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1  |  INTRODUC TION

In 2011, Bocklandt et al. demonstrated that sites of DNA methyla-
tion in saliva samples are able to predict human age (Bocklandt et al., 
2011). They showed that a regression model could be trained to pre-
dict aging using just 88 loci that were selected based on correlation. 
Steve Horvath, who was a contributor to the study by Bocklandt 
et al. (2011), went on to design a more robust epigenetic age 

predictor in 2013 (Horvath, 2013). The predictive power of this re-
vamped age estimator was quite high in various tissues, with promi-
nent examples including whole blood (Pearson's correlation = 0.95), 
peripheral blood mononuclear cells (Pearson's correlation = 0.96), 
and occipital cortex (Pearson's correlation = 0.98). In other samples, 
such as adipose fat (Pearson's correlation = 0.65) or uterine endome-
trium (Pearson's correlation = 0.55), the predictive power was more 
moderate. The sites of methylated DNA used to estimate human age 
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Abstract
Aging in humans is an incredibly complex biological process that leads to increased 
susceptibility to various diseases. Understanding which genes are associated with 
healthy aging can provide valuable insights into aging mechanisms and possible av-
enues for therapeutics to prolong healthy life. However, modeling this complex 
biological process requires an enormous collection of high-quality data along with 
cutting-edge computational methods. Here, we have compiled a large meta-analysis 
of gene expression data from RNA-Seq experiments available from the Sequence Read 
Archive. We began by reprocessing more than 6000 raw samples—including mapping, 
filtering, normalization, and batch correction—to generate 3060 high-quality samples 
spanning a large age range and multiple different tissues. We then used standard dif-
ferential expression analyses and machine learning approaches to model and predict 
aging across the dataset, achieving an R2 value of 0.96 and a root-mean-square error 
of 3.22 years. These models allow us to explore aging across health status, sex, and 
tissue and provide novel insights into possible aging processes. We also explore how 
preprocessing parameters affect predictions and highlight the reproducibility limits of 
these machine learning models. Finally, we develop an online tool for predicting the 
ages of human transcriptomic samples given raw gene expression counts. Together, 
this study provides valuable resources and insights into the transcriptomics of human 
aging.
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were referred to as an aging clock (Horvath, 2013). Earlier that same 
year, a separate epigenetic aging clock was developed by Hannum 
et al. This clock was specific to whole blood and was quite predic-
tive (R = 0.96 for the primary cohort and R = 0.91 for the validation 
cohort; Hannum et al., 2013). Subsequent generations of epigenetic 
aging clocks—dubbed PhenoAge (Levine et al., 2018) and GrimAge 
(Lu et al., 2019)—were trained on longitudinal data and could there-
fore predict phenotypic age, time to morbidity, or onset of various 
diseases. These newer clocks (Levine et al., 2018; Lu et al., 2019) 
could predict the risk of disease, such as coronary heart disease 
and Alzheimer's disease, which were associated with significantly 
increased phenotypic age. This phenomenon, in the context of an 
epigenetic aging clock, is referred to as epigenetic age acceleration 
(Horvath & Raj, 2018).

Diverse data types besides methylated DNA can also be used 
to predict human age, such as RNA (Galkin et al., 2020). In the same 
previously mentioned study by Hannum et al. (2013), mRNA expres-
sion data from 488 individuals were used to create a whole blood 
transcriptomic aging clock with an R2 value of 0.745. RNA in human 
peripheral blood was previously mined by Peters et al. to generate 
transcriptomic aging clocks in eight different cohorts. Depending on 
the cohort analyzed, the R2 value ranged from 0.121 to 0.599. The 
number of samples used varied by cohort and varied from 513 to 
2446 (Peters et al., 2015). By using an ensemble machine learning 
method to analyze transcriptomic datasets derived from dermal fi-
broblasts of 133 healthy human patients (age range of 1–94 years), 
Fleischer et al. uncovered a RNA signature that could predict human 
age with an increased accuracy (R2 = 0.81; Fleischer et al., 2018). 
Repetitive elements from this same dataset were later used in con-
junction with linear regression to create a more accurate clock with 
a R2 of 0.93 (LaRocca et al., 2020). By analyzing 545 human skeletal 
muscle samples, a separate RNA clock was constructed using a deep 
feature selection model that achieved a Pearson correlation of 0.91 
(Mamoshina et al., 2018). In a whole blood dataset involving 5221 
adults, a microRNA clock was also built using elastic net regression 
that had a Pearson correlation of 0.65 in the replication set (Huan 
et al., 2018). Recently, we also demonstrated that protein abundance 
can be used to predict aging (Johnson et al., 2020). Thus, in addition 
to methylation and clinical data, aging clocks over varying accuracies 
can be constructed from transcriptomes, repeat elements, microR-
NAs, and protein abundance measures, revealing specific biologi-
cal signatures across diverse data types. Various machine learning 
models can also be employed, including deep learning algorithms 
(Gialluisi et al., 2019; Zhavoronkov et al., 2019).

While biological age markers are highly desirable for their po-
tential ability to quantify healthy vs. unhealthy aging, they can also 
teach us about what causes human aging. If a molecule can be used 
to predict a patient's age, it seems likely that such a molecule has 
an increased chance of being pertinent to the regulation of health 
span or life span. The same omics datasets used to generate aging 
clocks can also be thoroughly analyzed to learn more about molecu-
lar changes that occur with age. These molecular changes can them-
selves be investigated to unveil what functions and processes are 

the most profoundly altered between different age classes (Valdes 
et al., 2013). For example, the laboratory of Anne Brunet analyzed 
transcriptomes to discover that innate immune pathways become 
dysregulated with age in mice, African turquoise killifish, rats, and 
humans (Benayoun et al., 2019). Recent work spearheaded by Tony 
Wyss-Coray demonstrated that deleterious lipid-droplet-accu-
mulating microglia build up with age in mouse and human brains. 
Transcriptional profiling of these aberrant microglial cells revealed 
unique changes in various pathways, including innate inflammation 
(Marschallinger et al., 2020).

In the present study, we sought to determine whether or not an 
especially predictive transcriptomic aging clock could be generated. 
We additionally wanted to better understand the major changes that 
occur with human age on a RNA level. To do this, we employed ma-
chine learning, differential expression, and enrichment analyses in 
a large set of high-quality, RNA-Seq samples from diverse human 
tissues. In addition to creating an ultra-predictive RNA aging clock, 
we additionally generate multiple tissue-specific, sex-specific, and 
health-specific age predictors, explore the generalizability of aging 
clocks, and identify key genes and associated processes that change 
with age.

2  |  RESULTS

2.1  |  An integrated dataset of human 
transcriptomes

In order to identify transcripts that are predictive of aging, we began 
by going through the literature and NCBI Sequence Read Archive 
(Leinonen et al., 2011) for publicly available RNA-Seq datasets. 
Specifically, we collated human RNA-Seq datasets that provide raw 
sequencing data and include sample information regarding health 
status and age. We then developed a bioinformatics pipeline for 
mapping, filtering, normalizing, and modeling the data in a system-
atic way (Figure 1a). Importantly, after mapping and counting raw 
reads across gene exons, we found a multi-modal distribution of 
total counts among samples, which we used to remove low-express-
ing samples (Figure S1a). In addition, since not all datasets have a 
clear aging signature in our models, batches that improve accuracy 
when left out of our machine learning steps were also removed 
(Figure S1b, Table S1). Finally, genes which had overall low aver-
age expression across the remaining samples were filtered (Figure 
S1c). Importantly, since batch effects produced the strongest signals 
among our combined datasets (Figure S2a–d), we included batch-
effect correction as an essential step to minimize technical noise 
(Figure S2e–h). This resulted in 3060 samples from 31 separate 
batches	and	more	than	10	different	tissues	(Figure	1b).	Our	datasets	
show an age range of less than 1 year to 107 years and an average 
age of 60.5 ± 18.2 years (Figure 1c). We further divided the data-
set	into	young	<30	years,	adult	≥30	but	<70	years,	and	older	adults	
≥70	 years	 as	 described	 below.	 Across	 these	 age	 groups,	 we	 ob-
served a similar distribution of samples across sex and health status. 
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Ethnicity was not considered as it was not reported in many studies 
(Figure 1c). Importantly, batches varied by health status, sex, age dis-
tribution, and sample count (Figure S3), highlighting the importance 
of an integrative aging model.

2.2  |  Human transcriptomes vary with age

After collecting and preprocessing the data, we identified the top 
1000 variable genes across age. We then manually subdivided 
the samples into three age groups based on separation of the 
gene expression signatures in a clustered heatmap ordered by age 
(Figure 2a). While variable genes across age provide a general view 
into what biological changes are occurring, we also performed a 
differential expression analysis between the adult and older adult 
groups of samples, including the batch as a covariate in the mod-
eling (Figure 2b). By performing a simple over-representation 
analysis on the top 1000 variable genes, we identified many Gene 
Ontology	 (GO)	biological	processes	 that	have	 significant	overlap,	
including immune, signaling, homeostasis, and extracellular struc-
ture terms (Figure 2c). We also picked the top 1000 differentially 
expressed genes between these groups and performed a similar 
analysis to see which biological terms are over-represented among 
them. While some terms showed a similar theme of the immune re-
sponse/activation, homeostasis, and extracellular structure, there 
were additional neuronal/sensory terms which were not found to 
be significantly overlapped among the variable genes (Figure 2d). 
Of	note,	only	255	genes	were	shared	between	the	top	variable	and	
top differential genes, which had significant overlap with extracel-
lular structure organization, the humoral immune response, and 

homeostasis (Figure 2e). Complete lists of the top 1000 variable, 
the top 1000 differential, and the 255 overlap genes are provided 
in Table S2. Ten interesting examples of genes in these lists are 
provided in Table 1.

In addition to the top variable and top differential genes, we also 
directly tested for differentially expressed genes (log2 fold >1, FDR 
<0.05) between healthy adults and healthy old adults (Figure S4a,b). 
The	top	over-represented	GO	biological	process	terms	varied	with	
the directionality of change. Genes up in healthy older adults tended 
to overlap significantly with sensory perception and neuronal terms 
(Figure S4a), while genes down in the healthy older adults showed 
enrichment with immune and inflammatory response pathways 
(Figure S4b). However, comparing unhealthy adults to unhealthy 
older adults revealed different biological terms. While genes up in 
unhealthy older adults tended to also overlap with neuronal and sen-
sory perception terms (Figure S4c), genes down in unhealthy adults 
had specific developmental or organ processes significantly enriched 
but did not show a strong immune or inflammatory signature (Figure 
S4d). Breaking down the comparison by sex largely revealed a similar 
set of biological processes significantly overlapped with genes going 
up or down with age (Figure S4e–h). Interestingly, biological terms 
that overlapped significantly with genes going up in men were very 
similar to those overlapping with genes going up in women, with a 
few differences related to neuronal terms (Figure S4e,g). Both men 
and	women	also	had	similar	 immune-related	GO	terms	over-repre-
sented among genes decreasing with age. An exception to this is that 
response to interferon-gamma was the top term in men but was not 
among the top 20 terms in women (Figure S4f,h). Complete lists of 
the differentially expressed genes between adults and older adults 
are provided in Table S3.

F I G U R E  1 Building	and	integrating	a	computational	model	of	the	human	aging	transcriptome.	(a)	Analysis	workflow	demonstrating	
how 6471 raw RNA-Seq samples were filtered into 3060 high-quality samples. These high-quality samples were then normalized, batch-
corrected, and utilized to identify genes that change with age and to develop predictive aging clocks. (b) Tissue distribution across samples. 
C) Summary of combined cohort statistics. NSCLC, non-small-cell lung carcinoma
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2.3  |  Machine learning models reveal biological 
signatures of aging

While differential expression analyses can identify sets of genes 
that change with age, an orthogonal problem is to use genes to pre-
dict human age. This is a classical problem in supervised machine 
learning called regression analysis, which uses statistical models to 
estimate a value (i.e., age) based on measured features (i.e., gene 
expression values from RNA-Seq). A model is trained to minimize 
the error between the predicted and known chronological ages, 
and a cross-validation strategy is used during training to minimize 
overfitting. To train a regression model for predicting aging from 
gene expression, we tried a number of models with implicit feature 
selection (Figure S5a). Based on accuracy metrics tested across a 
range of gene sets (Figure S5b, Table S4), random forest (rf) was 
selected for model fitting. Rf machine learning offers many unique 
advantages compared with other models, such as having a high 
predictive power, assigning a relative importance to different in-
puts, being non-parametric, and having the capacity to automati-
cally detect non-linear relationships (Couronne et al., 2018; Touw 
et al., 2013). Rf was also recently used to generate accurate clocks 

in mice that can predict either age or life expectancy (Schultz et al., 
2020).

Next, we evaluated the ability of the model to fit the data using 
four separate sets of input genes: 1000 most variable genes for 
healthy individuals (Figure 3a), 1000 most differential genes be-
tween healthy adults and healthy older adults (Figure 3b), 100 most 
variable genes across all healthy adults (Figure 3c), and the 100 
most differential genes between healthy adults and healthy older 
adults (Figure 3d). All four models were able to accurately predict 
the ages of healthy adults (Figure 3a–d) with R2 values above 0.95 
and root-mean-square error (RMSE) values lower than 4 years. 
Since the process of training the importance of each gene can be 
estimated (see Methods), each model ended up with a unique set of 
important genes, which were defined as having an importance score 
>1	 (Figure	 3e).	 Only	 84	 genes	were	 commonly	 important	 in	 both	
the model trained on the top 1000 variable genes and the model 
trained on the top 1000 differential genes (Figure 3e). When gene 
overlap was compared between the top 100 variable and differential 
models,	only	10	genes	were	commonly	important	(Figure	3f).	Only	
five genes—HBB, KRT1, KRT13, KRT14, and KRT16—were import-
ant in all four models. Network-based enrichment analysis of the 

F I G U R E  2 Genes	change	their	expression	with	age.	(a)	Heatmap	showing	batch-corrected	normalized	variable	genes	across	ages.	(b)	
Heatmap	showing	genes	differentially	changed	between	adults	(30–69	years)	and	older	adults	(≥70	years).	(c–e)	Over-representation	
analyses	showing	the	top	Gene	Ontology	terms	identified	as	significant	among	the	1000	most	variable	genes	(c),	the	1000	most	differential	
genes (d), and the 255 genes common to both sets (e)
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84 important genes common to the 1000 variable and 1000 differ-
ential lists shows that extracellular matrix organization, immune re-
sponses, and cornification were among those significantly enriched 
(Figure 3g). For the 10 genes commonly important to the 100 vari-
able and 100 differential lists, enrichment themes included cornifi-
cation, keratinization, and skin development (Figure 3h). The list of 
important genes for each model presented in Figure 3 is provided in 
Table S5. The top 10 important genes for the top 1000 variable and 
top 1000 differential aging clocks are highlighted in Table 2.

For a comparison, we assessed which important genes were 
prioritized by a cubist machine learning model compared with the 
Rf machine learning model (Figure S6). Cubist and Rf models using 
either top variable (Figure S6a) or top differential (Figure S6b) genes 
uniquely prioritized different sets of inputs. For the variable gene 
models, 357 important genes were unique to the Rf model, 117 
important genes were unique to the cubist model, and 213 import-
ant genes were common to both models (Figure S6a). For the dif-
ferential gene models, 303 important genes were unique to the Rf 
model, 161 important genes were unique to the cubist model, and 
195 important genes were unique to both models (Figure S6b). The 
genes uniquely prioritized by each model implicated a different set 

of biological processes (Figure S6c–f). Lists of important genes as-
sociated with these Rf and cubist models are provided in Table S6.

2.4  |  Transcriptomic age predictors are affected by 
health status

Since all studies included reported on the health status of individu-
als, we next tested whether models trained on unhealthy (all except 
healthy) adults or both healthy and unhealthy adults could predict 
age and whether different genes would be important in these differ-
ent models compared to a model trained on just the healthy adults. 
We observed that Rf machine learning could accurately model age 
in all adults (healthy + unhealthy; Figure 4a), just healthy adults 
(Figure 4b), and just unhealthy adults (Figure 4c). We then tested the 
overlap between important genes among these models (Figure 4d). 
There were 523 important genes common to both the healthy and 
unhealthy models, suggestive of an overlapping RNA aging signature 
between healthy and unhealthy individuals. Performing a network 
topology-based enrichment analysis on the 382 genes uniquely im-
portant for the unhealthy model largely identified vascular terms 

TA B L E  1 Ten	examples	of	genes	with	prominent	aging	connections	in	the	top	1000	differential	and/or	top	1000	variable	gene	lists	
associated with Figure 2

List(s) Gene name Protein name Prominent aging connection

Top 1000 Differential ADAMTS5 A disintegrin and metalloproteinase 
with thrombospondin motifs 5

In a mouse model of osteoarthritis, removing 
the catalytic domain of Adamts5 prevents 
cartilage degradation (Glasson et al., 2005)

Top 1000 Variable APOE Apolipoprotein E A large meta-analysis confirmed that genetic 
variants of APOE are associated with human 
longevity (Deelen et al., 2019)

Top 1000 Differential B2M Beta-2 microglobulin Exogenously injecting B2M  into mice impairs 
neurogenesis and cognitive function (Smith 
et al., 2015)

Top 1000 Variable
Top 1000 Differential

COL1A1 Collagen alpha-1(I) chain Mice harboring a targeted mutation in Col1a1 
exhibit a shorter life span, hypertension, and 
reduced bone mineral density (Vafaie et al., 
2014)

Top 1000 Variable
Top 1000 Differential

FN1 Fibronectin Mice lacking the EDA exon of Fn1 have a shorter 
life span and exhibit irregular skin wound 
healing (Muro et al., 2003)

Top 1000 Variable GDF15 Growth/differentiation factor 15 Mice overexpressing human GDF15 live longer, 
weigh less, and exhibit enhanced insulin 
sensitivity (Wang et al., 2014)

Top 1000 Differential GHR Growth hormone receptor Weight is reduced and life span is extended by 
knocking out Ghr in mice (Coschigano et al., 
2003)

Top 1000 Variable IGFBP2 Insulin-like growth factor-binding 
protein 2

Adenovirus-mediated overexpression of Igfbp2 
reverses diabetes in various mouse models 
(Hedbacker et al., 2010)

Top 1000 Variable
Top 1000 Differential

LEP Leptin Mutations in Lep cause obesity and type 2 
diabetes in mice (Y. Zhang et al., 1994)

Top 1000 Variable
Top 1000 Differential

PCK1 Phosphoenolpyruvate carboxykinase, 
cytosolic [GTP]

Mice overexpressing Pck1 in skeletal muscle run 
faster, weigh less, and live longer (Hakimi 
et al., 2007)
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(Figure 4e). The 523 common genes highlighted cell death and 
various immune response terms as being significantly overlapped 
(Figure 4f). The 47 genes uniquely important in the healthy model 
of aging revealed regulation of neuroplasticity and other neuronal 
terms to be significantly enriched (Figure 4g). Table S7 lists all of the 
important genes prioritized by each aging clock shown in Figure 4.

2.5  |  Sex-specific models exhibit disparate 
aging signatures

Analogously to health status-specific aging, we hypothesized that 
we could develop sex-specific models of aging and that there would 
be differences in the genes that are important for prediction in these 
models. Indeed, we developed predictive models that were fit on 
healthy males and females (Figure S7a), healthy males (Figure S7b), 
and healthy females (Figure S7c). By comparing the overlap of impor-
tant genes (Figure S7d), we find 440 genes that are unique to healthy 
females, 338 common genes that are important in both healthy 
males and healthy females, and 65 genes that are unique to healthy 
males. Uniquely important genes in healthy females are enriched for 
a variety of terms, including developmental processes, cytokine-me-
diated signaling, and negative regulation of cell death (Figure S7e). 

Common important genes are enriched for MAPK signaling, innate 
immune response, ERK signaling, wounding response, and other pro-
cesses (Figure S7f). The model trained on healthy males had just 65 
uniquely important genes that were enriched for regulation of ion 
transport and immune processes (Figure S7g). Lists of the important 
genes prioritized by each sex-specific or sex-independent model 
shown in Figure S7 are provided in Table S8.

2.6  |  Aging signatures are tissue-dependent

Since our dataset represents a large collection of transcriptomes 
from diverse tissues (Figure 1b), we wondered if we could develop 
tissue-specific aging signatures with our machine learning approach. 
To do this, we trained tissue-specific models for the following five 
tissues that had the highest number of healthy samples: retina 
(Figure 5a), brain (Figure 5b), blood (Figure 5c), heart (Figure 5d), 
and	bone	(Figure	5e).	Our	clocks	were	able	to	accurately	model	age	
within each tissue, with R2 values ranging from 0.96 to 0.99 and 
RMSE values ranging from 1.11 to 4.19 years (Figure 5). For each 
tissue model we trained, we again identified genes important for 
model	accuracy	and	used	a	network	topology-based	GO	enrichment	
analysis to identify terms specific to predictive aging genes in each 

F I G U R E  3 Evaluating	the	ability	of	genes	to	predict	human	age.	(a–d)	10-fold	cross-validation	model	of	healthy	adults	based	on	the	top	
1000	variable	genes	(a),	top	1000	differential	genes	(b),	top	100	variable	genes	(c),	and	top	100	differential	genes	(d).	(e)	Overlap	in	important	
genes	between	the	top	1000	variable	and	top	1000	differential	models.	(f)	Overlap	in	important	genes	between	the	top	100	variable	and	
top 100 differential models. (g) Network topology enrichment analysis for the predictive genes common to both the 1000 variable and 
1000 differential aging clocks. (h) Network topology enrichment analyses for the predictive genes common to both the 100 variable and 
100 differential aging clocks. For both (g) and (h), the 10-most enriched terms are shown. All models were constructed using random forest 
machine learning. RMSE, root-mean-square error
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tissue. Response to hypoxia, negative regulation of cell death, regu-
lation of cell proliferation, regulation of stress response, and extra-
cellular matrix organization was enriched in the retina-specific aging 
model (Figure 5a). For the brain, negative regulation of cell death, 
immune response, endocytosis, and extracellular structure organi-
zation terms were among the most enriched (Figure 5b). A blood-
specific aging model identified genes enriched for inflammatory 
response, activation of the immune system, and negative regulation 
of cell death (Figure 5c). In the heart, important genes were associ-
ated predominantly with entry of bacterium into host cell, response 
to growth factor, Wnt signaling, development, and negative regula-
tion of cell death (Figure 5d). Finally, a bone-specific model identi-
fied genes predictive of aging that were significantly enriched for 
extracellular matrix organization, negative regulation of cell death, 
immune response, and regulation of MAPK (Figure 5e).

The complete list of genes prioritized for each clock is provided 
in Table S9. A total of six predictive genes (CHI3L2, CIDEC, FCGR3A, 
RPS4Y1, SLC11A1, and VTCN1) were shared by all five of these tis-
sues, while 43 were shared by four or more tissues (Table S9). We 
additionally compared our tissue-specific important genes to the 
top 20 genes previously used for age prediction in human skeletal 
muscle (Mamoshina et al., 2018) and a set of 54 genes previously 
used to predict age in human blood (Hannum et al., 2013). Compared 
with the 20 human skeletal muscle genes previously utilized by 

Mamoshina et al. (2018), the genes GREM1 and VSNL1 were import-
ant in at least one of our tissue-specific clocks (Table S9). Compared 
with the 54 human blood genes previously used by Hannum et al. 
(2013), the genes AK5, NEFH, NT5E, and RGMA were important in at 
least one of our tissue-specific clocks (Table S9).

2.7  |  Model accuracy is impacted by the human 
cohort being tested

We next went on to explore how these models generalized to other 
datasets. While a model trained on healthy adults is able to ac-
curately predict healthy adult ages (Figure 6a), we found that the 
same model has trouble predicting the ages of younger (<30 years) 
individuals (Figure 6b). A model trained on healthy adults also fared 
relatively poorly when it was used to predict the age of unhealthy 
adults (Figure 6c). Sex-specific models similarly displayed an im-
paired predictive performance when tasked with predicting age in 
samples from the opposite sex (Figure 6d,e). Importantly, batch-ef-
fect correction completely changed which genes were estimated to 
be important for model accuracy (Table S10). While an uncorrected 
model could be trained to accurately predict age (Figure 6f), the 
model relied heavily on almost all 1000 variable genes (Figure S2i). 
Genes that were predictive specifically in the batch-corrected 

Aging clock Gene name Protein name Importance

1000 Variable KRT6C Keratin, type II cytoskeletal 6C 14.78989842

1000 Variable KLK6 Kallikrein-6 14.13181626

1000 Variable SPRR1B Cornifin-B 12.23451207

1000 Variable MMP10 Stromelysin-2 10.47366716

1000 Variable CALML3 Calmodulin-like protein 3 9.350379696

1000 Variable CEACAM5 Carcinoembryonic antigen-related 
cell adhesion molecule 5

8.906136426

1000 Variable GRP Gastrin-releasing peptide 8.344751464

1000 Variable FGA Fibrinogen alpha chain 7.586499443

1000 Variable KRT6B Keratin, type II cytoskeletal 6B 7.481560771

1000 Variable PRSS2 Trypsin-2 7.316476098

1000 Differential REG3A Regenerating islet-derived protein 
3-alpha

40.34504236

1000 Differential NR2E1 Nuclear receptor subfamily 2 
group E member 1

13.02751594

1000 Differential DEFB119 Beta-defensin 119 12.62814497

1000 Differential MIR10B N/A 11.9933185

1000 Differential MIR100 N/A 10.6716294

1000 Differential KRT6C Keratin, type II cytoskeletal 6C 10.30831422

1000 Differential DPT Dermatopontin 10.11309756

1000 Differential HLA-F HLA class I histocompatibility 
antigen, alpha chain F

9.340543895

1000 Differential KCNC2 Potassium voltage-gated channel 
subfamily C member 2

8.923200977

1000 Differential INS Insulin 8.647671153

TA B L E  2 The	top	10	predictive	genes	
are shown for the top 1000 variable 
and top 1000 differential aging clocks 
presented in Figure 3. For each gene, 
its quantified importance in the random 
forest prediction model is provided



8 of 16  |     SHOKHIREV and JOHnSOn

model included general biological terms such as negative regulation 
of cell death, extracellular structure organization, humoral immune 
response, innate immune response, and ERBB signaling (Figure S2j). 
Conversely, the predictive genes specific for the uncorrected model 
tended to involve tissue-specific terms such as sensory perception 
and neuron projection development (Figure S2l). A common set of 
194 genes important in both the batch-corrected and uncorrected 
models was enriched for immune responses, aging, homeostasis, 
and exocytosis (Figure S2K). Importantly, models based on uncor-
rected expression values completely failed to predict age from cor-
rected datasets (Figure 6g). Finally, to test how sample size affected 
model accuracy, we repeatedly sub-sampled our entire dataset prior 
to training and observed that models based on just 50 random sam-
ples had an average R2 of 0.35 and an average RMSE of 16.43 years 
(Figure 6h, Table S11). However, by progressively increasing the 
number of samples, we were able to reach an R2 of 0.76 and an aver-
age RMSE of 9.12 years (Figure 6h, Table S11). Interestingly, a model 
trained on just the top 100 variable genes can still achieve an R2 

of 0.72 and an RMSE of 9.69 years (Table S11). Similarly, a model 
trained on just the top 100 differential genes achieves an R2 of 0.72 
and an RMSE of 9.65 years (Table S11).

2.8  |  An online, interactive tool for predicting 
human age

While our models are useful tools for identifying genes that are rele-
vant to aging, they can also be used to directly make age predictions 
in a given RNA-Seq dataset. Therefore, to help scientists interested 
in predicting the age of their samples without the need for compu-
tational resources and bioinformatics expertise, we have developed 
a simple Bioinformatics Utility for RevealiNg Senescence (BURNS). 
The link to this tool is as follows: http://burns.salk.edu/. This tool 
reads in an uploaded raw count table and outputs the predicted age 
from a user-specified machine learning model. The two model op-
tions to choose from utilize either the top 100 variable genes or the 

F I G U R E  4 Health	status	affects	aging	clocks.	(a)	Model	fit	on	all	adults	used	to	predict	all	adults,	regardless	of	health	status.	(b)	Model	
fit	on	healthy	adults	used	to	predict	healthy	adults.	(c)	Model	fit	on	non-healthy	adults	used	to	predict	non-healthy	adults.	(d)	Overlap	of	
important genes from each model. (e) Network topology-based analysis of predictive genes in the non-healthy model but not in the healthy 
model. (f) Network topology-based analysis of predictive genes common to both healthy and unhealthy models. (g) Network topology-based 
analysis of important genes predictive in the healthy model but not in the unhealthy model. For each enrichment analysis (e–g), the 10-most 
enriched terms are shown. All models were constructed using random forest machine learning. RMSE, root-mean-square error

http://burns.salk.edu/
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F I G U R E  5 Tissue-specific	aging	models.	For	retina	(a),	brain	(b),	blood	(c),	heart	(d),	and	bone	(e)	tissues,	predictive	aging	clocks	were	
trained on healthy samples using the top 1000 variable genes. A network-based enrichment analysis was performed on predictive genes for 
each tissue. The 15 most enriched terms are shown. All models were constructed using random forest machine learning. RMSE, root-mean-
square error

F I G U R E  6 Evaluating	the	generalizability	of	predictive	aging	models.	(a)	10-fold	cross-validated	model	of	healthy	adults	predicting	age	of	
healthy adults. (b) 10-fold cross-validated healthy adult model predicting age of all healthy individuals, including younger individuals. (c) 10-
fold cross-validated model of healthy adults used to predict unhealthy adults. (d) 10-fold cross-validated healthy adult male model predicting 
age of all healthy females. (e) 10-fold cross-validated healthy adult female model predicting age of all healthy males. (f) 10-fold cross-
validated model of healthy adults predicting on data without batch correction. (g) 10-fold cross-validated model of healthy adults trained on 
data without batch correction used to predict batch-corrected data. (h) Model error as a function of sample size for all individuals. As sample 
size increases, the R2 value increases and the RMSE value decreases. All models were constructed using random forest machine learning. 
RMSE, root-mean-square error
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top 100 differential genes. The tool attempts to combine the user-
provided data with our large dataset as a new batch, performs nor-
malization and batch-effect correction, and then uses the specified 
model to predict the age of each sample.

3  |  DISCUSSION

This manuscript presents a multitude of highly accurate and novel 
transcriptomic aging clocks representing different tissues, sexes, 
and human cohorts (Table S12). For multiple different datasets, we 
were able to accurately predict age by using genes that vary their 
expression with age or are differentially expressed between older 
adults	 and	younger	 adults.	Our	data	 therefore	 suggest	 that	genes	
which change their expression level with age make for excellent age 
predictors. Moreover, many of the genes present in the top 1000 
variable or top 1000 differential lists are potent regulators of aging 
or age-related disease. For example, an analysis of our entire dataset 
identified APOE among the top 1000 variable genes. Genetic vari-
ants of APOE are unambiguously associated with human longevity 
(Deelen et al., 2019) and Alzheimer's disease (Kunkle et al., 2019). In 
addition, mice lacking Apoe are atherosclerosis-prone (Zhang et al., 
1992). Another example is PCK1, which was present in both the top 
1000	variable	and	top	1000	differential	lists.	Overexpressing	Pck1 in 
mice extends life span and enhances exercise capacity (Hakimi et al., 
2007). We recently found that many proteins which change their ex-
pression level with age in plasma can accurately predict human age 
and are also direct regulators of life span and/or age-related disease 
(Lehallier et al., 2020). Thus, this attribute appears to be shared be-
tween genes and proteins.

Another interesting finding was that each tissue-specific aging 
clock uniquely prioritized different genes for age prediction. In turn, 
these unique lists of important genes were associated with different 
biological processes. The gene with the highest importance in the ret-
ina, brain, blood, heart, and bone aging clocks was FNDC1, SPINK1, 
XIST, RYR3, and CYP1B1, respectively. The most enriched terms were 
response to hypoxia, negative regulation of apoptotic process, regu-
lation of response to external stimulus, entry of bacterium into host 
cell, and cytokine-mediated signaling pathway in the retina, brain, 
blood, heart, and bone age predictors, respectively. While each gene 
list and set of enriched terms was unique to each clock, there were 
interesting overlaps. The six genes CHI3L2, CIDEC, FCGR3A, RPS4Y1, 
SLC11A1, and VTCN1 were important in all five tissue-specific clocks. 
Each of the five tissue clocks had multiple different terms pertinent 
to cell death that were significantly enriched. Immune processes 
were also enriched in the brain (i.e., innate immune response, cellular 
response to cytokine stimulus, regulation of immune response, and 
humoral immune response), blood (i.e., cellular response to cytokine 
stimulus, inflammatory response, regulation of defense response, 
positive regulation of defense response, positive regulation of im-
mune system process, activation of immune response, response to 
bacterium, regulation of immune response, cytokine-mediated sig-
naling pathway, and positive regulation of immune response), heart 

(i.e., entry of bacterium into host cell), and bone (i.e., cytokine-me-
diated signaling pathway, cellular response to cytokine stimulus, 
positive regulation of immune system process, positive regulation of 
defense response, and regulation of immune response) aging clocks. 
The term extracellular structure organization was also enriched in 
the retina, brain, and bone age predictors. A recent study in mice by 
Schaum et al. (2020) similarly found that immune system and extra-
cellular matrix processes were altered with age across multiple differ-
ent tissues. Unique changes in immune system genes have also been 
identified in exceptionally long-lived animals, such as naked mole rats 
and bowhead whales (Johnson et al., 2019).

Looking at the similarities and differences between genes and 
terms implicated by different tissues, our interpretation is that a 
larger proportion of aging changes are tissue-specific while a smaller 
proportion of aging changes commonly span multiple different tis-
sues. Analogous results were obtained by Shavlakadze et al. (2019) 
in a rat transcriptomic aging study. The authors found that, although 
gene trajectories with age were largely organ-specific, a small por-
tion of gene changes occurred in multiple different tissues. These 
data have important implications for anti-aging interventions intend-
ing to improve human health span. Specifically, some anti-aging in-
terventions may need to be tissue-specific to safely promote health 
span extension. Indeed, work in animal models has shown that an-
ti-aging interventions can mediate significantly disparate effects 
when applied in different tissues (Smith et al., 2020). However, it 
is also possible that a small number of global interventions may be 
capable of safely increasing human health span.

Although our tissue-specific aging clocks heavily implicated 
inflammatory terms, one surprising discovery was that multi-
ple different immune system terms were enriched among genes 
downregulated with age in our larger cohort of healthy adults, 
which contained data from all healthy tissues. This strong inflam-
matory theme was not observed in genes upregulated with age in 
our healthy adults. This stands out in contrast to transcriptomic 
aging studies performed by others (de Magalhaes et al., 2009; 
Zeng et al., 2020), which reported that inflammatory genes are up-
regulated with age. Collectively, our study and these other studies 
may be highlighting the fact that some aspects of the immune sys-
tem become hyperactive while others become less capable with 
age. For example, chronic inflammation increases with age while 
the ability to ward off active infections is decreased in the elderly 
(Furman et al., 2019). Therefore, the results from our healthy co-
hort may be highlighting processes that become suppressed with 
normal aging. For example, the second-most and fourth-most 
enriched results among downregulated genes in healthy adults 
were adaptive immune response and humoral immune response, 
respectively. These enriched terms correspond with our under-
standing of why high-dose influenza vaccines are recommended 
for individuals aged 65 years or older (Lee et al., 2018). Another 
interpretation is that the genes implicating some of these enrich-
ment terms may be suppressors of the immune system. Thus, their 
decline with age may actually indicate increased inflammation. A 
closer, functional exploration of the relevant genes is required to 
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better understand the directionality of these immune system pro-
cesses. An alternative possibility is that these immune enrichment 
results may reflect the unique healthy tissue distribution of our 
transcriptomic meta-analysis.

Our	 findings	also	highlight	 the	 importance	of	either	 training	a	
model to be generalized or cohort-specific. For example, a clock 
trained on all healthy adults (aged 30+ years) has a R2 of 0.96 and a 
RMSE of 3.3 years. However, when this same clock is tasked with 
predicting age in a cohort of all healthy individuals (including those 
aged <30 years), the R2 drops to 0.72 and the RMSE increases to 
9.54 years. Similarly, a clock trained on healthy adults has a lower 
accuracy when applied to a group of unhealthy adults (R2 = 0.45, 
RMSE = 12.17 years). To further explore the generalizability of 
these clocks, we repeatedly sub-sampled our dataset and predicted 
on the rest. We found that there was a strong correlation between 
the number of transcriptomic samples and the overall accuracy of 
the model. When 3000 samples were included, we created a more 
generalized clock with a R2 value of 0.76 and a RMSE of 9.12 years. 
Generalized transcriptomic aging clocks with substantially increased 
accuracy will likely require a much larger number of high-quality 
samples (i.e., >10,000). Ultimately, the desired application of an 
aging clock will dictate how specific or generalized a model should 
be.	One	of	the	proposed	applications	of	aging	clocks	is	to	accelerate	
anti-aging clinical trials by assessing whether or not biological age 
is decreased in response to a given intervention (Fahy et al., 2019). 
For this application, biological age would be measured in the same 
cohort prior to the clinical trial and at the end of the clinical trial. 
Here, it would make sense to generate a novel, cohort-specific aging 
clock. However, other applications of aging clocks include assessing 
whether or not the delta between predicted age and chronological 
age is reflective of patient health (Horvath & Raj, 2018). For this, a 
generalized clock will be more useful.

All of the transcriptomic samples used in this study contained 
patient health information. Each RNA-Seq dataset was associ-
ated with a disease condition or a healthy/non-diseased state. If 
a sample was derived from a patient with a diagnosed disease, 
we labeled the sample as “unhealthy.” If it was derived from a 
healthy/non-diseased control patient, it was labeled as “healthy.” 
The genes prioritized by our aging clock models differed consid-
erably between our “healthy” cohort and our “unhealthy” cohort. 
Namely, 47 important genes were unique to the “healthy” clock 
and 382 important genes were unique to the “unhealthy clock.” 
This corroborates a recent study which reported a “healthy” tran-
scriptomic aging signature that was distinct from disease-associ-
ated gene changes (Zeng et al., 2020). However, 523 of the same 
important genes in our study were utilized by both age prediction 
models. An enrichment analysis of these common genes strongly 
implicated the regulation of cell death and different immune sys-
tem responses.

A closer look at the enrichment terms between “healthy” and 
“unhealthy” aging unveils some intriguing differences and similari-
ties. For genes that increase with age, the overlap was substantial. 
Indeed, the top four terms that appeared in the same descending 

order of significance are as follows: photoreceptor cell differen-
tiation, sensory perception of light stimulus, detection of exter-
nal stimulus, and detection of abiotic stimulus. Seventeen of the 
top 20 enriched terms associated with genes that increase with 
age were shared between the “healthy” and “unhealthy” cohorts. 
In the “unhealthy” group, the disparate terms were cognition, 
regulation of ion transmembrane transport, and signal release. 
In the “healthy group,” the disparate terms were sensory organ 
morphogenesis, locomotory behavior, and axon development. In 
contrast, the results for genes downregulated with age were en-
tirely different between the “healthy” and “unhealthy” datasets. 
While 16 of the enriched terms were related to the immune sys-
tem in the “healthy” group, only one inflammatory term—response 
to tumor necrosis factor—was identified in the “unhealthy” group. 
The remaining four terms in the “healthy” cohort were extracel-
lular structure organization, positive regulation of cell activation, 
regulation of cell-cell adhesion, and positive regulation of cell ad-
hesion. The terms implicated by genes downregulated with age in 
“unhealthy” individuals were much more diverse, spanning themes 
such as actin filaments, muscle, heart, and vasculature. Further ef-
forts are warranted to better understand the transcriptomic aging 
signatures that define “healthy” vs. “unhealthy” aging.

Given the growing interest in aging clocks, including commer-
cial patenting, it is useful to discuss their practical utility in more 
detail. Because aging clocks appear to routinely capture biolog-
ical age—which correlates with various health parameters and 
outcomes—they have the potential to significantly accelerate an-
ti-aging intervention testing in animal models and anti-aging clini-
cal trials in humans. For example, the laboratory of David Sinclair 
recently used a machine learning model trained on frailty index 
components to predict the efficacy of anti-aging interventions 
up to a year in advance in mice (Schultz et al., 2020). In humans, 
a small, exploratory study from the laboratory of Steve Horvath 
suggests that treatment with various pharmaceuticals, including 
metformin, can reverse biological age (Fahy et al., 2019). Since 
life span studies in humans are not practical, aging clocks offer a 
highly appealing mechanism to assess the ability of various inter-
ventions to elongate life span and/or health span. The develop-
ment of tissue-specific clocks may also be useful for assessing the 
ability of a therapy to mitigate disease or age-related decay unique 
to a particular tissue. For example, an epigenetic aging clock was 
recently made for skeletal muscle (Voisin et al., 2020). Such a clock 
could be used to screen for therapies that rejuvenate muscle or 
protect against sarcopenia. More broadly, machine learning could 
be used for other applications in biogerontology, such as diagnos-
tics for age-related disease. Indeed, deep learning models have 
already been developed for the detection of Alzheimer's disease 
(Jo et al., 2019). As we have done in this paper, it is also clear that 
the features (e.g., genes, proteins, methylated DNA status) cho-
sen by these machine learning models can teach us more about 
aging	if	subsequently	annotated	using	functional	databases.	One	
advantage of clocks comprised of RNA or protein is that they are 
conducive to straightforward enrichment analyses.
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In summary, we have utilized machine learning models and expres-
sion analyses to gain novel insights into the transcriptomics of human 
aging. In addition to generating novel multi-tissue and tissue-specific 
aging clocks, we create and freely share the processed dataset and 
provide an online age prediction tool named Bioinformatics Utility 
for RevealiNg Senescence (BURNS), which includes batch-effect 
correction and normalization to generate models trained across all 
3060 transcriptomic samples. This maximizes the generalizability of 
the tool. Future research efforts should aim to better understand the 
composition of these age prediction models and determine whether 
or not pharmaceutical targeting of key human aging genes (i.e., those 
that significantly change with age or are important for age prediction) 
can promote healthier aging. Ultimately, the theoretical ability of a 
high-quality aging clock to accelerate anti-aging clinical trials needs to 
be explicitly tested in a large patient cohort.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Data curation and filtration

We manually curated a large list of publicly available human bulk 
RNA-Seq datasets from the Sequence Read Archive (Leinonen et al., 
2011) which included information on the age of the samples. We did 
not consider datasets which only focused on children, since we did 
not want to further complicate the aging signals with developmental 
signals.

For each RNA-Seq run, we downloaded the first 12 million 
reads. For paired-end samples, we chose to exclude the second 
read for consistency between single- and paired-end sequenced 
samples. We then mapped and quantified the reads with STAR 
(Dobin et al., 2013) using the [options]. We chose the hg38 RefSeq 
annotation for quantifying genes. The resulting raw gene expres-
sion counts were collated into a data table that was imported into 
the R 3.5 (R Foundation for Statistical Computing, Vienna, Austria) 
computational environment for preprocessing and modeling. We 
next imposed three main filters. First, samples that had fewer than 
two million reads mapping to exons were excluded to avoid gene 
sampling bias based on the distribution of read counts seen across 
all samples. We further removed batches that we identified to de-
crease the accuracy of downstream predictions. The procedure 
for this is described below. Finally, for the remaining 3060 sam-
ples, we removed genes with average raw expression below 50, 
leaving 13,388 highly expressed genes for downstream process-
ing. These remaining 13,388 genes were subsequently analyzed to 
generate transcriptomic aging clocks and to perform differential 
expression analyses.

4.2  |  Normalization and batch-effect correction

We applied a TMM normalization from the edgeR package 
(Robinson et al., 2010) which corrects for sequencing depth and 

sequencing library composition. We further added a pseudo-
count and log2-transformed the normalized counts to normalize 
the importance of genes. Since we observed large batch effects 
when visualizing the first two principal components, combat batch 
effect correction from the sva package v3.32.1 (Leek et al., 2012) 
was used to correct for batch effects across studies starting with 
the log2-transformed TMM normalized counts. The top 10, 100, 
and 1000 most variable corrected genes were then saved for ma-
chine learning training. The top 1000 most variable genes were 
clustered and a manual cutoff of 30 and 70 years was determined 
to delineate adults and old adults, respectively, based on the clus-
tering of these genes across all healthy samples ordered by their 
age. A cutoff of 30 years for adults was assumed to minimize any 
possible developmental effects confounding the aging signature 
while a threshold of 70 years ensured a large sampling of 965 older 
adults.

4.3  |  Differential expression

We used the edgeR v3.26.7 (Robinson et al., 2010) for differential 
expression analyses. We compared adults (30–69 years) to older 
adults (70+ years) and included the batch as a blocking variable in 
the design, using the gene-wise negative binomial generalized lin-
ear models with quasi-likelihood tests. The top 1000 and 1000 
differential genes between healthy adults and healthy aged adults 
were selected for machine learning, starting from batch-corrected 
normalized counts. We also tested differential genes between un-
healthy adults and older adults. This was performed separately for 
males and females.

4.4  |  Machine learning

The Caret R package v6.0.84 (Kuhn, 2008) was used for machine 
learning. Models were trained using a repeated 10-fold cross-vali-
dation to minimize overfitting and using a tune length of 5 (5 values 
were tested for each hyperparameter), and two repeats of the 10-
fold cross-validation were used for hyperparameter tuning, using 
a selection criterion that selected the simplest model that was 
within one standard error of the model with the best RMSE. The 
one standard error rule was used to further help avoid overfitting. 
Hyperparameter tuning and cross-validation was carried out for 
each model training. Prior to fitting, the corrected normalized data 
were scaled to reduce bias from higher-expressed genes. Finally, 
we limited the possible predictions to 0–110 years which encom-
passed the age range of our entire dataset. We tested several 
popular models for age regression training using the 100 and 1000 
most variable genes as well as the top 100 and 1000 differential 
genes for model construction. Specifically, we tested a rule-based 
model tree (cubist), generalized linear model via penalized maxi-
mum likelihood (glmNet), multivariate adaptive regression splines 
(gcvEarth), boosted smoothing spline (bstSm), random forest (rf), 
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and elastic net (enet) models because they include implicit feature 
selection as part of the model training. This is important because 
a model with 1000 features (i.e., genes) runs the risk of overfit-
ting, essentially memorizing the age of the training samples. In the 
process of training, these models reduce the number of features 
and improve the generality of the fits. We selected the random 
forest model (rf) based on the overall performance (RMSE, R2, and 
mean absolute error) across all four training sets. For the random 
forest model, the “mtry” parameter, which is defined as the num-
ber of variables randomly sampled as candidates at each split, 
was tuned using values of 2, 9, 44, 211, and 1000 for models with 
1000 genes and values of 2, 26, 51, 75, and 100 for models with 
100 genes. The optimal mtry parameters were 211 for the model 
trained on top 1000 variable genes in healthy adults, 1000 for the 
model trained on top 1000 differential genes in healthy adults, and 
26 for the models trained on the top 100 variable or differential 
genes in healthy adults. For all models, in practice, the model ac-
curacy was insensitive to the mtry hyperparameter value as long 
as it was at least 10. Model-specific variable importance was cal-
culated using default variable importance wrappers in the Caret 
package for “rf” and “cubist” models. Briefly, for random forest, 
variable importance was determined using an out-of-bag strategy. 
For each tree, the prediction accuracy on the out-of-bag portion of 
the data is recorded. The mean squared error (MSE) is computed 
on the out-of-bag data for each tree, and then, MSE is recomputed 
after permuting a variable. The differences in MSE are averaged 
and normalized by the standard error. For the cubist models, the 
output contains variable usage statistics. It gives the percentage of 
times where each variable was used in a linear model. The variable 
importance used is a linear combination of the usage in the rule 
conditions and the model. To test model accuracy as a function of 
training sample size, we repeatedly trained (n = 9) the model on a 
subset of the samples and predicted on the remaining samples for 
sample sizes of 50, 100, 250, 500, 1000, and 3000 on the entire fil-
tered dataset. This nested cross-validation strategy showed similar 
model accuracy estimates to the repeated 10-fold cross-validation 
with the one standard error model selection that was used dur-
ing training. This along with the relative insensitivity of the perfor-
mance to the hyperparameter was used to justify not performing a 
full nested cross-validation for all models.

Importantly, we first only applied the sample raw count filter 
and the gene expression filter (see “Data curation and filtration” 
section above). However, we found that removing entire batches 
could significantly improve the predictive power of our machine 
learning models. Therefore, we compared the predictive power of 
our model trained on all batches to models with each batch itera-
tively removed to estimate the importance of the batch in our com-
bined model. For each batch, we recorded the RMSE, R2, and mean 
absolute	error	of	the	model	with	the	missing	batch.	Only	batches	
which had decreased performance by all three metrics were re-
moved from our study. This resulted in the removal of 27/58 
batches, but also an overall dramatic improvement of age predic-
tions in our filtered dataset.

4.5  |  Enrichment analyses and plots

Enrichment analyses were performed similarly to before (Johnson 
et al., 2020). We used WebGestalt 2019 (Liao et al., 2019) to perform 
enrichment analyses on sets of genes. We used the network topology-
based enrichment analysis (NTA) with the PPI BioGRID as the network 
and network expansion with the number of neighbors set to half the 
size	of	the	input	list.	We	report	the	top	enriched	GO	biological	process	
(The	Gene	Ontology	Consortium,	2019)	terms,	filter	for	terms	with	less	
than 1000 genes, and sort by -log10(FDR), with FDR of zero plotted 
as 14. We chose to plot the enrichment ratio instead for Figure S4, 
as most of the top terms had a FDR of zero. Heatmaps were gener-
ated with the gplots heatmap.2 function, barplots were generated with 
Excel or barplot functions in R, and pie charts and boxplots were gen-
erated with the R pie and boxplot functions, respectively. PCA plots 
were generated in R using the prcomp function, and scatter plots were 
generated with the R plot function using a linear regression for line fit-
ting. Histograms were generated with the R hist function, and all other 
plots were generated in Excel. The proportional Venn diagrams were 
generated with BioVenn (Hulsen et al., 2008). We chose to perform 
GO	 BP	 analyses	 instead	 of	 GO	 Cellular	 Component	 and	Molecular	
Function	analyses	because	GO	BP	terms	highlight	biological	programs	
that arise from molecular activity.

4.6  |  Interactive age prediction tool

To enable researchers to annotate their RNA-Seq samples, we de-
veloped Bioinformatics Utility for RevealiNg Senescence (BURNS) 
using the Shiny R environment. This tool can be used to upload your 
own samples (samples are not stored), perform TMM normalization, 
apply Combat batch-effect correction, and then predict the age of 
samples based on a model trained on the top 100 variable or the top 
100 differential genes across all 3060 samples. This online tool is 
hosted at http://burns.salk.edu free of charge.
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