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Abstract
Background  Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflam-
matory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. 
In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS 
is a chronic immune-mediated disease of the Central Nervous System.
Aim  The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation 
and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the 
pathophysiology of the disease.
Results  Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, 
glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during 
SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful 
in controlling the microbiota.
Conclusion  Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the 
treatment of this disease. However, more research in human is needed to help understand the possible interaction between 
melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.

Keywords  Melatonin · Multiple sclerosis · Oxidative stress · Inflammation · Intestinal dysbiosis

Introduction

Melatonin is an important regulator of physiological pro-
cesses and a guardian of body homeostasis (Chitimus 
et al. 2020). In addition to its chronobiotic properties (Car-
dinali 2019), melatonin has shown to have antioxidant, 
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anti-inflammatory and immunomodulatory and anti-apop-
totic capacity, as well as a neuroprotective effect (Reiter 
et al. 2000; Esposito and Cuzzocrea 2010; Rosales-Corral 
et al. 2012; Wang et al. 2013; Bahamonde et al. 2014). Due 
to the multiple locations of formation and expression of mel-
atonin receptors, it is called pleiotropic factor (Claustrat and 
Leston 2015; Skarlis and Anagnostouli 2020). Due to this 
characteristic, this hormone is gaining interest (Carrascal 
et al. 2018) as a possible therapy in autoimmune and inflam-
matory processes (Carrascal et al. 2018; Zhao et al. 2019) 
This is also because dysregulation of melatonin secretion 
has been associated with the pathogenesis of several autoim-
mune disorders, such as Multiple Sclerosis (MS) (Farez et al. 
2016; Skarlis and Anagnostouli 2020).

MS is a chronic immune-mediated disease of the cen-
tral nervous system (SCN), characterized by destruction 
of myelin by autoreactive T cells (Farez et al. 2015; Long 
et al. 2018) and axonal degeneration (Faissner et al. 2019). 
It presents a wide range of signs and symptoms that alter 
physical, cognitive, emotional and social functioning 
(Harbo et al. 2013; Sakkas et al. 2019). Melatonin levels 
have been linked to the severity and relapse of MS (Ghar-
eghani et al. 2018). It has been confirmed that melatonin 
can exert beneficial effects on some of the symptoms that 
MS produces, improving the quality of life of patients. 
In fact, a clinical trial is currently being carried out on 
the treatment with melatonin in patients with Relaps-
ing–Remitting Multiple Sclerosis (RRMS), with the aim of 
evaluating whether supplementation with 3 mg of this hor-
mone affects the level of 6-sulfatexymelatonin (6-SMT) 
in urine, as well as the effect on different aspects, such as 
quality of life and number of relapses in patients (“Mela-
tonin in Patients With Multiple Sclerosis (MS).—Full Text 
View—ClinicalTrials.gov,” 2018). This and other clini-
cal trials could clarify whether melatonin may represent 
an option in the design of therapies for MS (Skarlis and 
Anagnostouli 2020), so it is also very necessary to know 
how melatonin acts in the different pathophysiological pro-
cesses that occur in the MS course. Therefore, the objec-
tive of this review will be to evaluate the mechanisms of 
action of melatonin on oxidative stress, inflammation and 
intestinal dysbiosis caused by MS, as well as its interaction 
with different hormones and factors that can influence the 
pathophysiology of the disease.

Methodology

A literature search was performed in the PubMed and Scopus 
databases, without language limitations. The search was lim-
ited to articles published between 2010 and 2021. The key-
words “melatonin”, “multiple sclerosis” and “demyelinating 

disease” were used. These terms were searched for alone 
or in combination, for example by combining “melatonin 
AND multiple sclerosis”. In addition, the references of 
relevant studies, reviews and editorials were also searched 
from the articles read. Specific references were also sought 
to write sections that were added throughout the writing of 
the manuscript, using keywords, such as “vitamin D”, “sex 
hormones”, “neurotrophic factors”, and “Covid-19”. A total 
of 624 articles were collected, including original articles, 
review articles and abstracts. Articles dealing with the effect 
of melatonin on clinical symptoms of MS were excluded; 
therefore, 192 articles were included. After reading these 
manuscripts, 40 more articles were searched, so that finally 
232 scientific productions were included in the review.

Melatonin: synthesis, secretion, receptors 
and function

Melatonin (N-acetyl-5-methoxytryptamine) is an indole hor-
mone synthesized from tryptophan and mainly secreted by 
the pineal gland in a circadian rhythm (Escribano et al. 2014; 
Carrascal et al. 2018), although it can be secreted by other 
extrapineal sources such as cells from the immune system, 
the brain, the skin and the gastrointestinal tract (Carrascal 
et al. 2018). Its synthesis and secretion at the pineal gland 
level are controlled by the suprachiasmatic nucleus in the 
hypothalamus, this being induced by darkness and inhib-
ited in the light (Skarlis and Anagnostouli 2020). In adults, 
the nocturnal serum level of melatonin is of 25–85 pg/ml, 
reaching its peak between 4:00 and 6:00 h and diminishing 
between 7:00 and 9:00 h (Akpinar et al. 2008). Likewise, 
melatonin presents seasonal fluctuations (Mocayar-Marón 
et al. 2020), reaching its maximum concentration in the 
autumn–winter months (Farez et al. 2015).

The effects of melatonin are exerted through depend-
ent and independent receptor pathways (Kern et al. 2019). 
Melatonin-binding sites have been found in the membranes 
of several tissues known as high affinity G-protein coupled 
receptors (Zhao et al. 2019; Kern et al. 2019). Those recep-
tors are MT1 and MT2, which are expressed, among other 
places, in several areas of the CNS (Soto-Brambila et al. 
2017). MT1, is codified by the gene MTNR1A in chromo-
some 4q35.1 (Li et al. 2013) and is mainly found in the 
hippocampus, retina, thalamus, vestibular nuclei, brain and 
cerebellum; and MT2 is codified by the gene MTNR1B in 
chromosome 11q21-q22 (Li et al. 2013) and is located in the 
hippocampus, brain, cerebellum, reticular thalamus, substan-
tia nigra, supraoptic nucleus and red nucleus (Musshoff et al. 
2002; Comai and Gobbi 2014; Beriwal et al. 2019). Other 
nuclear melatonin-binding sites have also been described, 
such as orphan receptors related to retinoic acid (ROR) 
(Soto-Brambila et al. 2017; Kern et al. 2019).
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The chief function of melatonin is to transmit informa-
tion on the daily light and darkness cycle (Claustrat et al. 
2005) and it plays a key role in the regulation of the sleep-
awakeness cycle, puberty development, seasonal adapta-
tion and memory formation (Giannoulia-Karantana et al. 
2007; Skarlis and Anagnostouli 2020). Furthermore, mela-
tonin is known to be a multifunctional molecule (Onaolapo 
et al. 2019), and has been seen to have an anti-oxidant, 
anti-inflammatory (Escribano et al. 2014) and anti-apop-
totic capacity, as well as acting in immune responses and 
mitochondrial homeostasis (Carrascal et al. 2018) contrib-
uting to the multiple cell differentiation and survival in the 
brain (Onaolapo et al. 2019).

These properties indicate that melatonin can have an 
important incidence in the physiopathological mechanisms 
of diverse diseases (Gunata et al. 2020) (The main effects 
of melatonin in humans and in animal models are sum-
marized in Tables 1, 2). It has been proved that melatonin 
levels are correlated with neuroimmune diseases (Ghar-
eghani et al. 2018), and that a low level of this hormone 
is associated with diseases, such as Alzheimer, Parkin-
son’s, Lateral Amyotrophic Sclerosis LAS), and Multiple 
Sclerosis (MS) (Tan and Hardeland 2020). Research on 
MS is especially important, as many of the factors behind 
its pathogenesis are still unknown and there are no medi-
cations to cure this disease. (Miller et al. 2013). MS is 
also the most common cause of non-traumatic disability 
in young adults (Chen et al. 2020), between the ages of 
20–30 (Gunata et al. 2020).

Multiple sclerosis

Symptoms, types, causative agents, and prevalence

MS is a disease that causes motor, sensorial and cognitive 
deficits (Soto-Brambila et al. 2017). Patients with this dis-
ease have a wide variety of symptoms (Huang et al. 2017), 
although the most common ones are: vision deficiency, 
extreme fatigue, spasms, (Soto-Brambila et al. 2017), blad-
der dysfunction, paresthesia, dysesthesia, diplopia, ataxia, 
vertigo, trigeminal neuralgia and optic neuritis (Hauser and 
Goodwin 2008; Goldenberg 2012; Escribano et al. 2014). 
It is also associated with comorbidities, such as anxiety, 
depression and sleep alterations (Skarlis and Anagnostouli 
2020). The physiopathological characteristics of MS are: 
inflammation that occurs in white matter areas of the CNS 
(Sánchez-López et al. 2018), demyelination and glial heal-
ing (Akpinar et al. 2008), that occurs focally or diffusely 
all over the grey and white brain matter and the spinal cord 
(Lassmann et al. 2007, 2012; Escribano et al. 2014). Demy-
elination is propagated through the CNS and may vary in 

distribution, pattern and size (Soto-Brambila et al. 2017). 
These lesions are produced by an immuno-mediated dys-
regulation of the blood brain barrier (BBB), facilitating the 
entry of inflammatory cells activated in the brain and spine 
(Yeganeh-Salehpour et al. 2019).

There are four types of MS: progressive relapsing, pri-
mary-progressive, relapsing–remitting (RRMS), and second-
ary-progressive (SPMS) (Compston and Coles 2002, 2008; 
Bahamonde et al. 2014), with RRMS, being the main form 
of the disease (Adamczyk-Sowa et al. 2016b) affecting 85% 
of patients (Michaličková et al. 2020b). In the four types of 
MS there is neurodegeneration and inflammation, but the 
RRMS is characterized by the appearance of symptoms, fol-
lowed by a period of clinical remission (Adamczyk-Sowa 
et al. 2016b).

MS affects 2,5 million people world-wide (Yeganeh-
Salehpour et al. 2019) with a higher proportion of women 
suffering from it than men (Zeydan et al. 2020). Women 
have a more robust immune system than that of men, hence 
the female prevalence of MS (Avila et al. 2018) suggests 
that the sex hormones play a part in the pathogenesis of this 
disease (Gold and Voskuhl 2009). In addition, MS appears 
earlier in women than in men, although the male sex gives a 
worse clinical result and a greater accumulation of disability 
(Ribbons et al. 2015; Dupuis et al. 2021).

A higher prevalence is also observed in countries with 
high altitudes, where the sunlight is limited and its inhabit-
ants present vitamin D deficiencies (Ghareghani et al. 2018), 
this being a risk factor for the development and progression 
of MS (Ascherio 2013). Thus, environmental factors seem 
to have some weight in the geographic prevalence patterns 
of this disease (Sakkas et al. 2019).

In addition to the latitude, another aspect increasing the 
risk of suffering from MS is that of viral infections. Infection 
by the Epstein–Barr virus is one of the most important risk 
factors for this disease (Ascherio 2013), but also infection 
by the human 6 Herpes virus (Long et al. 2018; Yosefifard 
et al. 2019) and by certain members of the coronavirus fam-
ily (Matías-Guiu et al. 2020).

Genetics is the main factor related to the development 
of MS, with the genetic locus of the major histocompatibil-
ity complex being in chromosome 6, a good candidate for 
determining susceptibility to MS (Yosefifard et al. 2019). 
The allele with the highest risk for developing MS is HLA-
DRB1*15:01, which is associated with a 6 times greater 
danger of contracting the disease in homozygote carriers 
(Patsopoulos et al. 2013).

In MS pathology, neurotrophins such as nerve growth 
factor (NGF) and brain-derived neurotrophic factor (BDNF) 
also play an important role (Langhnoja et al. 2021). Despite 
their cellular and molecular functions still not being well-
known (Langhnoja et al. 2021). These neurotrophins have a 
fundamental involvement in neuronal repair and plasticity 
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(Gold et al. 2003), promoting the proliferation of neural stem 
cells and their differentiation in the oligodendroglial lineage 
(Langhnoja et al. 2021). All this suggests the neuroprotec-
tive capacity of these proteins in MS patients (Gold et al. 
2003).

Cellular and molecular mechanisms involved 
in multiple sclerosis

In MS, the definitive presence of oxidative stress has been 
demonstrated (Holton and Kirkland 2020). It acts as a medi-
ator of demyelination, axonal damage and neurodegeneration 
(Ramirez-Ramirez et al. 2013; Sánchez-López et al. 2018). 
MS patients present high levels of oxidative stress biomark-
ers, as well as an overall antioxidant deficiency (Bahamonde 
et al. 2014; Escribano et al. 2017). In addition, in the study 
made by Conde et al., 2019, for the first time, the presence of 
intense oxidative stress in non-nervous organs in the animal 
MS model, experimental autoimmune encephalomyelitis 
(EAE), was verified, which suggests that something similar 
may occur in MS patients (Conde et al. 2019). During the 
course of the disease, the infiltration of autoreactive effec-
tor T cells Th1 and Th17 into the CNS, causes an increase 
in pro-inflammatory cytokines (Interferon-γ (IFN-γ), the 
tumoral necrosis factor (TNF), Interleukin-17 (IL-17) (van 
den Hoogen et al. 2017) and Interleukin-22 (IL-22)), which 
attack the myelin sheath (Michaličková et al. 2020b). After 
the inflammatory reaction, the permeability of the BBB is 
increased by the action of the matrix metalloproteinase-9 
(MMP-9), and other immune cells such as B lymphocytes 
and monocytes are recruited (Adamczyk-Sowa et al. 2016a; 
Michaličková et al. 2020a) (Fig. 1).

An increase in pro-inflammatory cytokines induces an 
excessive production of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) (Soto-Brambila et al. 
2017; Conde et al. 2019). The latter are extremely unstable 
and have a great oxidative capacity (Long et al. 2018). 
ROS activates the nuclear kappa B factor (NF-κB) (Valac-
chi et al. 2018), which is activated in multiple CNS cells, 
including the T cells, microglia, macrophages, astrocytes, 
oligodendrocytes and neurons, and regulates positively 
the expression of factors implicated in the pathogenesis 
of MS, including TNF-α, nitric oxide synthase (iNOS), 
IL-1α and molecule 1 of vascular adhesion (VCAM-1) 
and several growth factors (Michaličková et al. 2020a). 
When NF-κB is activated, it causes an increase in inflam-
mation and demyelination and triggers the onset of the 
disease (Yue et al. 2018). Recently, the implication of 
inflammasomes in the pathogeneses of neurodegenera-
tive diseases has begun to be studied. It was observed that 
inflammasome NLRP3, plays a vital role in MS (Feng 
et al. 2021). The activation of NF-κB, together with that of 
pro-caspase 1 are the two signals required to activate this Ta
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inflammasome (Michaličková et al. 2020b). When NLRP3 
is active, it causes a proteolytic activation of caspase-1, 
enabling the secretion of the pro-inflammatory cytokines 
IL-1β and IL-18 (Lahooti et al. 2021) and also regulates 
the response of cells Th1 and Th17 (Feng et al. 2021) 
(Fig. 1).

Another of the effects provoking the persistent activa-
tion of NF-κB is the dysregulation of transcription factor 
Nrf2 (Nuclear factor-erythroid 2 related factor 2) (Fernán-
dez-Ortiz et al. 2020), the latter being the principal regula-
tor of antioxidant protection mechanisms (Shih and Yen 
2006) and whose transactivation is induced in presence of 
ROS and RNS (Zhang et al. 2013; Escribano et al. 2014).

Due to oxidative stress, another crucial phenomenon 
occurring in MS is the alteration in the homeostasis of 
glutathione (Michaličková et al. 2020b), which is the prin-
cipal brain antioxidant and has a key role in the detoxifi-
cation of reactive species (Carvalho et al. 2014) (Fig. 1).

Relationship of melatonin with multiple 
sclerosis

The different studies carried out have shown that there is 
a relationship between melatonin and MS. MS patients 
showed a decrease in both nocturnal melatonin, which 
has been correlated with the severity of the disease, and 
with symptoms, such as fatigue, insomnia or depression. 

(Álvarez-Sánchez et  al. 2017), and in their principal 
metabolite in urine, 6-SMT (Álvarez-Sánchez et al. 2015).

Melatonin levels, which peak in fall–winter, show an 
inverse correlation with clinical disease activity in MS 
patients, since its symptoms are more likely to occur in 
spring/summer than in fall/winter (Farez et al. 2015). This 
seasonal pattern that led Farez et al. (2015) to the study of 
the relationship between multiple sclerosis and melatonin. 
Quintana, associate professor in the Ann Romney Center 
for Neurologic Diseases at Brigham and Women’s Hospi-
tal (BWH), with colleagues at the Center for Research on 
Neuroimmunological Diseases (CIEN) at the Raul Carrea 
Institute for Neurological Research (FLENI) in Argen-
tina, found that during the fall and winter, a group of 139 
relapsing remitting MS patients, experienced a significant 
improvement in symptoms. They explored a variety of 
environmental factors (vitamin D levels, UV incidence and 
upper respiratory tract infections), but the factor that was 
consistently associated with severity of MS symptoms was 
melatonin (Farez et al. 2015). A thorough study in mouse 
and human cells led them to the conclusion that melatonin 
affects the roles of two kinds of cells that are important in 
MS disease progression: pathogenic T cells that directly 
attack and destroy tissue and regulatory T cells, which are 
supposed to keep pathogenic T cells in check. This higher 
incidence of MS in spring/summer has been verified in 
different studies such as in the meta-analysis carried out by 
Jin et al. (2000) who report that the beginnings of mono-
symptomatic optic neuritis, the first clinical manifestation 

Fig. 1   Cellular and molecular mechanisms involved in Multiple Scle-
rosis CNS central nervous system, VCAM-1 vascular cell adhesion 
molecule 1, Th1,Th17 cells T helper 1, T helper 17, IL-17 Interleukin 
17, IL-22 interleukin 22, IL-1α Interleukin 1α, TNF-α tumor necrosis 
factor-α, IFN-γ Interferon-γ, LPS lipopolysaccharide, LBP LPS-bind-
ing protein, CP carbonylated proteins, LPO lipid peroxidation prod-

ucts, NO nitric oxide, MDA malondialdehyde, tG total glutathione, 
GSSG oxidized glutathione, GPx glutathione peroxidase, GSH 
reduced glutathione, SIRT3 sirtuin 3, NF-κB factor nuclear kappa B, 
Nrf2 Factor 2 related to nuclear erythroid 2, ROS reactive oxygen 
species, iNOS nitric oxide synthase



1578	 A. Muñoz‑Jurado et al.

1 3

of MS in 20–30% of cases and in its exacerbations, pre-
sent a similar pattern with higher frequencies in spring 
and lower in winter (Jin et al. 2000). Similarly, Spelman 
et al. (2014), determine that relapse onset in MS followed 
an annual cyclical sinusoidal pattern with peaks in early 
spring (Spelman et al. 2014). Among the reasons for which 
it is believed that MS patients exhibit a lower level of 
melatonin is that it is due to the deposition of calcium 
in the pineal gland (Akpinar et al. 2008; Tan et al. 2018; 
Yosefi-Fard et al. 2020) or to hypothalamic dysfunction in 
the regulation of the oscillatory secretion of the melatonin 
(Akpinar et al. 2008).

It has been established that one of the most successful 
clinical treatments existing currently for treating MS is 
Natalizumab that triggers an increase in the serum con-
centration of melatonin (Bahamonde et al. 2014) so that 
part of the effects exerted by Natalizumab in these patients 
could be explained by the stabilization of melatonin lev-
els (Bahamonde et al. 2014; Zhao et al. 2019). Melatonin 
could have a prophylactic and therapeutic effect on this 
disease (Gunata et al. 2020), and it has been evidenced that 
supplementation with this hormone contributes to alleviat-
ing cognitive and motor imbalances (Chen et al. 2020). In 
addition, melatonin improves oligodendroglial differentia-
tion and maturation and myelin repair. (Ghareghani et al. 
2017b). Melatonin therapy modulates brain metabolism 
and improves remyelination. This is associated with an 
increase in pyruvate dehydrogenase kinase-4 (PDK-4), 
an enzyme involved in the synthesis of fatty acids during 
remyelination. (Ghareghani et al. 2019).

However, a study by Constantinescu et al., 1997 con-
cluded that melatonin could exacerbate autoimmunity, sug-
gesting that inhibition of melatonin could prevent demyeli-
nation (Constantinescu et al. 1997). Similarly, Ghareghani 
et al., 2017a, b, found a negative impact of melatonin on 
the recovery of EAE in young rats, by improving IFN-γ, the 
ratio of Th1/Th2 cells and astrocyte activation, which can 
delay the remyelination process, so they conclude that age 
plays a substantial role in melatonin therapy (Ghareghani 
et al. 2017a).

Discussion of melatonin use in clinical studies

The clinical studies included in this review use very dif-
ferent doses of melatonin as treatment for RRMS patients, 
mostly SPMS or PPMS patients. These doses range from 
3 to 25 mg, all administered once a day. In four of the arti-
cles, this dose is administered orally (Adamczyk-Sowa et al. 
2016a; Sánchez-López et al. 2018; Yosefifard et al. 2019; 
Yosefi-Fard et al. 2020), while in two of them, the route of 
melatonin administration is not specified (Miller et al. 2013; 
Roostaei et al. 2021). Similarly, the duration of the treat-
ment varies considerably from article to article, the shortest 

duration being 1 month (Miller et al. 2013) and the longest 
1 year (Roostaei et al. 2015). Regarding oxidative stress, 
there is a reduction in its biomarkers in all the articles that 
study this effect, regardless of the dose, regimen or route of 
administration of melatonin. Obtain a decrease in malondi-
aldehyde (MDA) (Miller et al. 2013), lipid hydroperoxides 
(Adamczyk-Sowa et al. 2016a) and NO (Sánchez-López 
et al. 2018). Likewise, Miller et al. 2013 show an increase 
in the enzymes SOD and GPx. Regarding inflammation, dif-
ferent results appear in the studies that evaluate the effect 
of melatonin on the levels of proinflammatory cytokines. 
Sánchez-López et al. 2018 obtained a reduction in the levels 
of TNF-α, IL-1β and IL-6, using a dose of 25 mg/day for 
6 months. However, Yosefifard et al. 2019 do not obtain 
changes in the levels of TNF-α after a treatment of 3 mg/
day for 24 weeks, although they do observe a reduction in 
the levels of IL-1β (Yosefifard et al. 2019). These results 
could indeed indicate a different dose-dependent effect on 
TNF-α levels, since the route of administration is the same, 
the duration of treatment is similar and the Expanded Dis-
ability Status Scale (EDSS) of patients was 0–0.5 to 5 in 
both studies. Apparently, a higher dose of melatonin favors 
the reduction of TNF-α levels in patients with RRMS, while 
the levels of other proinflammatory cytokines, such as IL-1β, 
decrease regardless of dose. On the other hand, the admin-
istration of 3 mg/day of melatonin for 1 year in the study by 
Roostaei et al. 2015, did not produce effects on measures of 
clinical and functional disability and on the development 
of brain lesions. Based on these results, it might be thought 
that, to reduce the clinical activity of MS, it is necessary to 
use a higher dose of melatonin (Table 1).

Immunomodulator and anti‑inflammatory 
effect of melatonin in multiple sclerosis. 
Mechanism of action

The immunomodulatory and anti-inflammatory effects of 
melatonin allow it to inhibit the expression and activation 
of NF-κB, preventing its translocation to the nucleus and 
its binding to DNA (Maldonado et  al. 2010; Escribano 
et al. 2014), thus reducing the synthesis of inflammatory 
mediators and, ultimately, suppressing inflammation (Ramos 
González et al. 2018; Sánchez-López et al. 2018; Zhao et al. 
2019; Luo et al. 2020).

The inflammasome NLRP3 has been identified as being 
a new molecular target for melatonin (García et al. 2015), 
and it is capable of counteracting and inhibiting the effects 
of NLRP3 (Michaličková et al. 2020b; Luo et al. 2020; 
Fernández-Ortiz et al. 2020).
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In the course of MS, an increase is also produced in adhe-
sion molecules (intracellular adhesion molecules (ICAM-1) 
and VCAM-1), which promote the adherence of the leu-
kocytes to the endothelial cells (Maldonado et al. 2010; 
Escribano et al. 2014). Melatonin deficit has been associ-
ated with an increase in the levels of these molecules, as 
well as of MMP-9 (Wang 2009; Lin et al. 2013; Bahamonde 
et al. 2014). However, the administration of melatonin in 
EAE animals resulted in a reduction in ICAM-1 levels (Kang 
et al. 2001; Bahamonde et al. 2014). A recent study has 
shown that melatonin can reduce ICAM-1 levels through 
the RORα/miR-223/STAT-3 signaling pathway. This path-
way is involved in the regulation of ICAM-1. Melatonin 
could induce the expression of miR-223 through its recep-
tor RORα. Upregulation of miR-223 causes downregulation 
of STAT-3 expression, triggering suppression of ICAM-1 
expression (Yi and Yang 2021). This causes a decrease in the 
migration of transendothelial cells (Maldonado et al. 2010; 
Escribano et al. 2014).

The effect of melatonin on T cells

In MS, it is widely known that there is an imbalance in T 
cell responses, which is fundamental for the development 
and progression of the disease (Long et al. 2018). Melatonin 
affects the differentiation and function of effector and regula-
tor T cells in vivo and in vitro (Farez et al. 2015) in MS, and 
is capable of reducing the number of inflammatory infiltrates 
into the CNS in the EAE model (Long et al. 2018).

Álvarez-Sánchez et al. 2015 report that melatonin reduces 
the peripheric and central responses of Th1 and Th17, and 
improves the regulatory T cell Tr1’s levels, thus increasing 
the IL-10 in the EAE model (Álvarez-Sánchez et al. 2015). 
However, in a study by those same authors, carried out in 
RRMS patients, melatonin administration diminished the 
Th1 and Th22 responses, but did not affect the subgroups 
Th17 and Tr1 (Álvarez-Sánchez et al. 2017). Chang et al., 
2020 in their study on myasthenia gravis, were also able to 
verify that melatonin produced a significant decrease in the 
response of Th1 and Th17 cells (Chang et al. 2020). The 
work done by Farez et al., 2015 demonstrates that mela-
tonin promotes the differentiation of Tr1 cells by means of 
the activation of the Erk 1/2 pathway (extracellular signal-
regulated kinase 1/2), and that the ROR-α receptor acts as 
a mediator of the effects of melatonin on these cells. In the 
case of Th17 cells, melatonin blocks their differentiation 
through the expression of the IL-3-regulated nuclear tran-
scription factor (NFIL3) (Yu et al. 2013; Farez et al. 2015), 
which suppresses the expression of ROR-γt (Yu et al. 2013).

The effect of melatonin on proinflammatory 
cytokines

In MS lesions, diverse types of pro-inflammatory cytokines 
are present, such as: IFN-γ and TNF, produced by cells 
Th1; IL-17, produced by cells Th17; and IL-22, produced 
by cells Th22 (Hofman et al. 1989; Lock et al. 2002; Kebir 
et al. 2007; Álvarez-Sánchez et al. 2017). TNF is one of the 
most important inflammatory factors, exerting a vital role in 
damage to oligodendrocytes and the myelin (Ontaneda et al. 
2012; Mahad et al. 2015; Yosefifard et al. 2019). Moreover, 
the TNF level in serum and in cerebrospinal fluid has been 
related to the advance of the disease (Sharief and Hentges 
1991; Álvarez-Sánchez et al. 2017; Yosefifard et al. 2019). 
IL-17 and IL-22, are involved in the alteration in the BBB 
and the recruitment of T cells CD4 + and neutrophils to the 
CNS (Kebir et al. 2007; Álvarez-Sánchez et al. 2015) and 
the IFN-γ is responsible for the recruitment of macrophages 
(Kroenke et al. 2008; Álvarez-Sánchez et al. 2015). IL-1, 
one of the most important pro-inflammatory cytokines is 
also present in MS; it is expressed in the peripheric tissue 
of monocytes and macrophages, increasing significantly 
after damage (Mendiola and Cardona 2018; Yosefifard et al. 
2019).

Various studies confirm the effect of melatonin on pro-
inflammatory cytokines. It has been seen that it is capable of 
reducing their production, especially of TNF, IL-1β e IFN-γ 
(Álvarez-Sánchez et al. 2015, 2017; Sánchez-López et al. 
2018; Anderson et al. 2019; Yosefifard et al. 2019) and of 
increasing the levels of anti-inflammatory cytokines like that 
of IL-10, by means of an MT1-dependent mechanism (Xu 
et al. 2018) and IL-4 (Carrillo-Vico et al. 2005; Álvarez-
Sánchez et al. 2015; Ghareghani et al. 2019). It also offers a 
more protective microenvironment for cytokines (Álvarez-
Sánchez et al. 2017). In addition, Yosefi-Fard et al. 2020 
show in their study that melatonin levels are associated with 
an increase in IFN-β, which is beneficial against relapses in 
MS (Yosefi-Fard et al. 2020).

The results of the study made by Xu et al. 2018 find that 
melatonin inhibits proinflammatory cytokine production see-
ing that it decreases TNF-α production and TLR9-mediated 
IL-6, (Toll type Receptor 9) in mouse serum, it regulates the 
TLR3 and TLR4 signals (Toll type Receptor 3 and Toll type 
Receptor 4) in macrophages, and causes a significant decline 
in the production of IL-12, after macrophage activation (Xu 
et al. 2018).
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Effect of melatonin on oxidative stress 
of multiple sclerosis. Mechanism of action

An increase in proinflammatory cytokines after lymphocyte 
and macrophage infiltration into the CNS augments the ROS 
generation, which favors inflammation still more and pro-
duces oxidative stress. The latter is a condition under which 
the organism’s antioxidant defenses are insufficient due to 
the excessive release of oxidants (Padureanu et al. 2019) 
Some of its main consequences are: the large increase in 
lipid peroxidation products (LPO); protein carbonylation or 
carbonylated proteins (CP); oxidative damage to the nuclear 
and mitochondrial DNA, as well as disorders related to its 
own replication mechanisms and damage to cell tissues and 
walls (Senthil Kumaran et al. 2008; Şimşek et al. 2016; Maes 
et al. 2019; Holton and Kirkland 2020; Morris et al. 2021).

Reactive species are produced naturally by aerobic metab-
olism and processes involved in the response to pathogens 
(Michaličková et al. 2020b). ROS presents unpaired elec-
trons, which makes it more reactive and with a capacity 
for capturing electrons from other molecules (Holton and 
Kirkland 2020). Besides, it can react with some unsaturated 
fatty acids present in the cell membranes, which activates 
the lipid peroxidation process, triggering the modification of 
proteins and changes in the membrane gradient, resulting in 
a loss of integrity and irreversible damage (Senthil Kumaran 
et al. 2008).

Due to the characteristic antioxidant effect of melatonin, 
it could be of great assistance in combatting the oxidative 
stress produced in MS, reducing macromolecular damage 
in all the organs (Maldonado et al. 2010; Escribano et al. 
2014), and reducing the principal oxidative stress biomark-
ers (Carbonylated proteins (CP), lipid peroxidation prod-
ucts (LPO), Nitric oxide (NO) and MDA (Túnez et al. 2004; 
Miller et al. 2013; Bahamonde et al. 2014; Adamczyk-Sowa 
et al. 2017; Soto-Brambila et al. 2017; Yeganeh-Salehpour 
et al. 2019; AboTaleb and Alghamdi 2020; Alghamdi and 
AboTaleb 2020) and the oxidative damage to nuclear DNA, 
both in vivo and in vitro (Túnez et al. 2004). The antioxidant 
capacity of melatonin in the EAE model has recently been 
demonstrated in an article published by our research group. 
In this manuscript, we demonstrate that melatonin has the 
capacity to restore the body’s antioxidant defenses while 
decreasing the main oxidative stress biomarkers (LPO, CP 
and NOx,) which are increased in the EAE model (Escribano 
et al. 2022).

Glutathione redox cycle

CNS is especially susceptible to ROS damage, due to the 
brain’s high oxygen demands, the low concentration of anti-
oxidants, and the high concentration of polyunsaturated fatty 

acids (Gonsette 2008; Miller et al. 2011, 2013). The oxida-
tive damage that occurs in neurodegenerative diseases is an 
effect mainly due to a severe alteration in the glutathione 
redox cycle (Sandri et al. 1990; Di Monte et al. 1992; Martín 
et al. 2000a). In the study carried out by Tasset et al. 2012, 
they reported that MS patients have an oxidation state and a 
global antioxidant deficiency (Tasset et al. 2012).

Different studies have shown that melatonin improves 
antioxidant defense systems by stimulating the activity of 
antioxidant enzymes, such as superoxide dismutase (SOD), 
catalase (CAT) and the glutathione redox cycle (Martín et al. 
2000a; Miller et al. 2013; Bahamonde et al. 2014; Soto-
Brambila et al. 2017; Yeganeh-Salehpour et al. 2019; Zhao 
et al. 2019; AboTaleb and Alghamdi 2020).

Martín et al., 2000a, b, examined the influence of mela-
tonin on the content of glutathione (GSH) and the activ-
ity of the enzymes glutathione peroxidase (GPx) and glu-
tathione reductase (GRd), in mitochondria isolated from the 
liver and brain of rats treated with t-butyl hydroperoxide. 
The results of this study suggest that melatonin maintains 
GSH homeostasis and prevents oxidative damage in mito-
chondria by counteracting changes in GSH, GPx, and GRd 
(Martín et al. 2000a). Similar results show Miller et al. 
2013, who obtain that melatonin caused a statistically sig-
nificant increase in SOD and GPx and a decrease in MDA 
in the erythrocytes of SPMS patients (Miller et al. 2013). 
Similarly, the results of the study carried out by Baham-
onde et al. 2014, show that the elevation of serum melatonin 
is associated with a reduction in oxidative stress markers, 
characterized by an increase in GSH levels and a decrease 
in 8-hydroxy-2’deoxyguanosine (8-OHdG) (Bahamonde 
et al. 2014). In the recent study published by (AboTaleb and 
Alghamdi 2020), reported that melatonin exerted beneficial 
effects through its role as an antioxidant agent, evidenced 
by the significant increase in the levels of CAT, SOD, GPx 
and GSH, as well as by the reduction of MDA, during the 
demyelination stage in mice with MS induced by cuprizone 
(AboTaleb and Alghamdi 2020). In accordance with what 
has been described, data from our group, indicate that mela-
tonin increases GSH, GPx and the GSH/GSSG ratio in blood 
and in all the organs studied (brain, spinal cord, heart, liver, 
kidneys, small and large intestine) and also reduces the lev-
els of GSSG, in mice with induced EAE (Escribano et al. 
2022).

Melatonin and the Nrf2 signaling pathway

Nrf2 is the principal regulator of antioxidant protection 
mechanisms (Shih 2006). In the absence of oxidative 
stress, the transcription factor Nrf2, and Keap1 (Protein 1 
associated with ECH (epichlorohydrin)) are bound in the 
cytoplasm (Fukutomi et al. 2014; Long et al. 2018). In the 
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presence of oxidative stress, the Nrf2-Keap 1 bond is bro-
ken (Marcus and Andrabi 2018) and Nrf2 does not undergo 
its normal cytoplasmic degradation (Morris et al. 2021). 
Instead, it travels to the nucleus, where it is heterodimerized 
(Katsuoka and Yamamoto 2016) and binds to ARE (antioxi-
dant response element) in the target gene-promoting region. 
Subsequently, the transcription of antioxidant (Morris et al. 
2021), anti-inflammatory and cytoprotective genes begins 
(Kahroba et al. 2021). The activation of this signaling path-
way is vital to cell defense mechanisms (Shah et al. 2017), 
since it maintains redox homeostasis in the cells (Kahroba 
et al. 2021).

During the course of MS, the Nrf-2/ARE pathway is 
activated, but it has been suggested that this activation, and 
that of other endogenous antioxidant defense mechanisms, 
might not be sufficient to prevent neuronal degeneration 
and lesion propagation (Licht-Mayer et al. 2015). Certain 
studies have reported a decrease in Nrf2 in samples of grey 
matter from MS patients, correlating this with a reduced 
expression of genes intervening in oxidative phosphoryla-
tion and an increase in oxidative damage (Pandit et al. 2009; 
Michaličková et al. 2020b). In addition, Johnson et al. 2009, 
confirmed the existence of Nrf2 deficiency in the EAE 
model (Johnson et al. 2009). That is why it is important to 
find drugs that upregulate this antioxidant mechanism as 
this would attenuate MS pathogenesis (Johnson et al. 2009).

In the study made by Fernández-Ortiz et al. 2020, which 
investigated the role of the inflammasome NLRP3 in car-
diac aging and the actions and targets of melatonin in the 
aged myocardium of mice, they were able to establish that 
a melatonin supplementation restored the Nrf2-dependent 
antioxidant capacity, which had been dysregulated by the 
activation of NF-κB (Fernández-Ortiz et al. 2020). Differ-
ent works studying the role of melatonin in oxidative stress 
have concluded that it is able to improve the antioxidant 
activity of Nrf2/ARE (Shah et al. 2017; Long et al. 2018; 
Albazal et al. 2021), reducing oxidative stress (Das et al. 
2020). Excessive and prolonged oxidative damage and fail-
ure of DNA repair can induce apoptosis (Dizdaroglu 2005; 
Trachootham et al. 2008). However, if the ability to remove 
ROS is restored, redox homeostasis would be restored with-
out the damage becoming irreversible, since, after expo-
sure to excess ROS, cell survival depends on the strength 
of antioxidant defense barriers (Diez et al. 2021). In this 
sense, some studies have investigated the effect of Nrf2 acti-
vation, which promotes cell survival under oxidative stress 
(Trachootham et al. 2008). An example of this is the study 
carried out by Kubo et al. 2017, in which they show that 
an Nrf2 activator, sulforaphane, in the presence of oxida-
tive stress increased the expression of antioxidant enzymes 
in a dose-dependent manner and stopped the deregulation 
of Nrf2, restoring the transactivation potential of this fac-
tor (Kubo et al. 2017). Melatonin exerts a similar effect on 

Nrf2, facilitating its nuclear translocation, in the presence of 
oxidative stress (Das et al. 2020). Likewise, Park et al., 2020 
demonstrated that the addition of substance-P (SP) increased 
cell viability, supporting the possibility that SP can recover 
cell activity after oxidative stress-induced dysfunction (Park 
et al. 2020). Based on this, it could be said that there are 
certain substances, including melatonin, that could recover 
the cellular redox potential, altered by oxidative stress, pre-
venting apoptosis.

Melatonin, and mitochondrial dysfunction

Mitochondrial dysfunction is another consequence of oxida-
tive stress (Kahroba et al. 2021). An excessive production 
of ROS leads to an inefficacious oxidative phosphorylation, 
which increases ROS generation even further, forming a 
vicious circle of mitochondrial dysfunction and oxidative 
stress (Haider 2015; Michaličková et al. 2020b). Moreover, 
mutations or deletions in mitochondrial DNA (mtDNA) 
could occur due to the damage occasioned by ROS, which 
affects energy metabolism and ATP production (Campbell 
et al. 2011; Lassmann and van Horssen 2016; Michaličková 
et al. 2020b).

MS seems to be associated with mitochondrial dysfunc-
tion (Soto-Brambila et al. 2017), and it has been observed 
that any abnormality occurring in the mitochondria could 
contribute to the onset and progression of lesions in this dis-
ease (Campbell and Mahad 2011). In the progressive stages 
of MS, a chronic mitochondrial dysfunction is experienced 
(Michaličková et al. 2020b).

It has been demonstrated that melatonin is produced, in 
addition to by the pineal gland, by the mitochondria (Reiter 
et al. 2018). The activators of the aryl hydrocarbon receptor 
(AhR) interact with the mitochondrial melatonergic pathway 
through cytochrome P450 (CYP)1b1 and convert the mela-
tonin into N-acetylserotonin (NAS) (Anderson et al. 2019). 
Evidence has shown that there is an increase in the NAS 
level in secondary-progressive MS, that means a decrease 
in melatonin levels and an alteration in the melatonergic 
pathway of the mitochondria in MS (Anderson et al. 2019).

The administration of melatonin seems to have a protec-
tive role in mitochondrial dysfunction (Zhao et al. 2019), 
because it has been seen to increase oxidative phosphoryla-
tion through disinhibition of the pyruvate–dehydrogenase 
complex, which leads to an increase in Acetyl-CoA, which 
is necessary for the activation of the melatonergic pathway 
of the mitochondria (Anderson et al. 2019). In addition, it 
increases the activity of the enzymes intervening in mito-
chondrial oxidative phosphorylation, such as NADH–coen-
zyme Q reductase (Complex 1) and cytochrome C oxidase 
(Complex IV) (Martín et al. 2000b, 2002; Acuña-Castroviejo 
et al. 2001; Leon et al. 2004; Túnez et al. 2004), which allow 
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melatonin to optimize mitochondrial function (Anderson 
et al. 2019).

Under oxidative stress it has been proved that there is a 
decline in the levels of Sirtuin 3 (SIRT3), the principal mito-
chondrial deacetylase, responsible for maintaining homeo-
stasis and modulating ROS production (Torrens-Mas et al. 
2017; Marcus and Andrabi 2018). However, it was found that 
melatonin treatment can increase and activate SIRT3 (Song 
et al. 2017; Reiter et al. 2018; Zhou et al. 2019; Morris et al. 
2021). What is more, melatonin is capable of: stabilizing the 
mitochondrial internal membrane, improving electron trans-
port chain activity, reducing oxygen consumption (Paradies 
et al. 2010; Escribano et al. 2014). It can also inhibit nitric 
oxide synthase, re-establish mitochondrial calcium homeo-
stasis (Morris et al. 2021), and restore mtDNA levels (Chang 
et al. 2012; Feng et al. 2013; Escribano et al. 2014).

Melatonin, and iron metabolism

It is considered that oxidative stress is related to the metab-
olism of iron, since, with an altered redox signaling, iron 
is released from the myelin sheath (Siotto et  al. 2019; 
Michaličková et al. 2020b). This metal could have a role in 
the pathogeny of the inflammation and neurodegeneration in 
MS, causing microglia activation, mitochondrial dysfunction 
induction, and an increase in free radicals in the CNS (Siotto 
et al. 2019). During the breakdown of the myelin, iron is 
released to the extracellular space, where it is converted into 
a divalent ferrous form, which generates an increase in ROS 
toxicity (Mahad et al. 2015; Michaličková et al. 2020b). In 
MS patients, an increase has been found in iron concen-
tration in white matter lesions and grey matter structures 
(Haider 2015).

Ceruloplasmin (Cp) is a protein produced in the liver, 
with a positive acute phase, i.e., its level changes in chronic 
and acute inflammatory diseases (Kamanli et  al. 2004; 
Walshe 2005; Adamczyk-Sowa et al. 2016b; Siotto et al. 
2019). It plays a fundamental role in iron and copper metab-
olism, presenting an antioxidant function due to its ferroxi-
dase activity (Siotto et al. 2019).

Adamczyk-Sowa et al., 2016a, b affirm that ceruloplas-
min has potential importance in MS pathogenesis, as it is 
significantly increased in MS patients, so that it could be a 
valuable serum marker of the demyelination process (Adam-
czyk-Sowa et al. 2016b). Moreover, in that same study, they 
report that melatonin is able to modulate ceruloplasmin con-
centrations, thus affecting the serum antioxidant system in 
MS patients (Adamczyk-Sowa et al. 2016b).

In spite of the above findings, further research is needed 
on the contribution of melatonin to iron metabolism and 
ceruloplasmin concentrations in MS patients.

Effect of melatonin on intestinal dysbiosis 
in multiple sclerosis: mechanism of action

The intestinal microbiota has shown itself to be an essential 
factor in influencing the cellular and humoral components of 
the immune system, as well as the latter’s responses (Miyake 
et al. 2015). An alteration in the microbial equilibrium in 
intestinal microbiota, dysbiosis, has been associated with 
various autoimmune diseases, including those that affect the 
CNS (Noto and Miyake 2020). It was seen in EAE that the 
alteration in certain bacteria populations in the intestine can 
cause a proinflammatory condition that triggers the onset 
of MS (Ochoa-Repáraz et al. 2011; Wekerle et al. 2013; 
Escribano et al. 2017). Thus, it has been hypothesized that 
intestinal microbiota alterations could have a leading role 
in MS pathogeny (Chen et al. 2016). It is believed that they 
could be implicated in circadian dysregulation (Anderson 
et al. 2019).

The lipopolysaccharide (LPS) is the majority component 
of the external membrane of Gram-negative bacteria, and is 
one of the best-characterized pathogen-associated molecular 
patterns (PAMPs) (Iannucci et al. 2020). LPS reflects the 
state of the intestinal microbiota and is related to inflam-
matory processes, stimulating the production of inflamma-
tory cytokines in the intestinal tissue, the CNS and other 
organs, and to oxidative stress (Hassanpour-Dehkordi and 
Jivad 2014; Ghareghani et al. 2018; Conde et al. 2019). LPS 
is composed of a glucolipid, lipid A, which has an essential 
role in the inflammatory process and is a heteropolysaccha-
ride (Iannucci et al. 2020). The LPS-binding protein, LBP, is 
a polypeptide of 50 kD, synthesized and secreted in the liver 
(Nien et al. 2017), that serves as a biomarker of endotoxemia 
for LPS (Escribano et al. 2017).

LPS is recognized by LBP and the latter binds to the 
lipid A portion of LPS (Nien et al. 2017; Ghareghani et al. 
2018) to, subsequently, form a complex with the LPS mem-
brane receptor, CD14 (Ghareghani et al. 2018; Iannucci 
et al. 2020). CD14 is disassociated from LBP and divides 
the LPS aggregators into monomeric molecules (Gioan-
nini and Weiss 2007; Ryu et al. 2017; Ghareghani et al. 
2018; Iannucci et al. 2020), which enables LPS transfer to 
the complex TLR4/MD2 (Ghareghani et al. 2018) (toll-4 
type receptor and myeloid-2 differentiation protein, respec-
tively (Nien et al. 2017)). The binding of Lps to the complex 
TLR4/MD2, triggers the activation of multiple signaling 
components, such as NF-κB and the interferon regulatory 
factor 3 (IRF3) (Iannucci et al. 2020) and the production 
of pro-inflammatory cytokines, such as TNF-α (Kawai and 
Akira 2010; Ghareghani et al. 2018).

An increase in intestinal permeability is a key point in 
the pathophysiology of gastrointestinal disorders, in which 
there is evidence of demyelination (Camara-Lemarroy et al. 
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2018). It has been demonstrated that there is an increase in 
intestinal permeability in EAE models and in MS patients 
(Camara-Lemarroy et al. 2018; Conde et al. 2019), and this 
suggests that the intestinal microbiota endotoxins enter the 
circulation (Camara-Lemarroy et al. 2018), arriving both at 
the CNS and at different body organs (Conde et al. 2019).

In the study made by Escribano et al., 2017, a signifi-
cantly higher increase in LPS and LBP was obtained in the 
brain and spine of EAE rats in comparison with that of the 
control rats, and a positive correlation between oxidative 
stress and LBP levels in brain, spine and blood (Escribano 
et al. 2017). In addition, Conde et al. 2019, reported a posi-
tive correlation between CP, LPO, LPS and LBP, so that 
part of the oxidative effect observed in the nerve tissue and 
blood is associated with LPS and LBP, this being the sign of 
a possible modification of the intestinal microbiota (Conde 
et al. 2019).

Role of melatonin in intestinal dysbiosis

The effect of melatonin on intestinal microbiota and LPS is 
not yet completely clear (Ghareghani et al. 2018; Kim et al. 
2020), but more and more studies are being carried out to 
clarify melatonin’s action mechanism in this condition.

Carrillo-Vico et al. 2005, performed a study in which 
they analysed melatonin actions in a septic shock induced 
by LPS in mice, observing that melatonin was capable of 
protecting the mice from the effect of the LPS by modulat-
ing the increase in proinflammatory cytokines triggered by 
the latter, and increasing the level of the anti-inflammatory 
cytokine IL-10; it also afforded protection against oxidative 
damage and apoptosis (Carrillo-Vico et al. 2005). Another 
study by Yu et al. 2017, in bovine mammary epithelial cells 
stimulated with LPS, concluded that melatonin inhibits the 
signaling pathway LPS–CD14–TLR4 and protects against 
oxidative damage, upregulating the expression of the tran-
scription factor Nfr2 and of haemo-oxygenase-1 (HO-1) (Yu 
et al. 2017). Similar results were obtained by Shah et al. 
2017, who were able to substantiate that the administration 
of melatonin in rats with LPS-induced oxidative stress acti-
vated the signaling pathway Nfr2, and reduced acute neu-
roinflammation, and neurodegeneration (Shah et al. 2017). 
Similarly, Ding et al. 2020 demonstrated for the first time 
that melatonin can protect human alveolar epithelial cells 
against oxidative stress, effectively inhibiting the epithe-
lial–mesenchymal transition, induced by LPS, through the 
positive regulation of the pathway Nrf2 (Ding et al. 2020). 
The recent study by Kim et al. 2020 reports that melatonin is 
able to reverse intestinal dysbiosis in mice with induced coli-
tis, controlling the microbiota by means of the differentiation 
of goblet cells and the detection of bacteria through TLR4. It 
also induces Reg3β, an antimicrobial peptide against Gram-
negative bacteria (Kim et al. 2020). Recently published data 

from our group indicate that treatment with melatonin sig-
nificantly decreases LPS and LBP levels in the brain and 
spine of mice with EAE, in comparison with untreated ones 
(Escribano et al. 2022).

Synergies of melatonin and vitamin D 
in multiple sclerosis

Up to a few years ago, the effect of vitamin D was exclu-
sively associated with phosphocalcic metabolism (Moca-
yar-Marón et al. 2020), but it is now known that vitamin 
D deficiency is a MS risk factor and is correlated with its 
seriousness (El-Salem et al. 2021). It has been proved that 
in regions with high altitudes there is a growing prevalence 
of MS (Bradshaw et al. 2020). Latitude is strongly corre-
lated with the duration and intensity of ultraviolet radiation 
(UV), the latter being the main source of vitamin D (Holick 
1995; Simon et al. 2012). The study made by Ramagopa-
lan et al. 2011, demonstrates that the variations in the gene 
CYP27B1, that codifies the enzyme 1-α-hydroxylase, which 
converts into the precursor of vitamin D, 25-hydroxyvita-
min D (25(OH)D), the active form of vitamin D (Bradshaw 
et al. 2020), are strongly associated with the risk of devel-
oping MS, since they cause a reduction in the activation of 
25(OH)D (Ramagopalan et al. 2011). Another fact backing 
up the relationship between vitamin D and MS is the pre-
vention and deceleration of the disease in the EAE model 
after administration of 1,25(OH)2D (Ascherio et al. 2010). 
In addition, immunological studies show that vitamin D can 
modulate the immune system, which could be favorable for 
MS treatment (Simon et al. 2012).

Research has shown that the enzyme 1-α-hydroxylase is 
not only found in the kidney but it is also expressed in other 
tissues including the brain, and is present in the prefrontal 
cortex, hippocampus and hypothalamus, which suggests 
that this vitamin is important in the regulation of cogni-
tive processes (Huiberts and Smolders 2021). Vitamin D is 
a potent immune system modulator, a characteristic that it 
shares with melatonin, both of them being light-dependent 
mediators (Golan et al. 2013), although their biosynthesis 
pathways are opposite (Mocayar-Marón et al. 2020). Vitamin 
D exerts its effects through interaction with a vitamin D 
nuclear receptor, VDR (Mocayar-Marón et al. 2020).

Vitamin D and melatonin have many shared underlying 
mechanisms, modulating the same signaling pathways with 
anti-inflammatory, immunomodulatory, antioxidant and 
anti-apoptotic effects (Martín Giménez et al. 2020), so that 
MS has been the cornerstone for establishing relationships 
with each other (Mocayar-Marón et al. 2020). Melatonin 
seems to improve vitamin D signaling, increasing VDR 
expression, but the latter could have a negative regulatory 
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effect on melatonin (Mocayar-Marón et al. 2020), since, in 
a randomized and double blind study in MS patients made 
by Golan et al., 2013, it was obtained that supplementation 
with a high dose of vitamin D during 3 months produced a 
diminution in the nocturnal secretion of melatonin. There-
fore, it has been hypothesized that vitamin D could have an 
effect on the pineal gland, reducing the melatonin synthesis 
(Golan et al. 2013). However, it has been possible to estab-
lish that the treatment combination of melatonin and vitamin 
D produces strong synergic effects, observing cytostatic and 
apoptotic effects on breast cancer cells, protection against 
lesions due to apoptotic ischemia in rats’ livers, and counter-
acting adipogenic differentiation (Proietti et al. 2011; Sezgin 
et al. 2013; Basoli et al. 2017; Mocayar-Marón et al. 2020).

The same as melatonin, vitamin D also exerts a protec-
tive effect on the mitochondrial function on increasing its 
antioxidant activity (Silvagno and Pescarmona 2017).

Despite all the above, more research is necessary, because 
it is still not known how vitamin D interacts with melatonin 
synthesis and secretion.

Sex hormones, multiple sclerosis 
and melatonin

In certain diseases, the sex chromosomes, epigenetic fac-
tors and sex hormones influence the risk of suffering from 
them (Bove and Gilmore 2018). In the case of MS, women 
are more susceptible to having it (Gold and Voskuhl 2009), 
with a current ratio of 3:1 with respect to men (Zeydan et al. 
2020). This higher female prevalence leads one to think 
that sex hormones intervene in MS pathogenesis (Gold and 
Voskuhl 2009). However, there is much controversy about 
the role that estrogens play in the MS clinical activity in 
women. Female MS patients register significant improve-
ments during pregnancy, especially in the third month, the 
moment at which their estrogen and progesterone levels are 
very high (Gold and Voskuhl 2009). After childbirth, an 
exacerbation of the symptoms occurs, and, 3 months later, 
the relapse frequency returns to levels prior to the pregnancy 
(Gold and Voskuhl 2009; Zeydan et al. 2020). However, 
after puberty, the prevalence in women begins to increase 
significantly compared to the prevalence in men. Based on 
this, it has been determined that puberty, when estrogen 
and progesterone increase in girls and testosterone in boys 
(Grumbach 2002), may be a key risk period for the devel-
opment of MS (Chitnis 2013). In fact, in women, MS onset 
peaks 2 years after menarche (Waubant 2018). Neverthe-
less, although at first it might be thought that the cause of 
the higher MS prevalence in women is a consequence of 
sexual hormones, there are studies that refer to leptin as a 
possible cause of the increased MS prevalence in women. 
Leptin levels, a hormone that affects both the innate and 

adaptive immune systems, promoting proliferation and 
skewing towards proinflammatory Th1 responses, increase 
significantly during puberty (Loffreda et al. 1998). Leptin 
continues to increase in postadolescent girls, but not in boys, 
due to increased secretion of testosterone, suggesting that 
this hormone, and not estrogen, may play a role in the sexual 
dimorphism of MS (HorlickK et al. 2000; Chitnis 2013).

In addition, in relation to female fertility, it would seem 
that the latter is diminished in female MS patients, since 
they present a reduced ovarian reserve (Thöne et al. 2015). 
Although there are few studies investigating the relationship 
between MS and the Anti-Müllerian hormone (AMH), the 
principal ovarian reserve marker. In the study carried out by 
Thöne et al. 2015 obtains that women suffering from RRMS 
displayed very low AMH values (< 0.4 ng/ml) in comparison 
with healthy ones (Thöne et al. 2015), whose mean AMH 
concentration is of 3.1 + 2.81 ng/ml (Liebenthron et al. 
2019). Likewise, a pilot study performed by Sepúlveda et al. 
2016, concludes that those women with MS with a greater 
disease activity had significantly lower AMH levels, antral 
follicle counts and ovarian volume than those in which the 
disease had a lower activity (Sepúlveda et al. 2016).

With regard to steroid hormones, estrogens, progester-
one and testosterone, they are seen to have a neuroprotec-
tive effect, so that an increasing number of studies are 
investigating the therapeutic use of these hormones in the 
EAE (Gold and Voskuhl 2009). Testosterone exhibits anti-
inflammatory properties (Bove and Gilmore 2018), pro-
tects neurons in the spinal cord, induces neuronal differ-
entiation, protects from oxidative stress (Chisu et al. 2006; 
Gold and Voskuhl 2009) and has an immunomodulatory 
effect (Sicotte et al. 2007). It has been reported that 40% 
of the men with MS have low levels of testosterone (Avila 
et al. 2018), but a treatment with testosterone gel improves 
the cognitive function and brain atrophy in these patients, 
according to a clinical assay carried out by Sicotte et al. 
2007 (Sicotte et al. 2007). Progesterone exerts an anti-
inflammatory effect and has neuroprotective properties 
(Bove and Gilmore 2018; De Nicola et al. 2018). In addi-
tion, in the EAE model it reduces the severity of the dis-
ease by means of the decline in demyelination and in the 
inflammatory response (Avila et al. 2018). Estrogens are 
known for being antioxidant hormones (AboTaleb and 
Alghamdi 2020) and they can also interfere in the inflam-
matory response in such a way that high estrogen levels 
trigger a change in a pro-inflammatory immune response 
towards an anti-inflammatory one, whereas low estro-
gen levels cause the opposite effect (Cutolo and Wilder 
2000; Straub 2007; Dupuis et al. 2021). In addition, they 
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contribute to neuroprotection as they promote neuronal 
plasticity and remyelination, diminishing astrogliosis, and 
excitotoxicity, and protecting the mitochondrial function 
(Zeydan et al. 2020). In the EAE model, it was proved 
that estrogens are capable of increasing regulatory T cell 
production and reduce MMP-9, which is accompanied 
by a decrease in the infiltration of T cells into the CNS 
(Avila et al. 2018). Due to their properties, it has been 
proposed to use estrogens as a therapy in women with 
MS, on observing that the administration of 40 µg of OC-
ethynilestradiol and 125 µg of desogestrel, has a beneficial 
effect on inflammatory activity (Pozzilli et al. 2015; Bove 
and Gilmore 2018). It has also been established that there 
is a synergy between estrogens and vitamin D, and it was 
seen that estrogens improved the function of this vitamin, 
favoring its accumulation and increasing its receptor’s 
expression (Dupuis et al. 2021). Thus, vitamin D treat-
ments are more effective in women than in men, showing a 
stronger anti-inflammatory response in the former (Dupuis 
et al. 2021).

Estrogens share some of their properties with melatonin, 
suggesting the possibility that they reduce neuroinflamma-
tion and apoptosis in a similar way. However, in female mice, 
melatonin administration has been associated with a decline 
in estrogen production (Lopes et al. 2016). Similar results 
were given by Woo et al. 2001, who conclude that melatonin 
suppresses the action of estrogens, preventing the binding 
of estradiol to its receptor (Woo et al. 2001). AboTaleb and 
Alghamdi, 2020, in their study on mice with MS induced by 
cuprizone, observed that, during the remyelination stage, the 
effect of melatonin differed between sexes. It was seen that 
the male mice experienced protective effects after melatonin 
administration, whereas in the female ones no effects were 
noted. They, therefore, suggest that there may be a complex 
interaction that involves exogenous melatonin, remyelination 
and female sex hormones (AboTaleb and Alghamdi 2020).

Multiple sclerosis, melatonin 
and neurotrophic factors, neurogenesis 
and synaptogenesis

Neurotrophic factors are important regulatory proteins that 
increase neurogenesis, fortify the neuronal network and 
enhance regenerative responses to nerve aggression (Cobi-
anchi et al. 2016). Their action is mediated by two different 
types of receptors, the low affinity P75 neurotrophin recep-
tor, (P75NTR), and tyrosine kinase receptors (Trk) (Curtis 
et al. 1995; Villanueva 2013; Cobianchi et al. 2016). Much 
of the current research has focused on the study of BDNF 

as a potential biomarker of MS (Oraby et al. 2021). In MS 
lesions, BDNF is present in T and microglial cells and in 
reactive astrocytes (Stadelmann et al. 2002; Naegelin et al. 
2020). The results of the study performed by Stadelmann 
et al. 2002, show that several types of neurons are immuno-
positive to BDNF in MS patients, and the amount of cells 
immunopositive to this neurotrophin is correlated with the 
demyelination activity of the lesions (Stadelmann et al. 
2002). Similar results were obtained by Sarchielli et al. 2007, 
who find a positive correlation between the BDNF levels and 
the activity of the disease, confirmed by the presence of 
gadolinium-enhanced lesions (Sarchielli et al. 2007). BDNF 
is secreted by immune cells in response to neuroimmune 
and inflammatory cascades to prevent axonal and neuronal 
damage, and is implicated in the differentiation, survival 
and growth of neurons (Oraby et al. 2021) and neurogenesis 
(Palmer et al. 2020). It is also crucial for synaptic plasticity 
and neuronal network organization in animals and humans 
(Oraby et al. 2021), but the alteration in the release of neu-
rotrophins may affect these events, causing an exacerbation 
of the neurogenerative processes in the CNS (Ogłodek et al. 
2016). In the research done by Oraby et al., it was found 
that BDNF is significantly higher in patients with RRMS 
in the relapsing phase (Oraby et al. 2021). However, other 
studies like those by Azoulay et al. 2005 and Comini-Frota 
et al. 2012, point to a decline in BDNF levels (Azoulay et al. 
2005; Comini-Frota et al. 2012), which could be related to a 
diminution in neuroprotection and in the remission potential 
of MS, thus inducing the progressive phase of the disease 
(Azoulay et al. 2008; Knaepen et al. 2010).

The alteration in the release of melatonin can influence 
the concentration of neurotrophic factors, such as BDNF and 
NGF (Ogłodek et al. 2016). Diverse studies are investigating 
the function of melatonin in the regulation of neurotrophic 
factor levels. Duan et al. 2018 obtain that melatonin admin-
istration was efficacious in preventing an increase in NGF 
in the asthma in rats model (Duan et al. 2018). Conversely, 
Rateb et al. 2017, in their study on rats with a sciatic nerve 
lesion, conclude that treatment with melatonin increases 
NGF activity, reinforcing neural recovery and favoring a 
better nerve regeneration (Rateb et al. 2017). It has also 
been verified that melatonin can trigger the expression of 
the glial cell line-derived neurotrophic factor (GDNF), in 
neural stem cells, which could encourage the survival of 
dopaminergic neurons (Niles et al. 2004). With respect to 
BDNF, it has been proved that melatonin levels increase 
in the mouse hippocampus and enhance neurogenesis 
(Sugiyama et al. 2020). However, a study performed on 
breast cancer patients submitted to chemotherapy reported 
the neuroprotective effect of melatonin on neuroplasticity 
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processes through the diminution of BDNF and Trk serum 
levels (Palmer et al. 2020). The work of Tasset et al. 2011 
concluded that the administration of melatonin in rats treated 
with 3-nitropropionic acid reduces the neurotrophic factor 
levels (Tasset et al. 2011). These contradictory results could 
be due to the melatonin producing different effects, depend-
ing on the type of damage, reducing the neurotrophic factor 
levels as an indication of returning to normal ones (Tasset 
et al. 2011). However, in general, melatonin’s potential for 
modulating in vivo neurotrophic factors, through its recep-
tors, could have important implications for optimizing MS 
therapeutic strategies (Niles et al. 2004).

Melatonin, COVID‑19, and multiple sclerosis

In December, 2019, the first case of what was designated as 
an acute respiratory syndrome severe-coronavirus 2 (SARS-
CoV-2) was described; it was subsequently known as coro-
navirus 2019 disease (COVID-19) (Palao et al. 2020). The 
evidence suggests that the inflammation, oxidation and an 
exaggerated immune response contributed to the COVID-
19 pathology (Zhang et al. 2020). This virus, in addition, 
has neurotrophic and neuroinvasive characteristics, so that 
it can affect patients with MS, interfering in the MS clinical 
course, causing a worsening of the symptoms (Kataria et al. 
2020). Merad  and Martin 2020, speculate that the intense 
immunological stimulation and the systemic stress caused 
by COVID-19 in MS patients who have a hyperreactive 
immune system could be responsible for a greater frequency 
in relapses and the advance of the disease, even after com-
plete recovery from COVID-19 (Merad and Martin 2020; Di 
Stadio et al. 2020). It is known that MS patients run a greater 
risk of contracting infections in comparison with the general 
population (Luna et al. 2020; Willis and Robertson 2020). 
This could differ depending on the treatment followed by 
these patients (Luna et al. 2020), since it would appear that 
those receiving disease-modifying therapy (DMT) are more 
prone to infections (Kataria et al. 2020).

Taking into account the effects of this virus, and the 
potentially beneficial effects of melatonin described here, 
its use as an adjuvant, as well as for the prevention of conta-
gion in MS sufferers, could be proposed (Zhang et al. 2020).

At a prophylaxis level, melatonin can improve the toler-
ance of the host against invasions of pathogens, including 
COVID-19 (Tan and Hardeland 2020). One study performed 
on over 11,000 people indicated that the intake of melatonin 
reduced the risk of infection (Jehi et al. 2020) and Zhou et al. 

2020 reported that melatonin diminished the risk of infection 
by 64% (Zhou et al. 2020).

Once the infection has been produced, melatonin has 
shown itself to have effects against neurotropic and non-
neurotropic viruses, diminishing the viral title and reducing 
the production of new progeny or target cells as it inhibits 
the viral replication processes (Crespo et al. 2016; Huang 
et al. 2019; Wongchitrat et al. 2021).

COVID-19 can enter the lungs through the dipeptidyl-
peptidase (DPP4), that is expressed to a great extent in the 
pulmonary epithelial cells, but it has been found that mela-
tonin can inhibit DPP4, preventing the entry of the virus at 
a pulmonary level (Wang et al. 2020; Anderson et al. 2020).

Another of the effects triggered by COVID-19 is the 
activation of the inflammasome NLRP3, which sets off the 
so-called “cytokine storm” (Fatima et al. 2020), that causes 
lung inflammation, lesions, and the acute breathing difficulty 
syndrome (Wu et al. 2019; Fatima et al. 2020). Soares et al. 
2019 confirmed that these mechanisms entail a serious risk 
of developing MS and a progression towards more serious 
forms of the disease (Soares et al. 2019). Melatonin can 
inhibit the inflammasomes activated by COVID-19 (Wu 
et al. 2019; Fatima et al. 2020), so that it would prevent the 
secretion of the proinflammatory cytokines IL-1β and IL-18 
(Lahooti et al. 2021) and reduce the lung condition caused 
by the virus.

Melatonin is also a promising candidate against the neu-
roinvasion caused by COVID-19, since it reduces the dam-
age in the CNS (Romero et al. 2020), prevents permeability 
(Wongchitrat et al. 2021) and restores the homeostasis of 
the BBB by means of the activation of its receptor MT2 
(Romero et al. 2020).

Use of melatonin as an adjuvant in therapies 
against multiple sclerosis

At present, the objective of MS treatment is to focus on the 
inflammatory cascade, suppressing the proinflammatory 
cytokines, as well as reducing the number of relapses and 
inflammation lesions (Oraby et al. 2021). However, despite 
important advances, the disease-modifying drugs (DMT) 
used today for MS do diminish relapse rates but are ineffec-
tive for the progressive phase of the disease. So that, research 
on therapies for that phase is highly necessary (Pegoretti 
et al. 2020; Martinez and Peplow 2020). 12 immunomodula-
tory agents have been approved as DMT but many of these 
therapies have limited or serious side effects (Pegoretti et al. 
2020). So that, a combined therapy could be more effec-
tive, especially if agents targeting neuroinflammation and 
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neurodegeneration are employed, since they can provide 
synergic actions (Martinez and Peplow 2020). Melatonin 
could be used as an adjuvant in MS treatments, due to its 
properties and its high safety profile (Anderson and Reiter 
2020; Anderson et al. 2020).

It is known that the use of drugs such as Natalizumab or 
Fingolimob increases the risk of infection in MS patients 
(Wijnands et al. 2018; Luna et al. 2020) but their combina-
tion with melatonin could signify a decrease in infections in 
these patients as melatonin has been demonstrated to have 
an antiviral effect, regulating the entry of virus (Anderson 
and Reiter 2020; Anderson et al. 2020) and thus reducing 
that risk (Jehi et al. 2020).

The data from our group show that transcranial mag-
netic stimulation (TMS) in EAE rats causes a symptomatic 
improvement in the mobility scale, as well as oxidative and 
cellular damage, reducing the degree of cerebral astrocy-
tosis. (Medina-Fernández et al. 2017, 2018; Medina-Fer-
nandez et al. 2017, 2018; Agüera et al. 2020). Prior studies 
in rats with depression induced by olfactory bulbectomy 
conclude that the application of TMS improved oxidative 
stress (Tasset et al. 2010), and increased the serotonin and 
brain cellularity levels (Medina and Túnez 2013; Estrada 
et al. 2015). Based on the above, TMS, in combination with 
melatonin administration, could be proposed for enhancing 
the beneficial effects of TMS on oxidative damage.

Fig. 2   Mechanisms of action of melatonin on Multiple Sclerosis 
CNS central nervous system, GDNF glial derivate neurotrophic fac-
tor, BDNF brain-derived neurotrophic factor, NGF nerve growth 
factor, ICAM-1 intercellular adhesion molecule 1, Th1,Th17 Cells T 
helper 1, T helper 17, Tr1 cells T regulatory 1, IL-10 Interleukin 10, 
IL-4 Interleukin 4, IL-1 β Interleukin 1 β, TNF tumor necrosis fac-
tor, IFN Interferón, VDR vitamin D receptor, LPS lipopolysaccharide, 

LBP LPS-binding protein, CP Carbonylated proteins, LPO Lipid per-
oxidation products, NO Nitric oxide, MDA malondialdehyde, GSSG 
oxidized glutathione, GPx glutathione peroxidase, GSH reduced 
glutathione, SIRT3 sirtuin 3, NF-κB factor nuclear kappa B, mtDNA 
mitochondrial DNA, Nrf2 Factor 2 related to nuclear erythroid 2, 
ROS reactive oxygen species
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Castro et al., 2005, suggest that a combination of mela-
tonin and valproic acid (VPA), a strong stabilizer of the state 
of mind, could provide new strategies in neurological dis-
eases, since the neuroprotective properties of VPA implicate 
a modulation of neurotrophic factors and melatonin recep-
tors (Castro et al. 2005).

Conclusions

Studies relating melatonin to MS have shown that this hor-
mone, due to its antioxidant function, can combat oxidative 
stress produced by the disease, reducing the main biomark-
ers of oxidative stress (CP, LPO, NO and MDA), restor-
ing the antioxidant capacity of Nrf2, through the activation 
of the Nrf2/ARE signaling pathway and protecting against 
mitochondrial dysfunction. In addition, melatonin could 
prevent apoptosis, recovering the cellular redox potential, 
through the induction of Nrf2. Although, perhaps, it would 
be necessary to start therapy in the early stages of oxidative 
stress, so that the excess of ROS does not cause irrevers-
ible damage. It is important to highlight the evidence that 
melatonin causes a significant increase in the levels of CAT, 
SOD, GPx, GSH during the demyelination stage in mice.

Due to its immunomodulatory and anti-inflammatory 
function, melatonin can control the response of regulatory 
and effector T cells and decreases the amount of pro-inflam-
matory cytokines, promoting a more protective cytokine 
microenvironment. In addition, it has recently been proven 
that melatonin can counteract and inhibit the effects of the 
NLRP3 inflammasome, which would also be beneficial dur-
ing SARS-CoV-2 infection, since NLRP3 is responsible for 
triggering the cytokine storm, characteristic of COVID-19.

Regarding intestinal dysbiosis, melatonin decreases the 
levels of LPS and LBP in the EAE model, also showing 
that melatonin increases antimicrobial peptides, especially 
Reg3β, which could be useful in controlling the microbiota. 
In addition, it increases vitamin D signaling and affects neu-
rotrophic factors, modulating their levels depending on the 
type of damage.

For all that has been described, we can say that in general, 
melatonin could exert a beneficial effect in people suffering 
from MS (Fig. 2), running as a promising candidate for the 
treatment of this disease, either alone or as an adjunct to new 
treatments that are developed. However, more human studies 
are needed to confirm the benefits of melatonin treatment in 
people with MS. Likewise, more research is needed to help 
understand the possible interaction between melatonin and 
certain sex hormones, such as estrogens, to know the poten-
tial therapeutic efficacy in both men and women.
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