidence
indicated that downregulation of PTEN is associated with
increased tumor growth and survival. Therefore, targeting
PTEN inhibitors is one of the most effective means for
decreasing the tumor incidence, tumor volume, and tumor
growth rate (Lee et al., 2019a). Sambrani et al. demonstrated,
in HT-29 colon cancer cells, that treatment with Saccharomyces
cerevisiae (S. cerevisiae) caused a significant upregulation in the
expression of PTEN and caspase-3, while the expression levels of
Bcl-xL and RelA were markedly decreased after probiotic
intervention (Sambrani et al., 2019). Pichia kudriavzevii AS-12
treatment showed considerable cytotoxic properties in HT-29
and Caco-2 cells compared with those in normal control cells. In
addition, Pichia kudriavzevii upregulated the expression of pro-
apoptotic agents including Fas-R, caspase-3, -8, and -9, and BAD
protein, while the expression of anti-apoptotic Bcl-2 was
decreased after yeast probiotic treatment in mentioned cell
lines (Saber et al., 2017). Bacillus polyfermenticus treatment
reduced ErbB2, ErbB3, cyclin D1, and E2F-1 transcription
factor in HT-29, DLD-1, and Caco-2 colon cancer cells. These
changes led to the suppression of over proliferation of cancerous
cells (Ma et al., 2010). In another study, Lee et al. investigated the
anti-cancer effects of the B. adolescentis-derived butanol extract
in Caco-2, HT-29, and SW480 colorectal cell lines. The results
showed that the butanol extract significantly promoted the
activation of macrophages and upregulated the production of
TNF-α and nitric oxide in tumor cells. These changes led to the
induction of cytotoxic and anti-proliferative properties against

colorectal cancer (Lee et al., 2008). Survivin is an anti-apoptotic
agent, which has been reported to be a crucial agent in the
inhibition of apoptosis and subsequent tumor growth,
proliferation, metastases, and invasiveness in various types of
cancer, especially in colorectal cancer (Hernandez et al., 2011).
Tiptiri-Kourpeti et al. demonstrated that L. casei ATCC 393
administration (109 CFU/ml) in CT26 and HT29 colon
carcinoma cells upregulated the expression of the ligand
TRAIL, which was induced by TNF-mediated apoptosis.
Furthermore, L. casei declined the level of survivin expression
(Tiptiri-Kourpeti et al., 2016). By significantly decreasing the
expression of Bcl-2 and remarkable up-regulation in the
expression grade of pro-apoptotic agents Bak and Bax,
probiotic intervention with L. paracasei K5 showed anti-
proliferative effects in Caco-2 cells (Chondrou et al., 2018). In
another investigation, Chen et al. reported that various strains of
Lactobacillus genera in HT-29 colon cancer cells promoted the
expression level of the Bax protein, while decreasing the
expression of Bcl-2, leading to a notable increase in the Bax/
Bcl-2 ratio. Furthermore, the increased lactate dehydrogenase
activity and the ensuing degradation of the cell membrane of
tumor cells were observed (Chen et al., 2017). A summary of
mechanistic in vitro investigations on probiotics and colon cancer
is summarized in Table 4.

Probiotics and Other Gastrointestinal
Cancer
The mitogen-activated protein kinase (MAPK) signaling
pathway has crucial roles in the induction of intracellular
responses from extracellular signals in cells. Aberrant
regulation of this pathway leads to numerous homeostatic
and pathologic sequels, such as cancer (Chapnick et al.,
2011). In the KB oral cancer cell line, probiotic intervention
with L. plantarum reduced the expression of MAPK and caused
significant upregulation in the expression of PTEN signaling
transduction (Asoudeh-Fard et al., 2017). Zhang and others
evaluated the properties of Lactobacillus salivarius (L.
salivarius) REN supplementation in an animal model of 4-
nitroquinoline-1-oxide-induced oral cancer. By decreasing
the expression level of COX-2 and proliferating cell nuclear
antigen (PCNA), L. salivarius intervention had significant
inhibitory effects on tumor growth of oral cancer (Zhang
et al., 2013). Another study demonstrated that Acetobacter
syzygii and L. acidophilus (PTCC 1643) probiotic strains
caused significant cytotoxicity and inhibitory effects against
the KB cancer cell line (Aghazadeh et al., 2017). Barrett’s
esophagus is a pathological condition in which the lining of
the distal esophagus is damaged due to the exposure of the
esophagus to stomach acid. In this situation, squamous
epithelium of the esophagus is replaced by columnar
epithelium (Spechler, 2013). Barrett’s esophagus plays a
critical role in the induction of esophageal cancer and acts as
an important risk factor for development of esophageal cancer
(Conteduca et al., 2012). Mozaffari Namin et al. reported that B.
longum and L. acidophilus treatment of Barrett’s esophagus cell
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TABLE 4 | Probiotics and colon cancer (in vitro).

Cancer cell line Probiotic agent Probiotic
concentration

Effect (s) Ref.

SW620 Lactobacillus brevis SBL8803 NA Via activating the Erk pathway and
inhibiting tumor growth

Sakatani et al. (2016b)

SW620 Lactobacillus delbrueckii NA Through triggering the caspase 3-
mediated pathway and decreasing Bcl-2
and caused apoptosis. Besides, MMP-9
was decreased after intervention

Zhou et al. (2014)

SW742 Bifidobacterium NA Inhibited the growth of cancer cells Otte et al. (2008)
SW742 Bifidobacterium and Lactobacillus NA Prevented the development of colorectal

cancer
Bahmani et al. (2019)

Colo320 and SW480 Lactobacillus acidophilus, Escherichia coli
Nissle 1917, and the probiotic mixture
VSL#3

1 × 106 CFU/ml Regulated the expression of COX-2 Otte et al. (2008)

SW480 and
HCT-116

Lactococcus lactis NA Induced apoptosis in human colon cancer
cells and increased the ratio of f Bax/Bcl2

Bohlul et al. (2019)

HCT-116 Lactobacillus fermentum NA Lactobacillus cell-free supernatant
activated the intrinsic apoptosis pathway

Lee et al. (2019b)

HCT-116 Lactobacillus plantarum 27 (NCDC 012),
Lactobacillus casei (NCDC 297), and
Lactobacillus brevis (NCDC 021)

NA Exerted anti-proliferative activities.
Inhibited activity of α-glucosidase and
α-amylase

Mushtaq et al. (2019)

HCT-116 Lactobacillus sp., Lactobacillus casei, and
Lactobacillus rhamnosus GG

109–1011 CFU/ml Decreased the expression of MMP-9 and
increased protein levels of ZO-1

Escamilla et al. (2012)

HCT-116 Pediococcus pentosaceus GS4 1.1 × 109 CFU/ml Downregulated NF-κB and p-Akt signaling
pathways

Dubey et al. (2016)

HCT-116, AGS,
A549, MCF-7, and
HepG2

Aspergillus sp NA Exhibited anti-tumor properties Choi et al. (2011)

HT-29, HCT-116,
and Caco-2

Bifidobacterium bifidum BGN4 NA Inhibited the growth of cancer cell lines You et al. (2004)

HT-29 Lactobacillus casei K11, Lactobacillus casei
M5, Lactobacillus casei SB27, and
Lactobacillus casei × 12

NA Cell cycle arrest induced at the G0/G1
phase

Di et al. (2018)

HT-29 Lactobacillus kefiri (SGL 13) 5 × 108 CFU/ml Increased Bax expression and decreased
the caspase 3, mutant p53, and IL-8
expression

Brandi et al. (2019)

HT-29 Enterococcus faecium YF5 1 × 1011 CFU Inhibited foodborne pathogens Tan et al. (2013)
HT-29 Lactobacillus acidophilus 145 and

Bifidobacterium longum 913
106–108 and
105 CFU/g

Increased oxidative-induced damage Oberreuther-Moschner et al.
(2004)

Caco-2 and HT-29 Lactobacillus rhamnosus MD 14 NA Showed anti-genotoxic and cytotoxic
properties against colon cancer

Sharma et al. (2019)

HT-29 Lactobacillus casei 01 109 CFU/ml Exerted cytotoxic effects Liu et al. (2011b)
HT-29 Lactobacillus casei ATCC 393, Lactobacillus

plantarum ATCC 14917,and Lactobacillus
paracasei K5

109 CFU/ml Caused a significant decrease in
proliferation of cancer cells in a time- and
dose-dependent manner

Mantzourani et al. (2019)

HT-29 and Caco-2 VSL3(Lactobacillus acidophilus,
Lactobacillus bulgaricus, Lactobacillus
casei, Lactobacillus plantarum,
Bifidobacterium breve, Bifidobacterium
infantis, Bifidobacterium longum, and
Streptococcus thermophilus)

NA Increased the expression of PPARγ Ewaschuk et al. (2006)

HT-29 and L-929 Lactobacillus paracasei and Lactobacillus
brevis

NA Induced apoptosis in cancer cells Mojibi et al. (2019)

HT-29 Lactobacillus acidophilus 606 NA Exerted anti-tumorigenic properties by
inducing the expression of Beclin-1,
GRP78, Bcl-2, and Bak

Kim et al. (2010)

HT-29 and HCT-116 Lactobacillus plantarum NA Increased the activity of caspase-3 and
suppressed the Wnt/β-catenin signaling
pathway. Therefore, reversed
chemoresistance and enhanced the
therapeutic effect of 5-FU in colon cancer

Mirzaei et al. (2016)

HT-29 and HCT-116 Lactobacillus spp 3 × 108 CFU/ml Down-regulated expression of IL-1β and
TNF-α.cfos and cjun transcripts were
significantly upregulated after probiotic
intervention

Shyu et al. (2014)

(Continued on following page)
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lines downregulated the expression of CDX1 (caudal type
homeobox 1), COX-2, TNF-α, and p53, while the expression
level of IL-18 was enhanced after intervention of both probiotic

strains (Mozaffari Namin et al., 2015). Table 5 provides a
summary on the effectiveness of probiotics for oral,
esophageal, and pancreatic cancer.

TABLE 4 | (Continued) Probiotics and colon cancer (in vitro).

Cancer cell line Probiotic agent Probiotic
concentration

Effect (s) Ref.

HT-29 Lactobacillus paracasei subsp.
paracasei M5L

109 CFU/ml Via generating ROS production, inducing
cell cycle arrest, and calreticulin
translocation

Hu et al. (2015b)

HT-29 Leuconostoc mesenteroides NA By regulating MAPK1, Bax, and caspase 3
and downregulation of Akt, NF-Kb, and
Bcl-XL promoted apoptosis. Besides,
suppressed the expression of miRNA-21
and miRNA-200b

Zununi Vahed et al. (2017)

HT-29, Caco2, and
HeLa

Propionibacterium acidipropionici strain
CNRZ80, Propionibacterium freudenreichii
subsp. freudenreichii strain ITG18, and
Propionibacterium freudenreichii subsp.
shermanii strain SI41

NA Via short-chain fatty acids acting on the
mitochondria, caused apoptosis in cancer
cells

Jan et al. (2002)

HT-29 and HCT-116 Propionibacterium freudenreichii NA Induced apoptosis by increasing pro-
apoptotic gene expression (TRAIL-R2/
DR5) and decreasing FLIP and XIAP.

Cousin et al. (2016)

Caco-2 Bifidobacterium animalis subsp. lactis
DSM10140, Bifidobacterium longum subsp.
longum DSM20097, and Bifidobacterium
breve DSM20213

>5.0 logs CFU/g Caused remarkable cytotoxic activities Ayyash et al. (2018)

Caco-2 Lactobacillus rhamnosus and
Bifidobacterium lactis

108 CFU/ml Induced FAS-independent apoptosis and
increased BAX translocation and release of
cytochrome c and cleavage of caspase-3
and -9

Altonsy et al. (2010)

Caco-2 and HT-29 Lactobacillus plantarum A7 and
Lactobacillus rhamnosus GG

NA Decreased the growth rate of cancer cells Sadeghi-Aliabadi et al. (2014)

Caco-2 Escherichia coli Nissle 1917 25 × 107 CFU Decreased ROS generation Wang et al. (2015)
Caco-2 Lactobacillus plantarum NA Upregulated the mRNA expression of

HBD-2 and modulated the TLR-2 and IL-
23 expression

Paolillo et al. (2009)

Caco-2 Lactobacillus paracasei 108 CFU/ml Inhibited the mRNA expressions of CXCR4 Nozari et al. (2019)
Caco-2 Pediococcus pentosaceus FP3,

Lactobacillus salivarius FP25, Lactobacillus
salivarius FP35, and Enterococcus faecium
FP51

NA Triggered the biosynthesis of short-chain
fatty acids

Thirabunyanon and
Hongwittayakorn, (2013)

Caco-2 and CLS Enterococcus faecium RM11 and
Lactobacillus fermentum RM28

NA Triggered anti-proliferative activities in
colon cancer cells

Thirabunyanon et al. (2009)

Caco2, SKCO-1,
SW620, and IEC-18

Lactobacillus casei ATCC334 NA Suppressed colon cancer progression via
affecting the JNK pathway

Konishi et al. (2016)

DLD-1 Lactobacillus rhamnosus strain GG 108 CFU/ml Exerted anti-proliferative effects Orlando et al. (2009)
DLD-1 Lactobacillus rhamnosus (LR) KCTC

12202BP
NA Inhibited cell proliferation through affecting

the p53-p21-cyclin B1/Cdk1 signaling
pathway

An et al. (2019)

TC-1 Lactobacillus casei BL23, Lactococcus
lactis MG1363, and Lactococcus lactis
NZ9000

1 × 109 CFU of each
strain or recombinant

Probiotic strain Lactobacillus casei BL23
caused IL-2-mediated anti-tumoral
properties

Jacouton et al. (2018)

CT-26 Lactobacillus casei variety rhamnosus
(Lcr35)

1 × 103–7 CFU of the
probiotics

Downregulated the expression of TNF-α
and IL-6

Chang et al. (2018)

CT-26 Lactobacillus acidophilus NCFM 1 × 108 CFU Suppressed tumor growth in intestinal
tissue

Chen et al. (2012)

MCF-7, HT-29,
HeLa, HepG2, HL60,
K562, and MCF-10A

Lactobacillus plantarum strains NA Caused anti-proliferative and pro-
apoptotic effects against malignant cancer
cells

Chuah et al. (2019)

LS513 Lactobacillus acidophilus CL1285 and
Lactobacillus casei LBC80R

108 CFU/ml Via upregulating the caspase-3 protein and
enhanced the pro-apoptotic capacity of
the 5-FU.

Baldwin et al. (2010)
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CONCLUSION

Owing to their effects on different aspects of host health,
probiotics have been demonstrated to be important tools in
clinical medicine. Various investigations using a plethora of
experimental models, including in vitro, animal models, and
human clinical studies, have shown that by inducing anti-
carcinogenic properties, anti-mutagenic effects, producing
short-chain fatty acids, activating the immune system of the
hosts, inhibiting the bacteria-induced conversion of pro-
carcinogens to carcinogens, and reducing intestinal pH
(which results in reduced microbial activity), probiotics can
assist in the prevention and treatment of gastrointestinal
cancers. Nonetheless, to date, the benefits of probiotic
strains as bio-therapeutic agents have not been adequately
investigated against GI cancers. Moreover, the clinical efficacy

of probiotics, especially on mortality, remains largely
unexplored. Hence, more clinical studies with adequate
follow-up durations are needed to obtain a clearer
understanding on the potential utility of various strains and
optimal doses for the administration of probiotics as
pharmacological tools to combat GI cancers.
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