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ABSTRACT: Biocatalysis is an effective approach for producing chiral drug
intermediates that are often difficult to synthesize using traditional chemical
methods. A time-efficient strategy is required to accelerate the directed
evolution process to achieve the desired enzyme function. In this research, we
evaluated machine learning-assisted directed evolution as a potential
approach for enzyme engineering, using a moderately diastereoselective
ketoreductase library as a model system. Machine learning-assisted directed
evolution and traditional directed evolution methods were compared for
reducing (±)-tetrabenazine to dihydrotetrabenazine via kinetic resolution
facilitated by BsSDR10, a short-chain dehydrogenase/reductase from Bacillus
subtilis. Both methods successfully identified variants with significantly
improved diastereoselectivity for each isomer of dihydrotetrabenazine.
Furthermore, the preparation of (2S,3S,11bS)-dihydrotetrabenazine has
been successfully scaled up, with an isolated yield of 40.7% and a diastereoselectivity of 91.3%.
KEYWORDS: ketoreductase, stereodivergent evolution, machine learning, dihydrotetrabenazine, kinetic resolution

■ INTRODUCTION
The application of biocatalysis in the pharmaceutical industry
is steadily increasing, driven by the emergence of novel
engineered enzymes and proven enzymatic processes.1,2 The
biocatalytic strategy is widely used in the synthesis of active
pharmaceutical ingredients due to the clear advantages it
offers.3−5 Biocatalysis can be used to functionalize certain
compounds, providing milder and more environmentally
friendly reaction conditions while offering exceptional
selectivity. Biocatalysis has been instrumental in the synthesis
of the key intermediates for well-known pharmaceuticals, such
as atorvastatin (Lipitor), montelukast (Singulair), and
duloxetine (Cymbalta).6,7

Protein engineering is often necessary for the use of
biocatalysis and enzymes in non-natural reactions. This
requires obtaining biocatalysts that are both active and stable.
Directed evolution is a powerful technique that has gained
popularity in the field of protein engineering over the last few
decades.8 (1) In traditional directed evolution, single
mutations are introduced into wild-type enzymes or proteins
sequentially. Subsequently, the resulting variants are subjected
to screening for the desired properties (Figure 1a). An
alternative approach is to randomly sample combinatorial
libraries of mutations and recombine the most promising

mutations at each position to generate optimal variants (Figure
1b). Both methods result in the generation of optimal variants,
which serve as parental sequences for the subsequent stage of
evolution. A variety of techniques, including error-prone PCR
(epPCR),9,10 saturation mutagenesis,11 and others, can be used
to explore the vast sequence space and discover new
biocatalysts.12,13 Traditional directed evolution has been
extensively used to improve the regioselectivity,14 diastereose-
lectivity,15−17 and enzyme activity.18,19 (2) Recently, machine
learning has emerged as a powerful tool to support directed
evolution, enabling the exploration of larger sequence spaces
(Figure 1c). Numerous studies have demonstrated the capacity
of machine learning to predict sequence-activity (selectivity)
relationships.20−28 While there has been considerable research
in machine learning for protein engineering,29−41 the approach
is seldom used to achieve stereodivergent synthesis and only a
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limited number of studies have compared directed evolution
and machine-directed evolution.30,42

(±)-Tetrabenazine ((±)-TBZ), (±)-deutetrabenazine, and
valbenazine (Figure 1d) are vesicular monoamine transporter-2
(VMAT-2) inhibitors that have been approved by the FDA for
the treatment of tardive dyskinesia.43−45 (±)-Deutetrabenazine
contains deuterium, which increases the half-lives and prolongs
the activity of (±)-TBZ. Valbenazine is designed as the
prodrug of (2R,3R,11bR)-dihydrotetrabenazine (DHTBZ), the
active metabolite of TBZ. Valbenazine is chemically synthe-
sized through a four-step process that involves resolving the
resolution of racemic (±)-TBZ to (3R,11bR)-TBZ, followed
by the reducing (3R,11bR)-TBZ to produce (2R,3R,11bR)-
DHTBZ. In comparison to the chemical synthesis of
valbenazine, the ketoreductase (KRED)-catalyzed reductive
kinetic resolution of (±)-TBZ has the potential to reduce the
aforementioned resolution/reduction process to a single step.
This is highly desirable due to its superior economic,
sustainable, and environmentally friendly characteristics.
In this study, we compared machine learning-assisted

directed evolution with traditional directed evolution in
terms of diastereoselectivity (Figure 1e). Using traditional
directed evolution methods, we generated various BsSDR10
variants capable of producing four isomers of DHTBZ, each
with diastereoselectivity exceeding 95%. In parallel, machine

learning-assisted directed evolution enabled us to derive
mutants with high diastereoselectivity. Notably, these variants
exhibited notable differences from those generated by
traditional directed evolution. Upon evaluation, we found
that machine learning was a more cost-effective approach and
could provide valuable guidance on whether to use machine-
directed evolution for efficiency. Ultimately, our study
demonstrated two approaches for engineering enzyme catalysts
and addressed the issue of obtaining dihydrotetrabenazine
through biocatalysis.

■ RESULTS AND DISCUSSION

Identification of an Active Starting KRED for the
Reduction of Tetrabenazine

To identify a starting KRED capable of accepting (±)-TBZ
((±)-1) with its relatively bulky structure (Figure 2a), we
screened both wild-type and engineered KREDs from our in-
house enzyme library. The initial activity of some of these
enzymes for (±)-TBZ is shown in Figure 2b. Table S4 presents
other variants that were screened. All KREDs expressed in E.
coli Rosetta (DE3) were used for crude cell lysate reduction of
(±)-TBZ in 1.5 mL Eppendorf tubes. Diastereoselectivity
toward the target substrate was observed for both wild-type
and engineered enzymes by high-performance liquid chroma-

Figure 1. An overview of obtaining high-diastereoselectivity mutants for tetrabenazine using traditional directed evolution and machine learning-
assisted directed evolution. (a) Single mutation-directed evolution required 19 mutations for a sequence of N amino acids. (b) Directed evolution
using recombining mutations. (c) Machine learning-assisted directed evolution allows for the training of the mutation library on a machine learning
model, enabling the simultaneous search of multiple positions and the exploration of the sequence−function relationship more broadly and deeply.
(d) The chemical structures of (±)-tetrabenazine, (±)-deutetrabenazine, and valbenazine are presented, along with their respective release years
and indications. (e) The use of machine learning in protein engineering to improve the diastereoselectivity of ketoreductase for kinetic resolution of
(±)-tetrabenazine.
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tography (HPLC). In particular, the wild-type enzyme
BsSDR10, a short-chain dehydrogenase/reductase from
Bacillus subtilis, exhibited the ability to generate products,
signifying a superior potential when compared to other wild-
type enzymes such as LfSDR1, BsSDR8, and CgKR1.
Furthermore, the variant BsSDR10 S147Y/Y144W46 (from
the in-house enzyme library) exhibited a markedly higher
preference for (2S,3R,11bR)-DHTBZ ((S,R,R)-2), resulting in
an enhanced diastereoselectivity (84.7%) toward the targeted
reaction (Figure 2b). Therefore, LfSDR1, BsSDR8, and
CgKR1 were not selected as starting points for enzyme
evolution. BsSDR10 was ultimately selected due to its potential
for improved diastereoselectivity in engineering.
Engineering of BsSDR10 Using Traditional Directed
Evolution

To accomplish our objective of reducing (±)-TBZ and
obtaining four distinct isomers of DHTBZ, we initiated the
process by utilizing traditional directed evolution methods to
engineer BsSDR10. As mentioned above, wild-type BsSDR10
exhibits poor diastereoselectivity toward (±)-TBZ ((±)-1),
which precludes the production of products with a single
isomer. Nevertheless, by mutating only two residues (S147Y/
Y144W), an initial diastereoselectivity of 84.7% for (S,R,R)-2
toward (±)-1 was achieved. To predict the protein structure of
BsSDR10, we employed the SWISS-MODEL and AlphaFold 2,
given the absence of a crystal structure. However, the resulting

protein structure was deemed to be of insufficient accuracy,
which prevented the substrates from fully docking into the
modeled protein structure.
Our preliminary research results46 indicate that positions

S91, L139, Y144, S147, M184, F189, and A193 in BsSDR10
may be key residues that influence the size of the binding
pocket and control the diastereoselectivity. Figure 2c shows
that positions 139, 144, and 184 are located at the entrance of
the binding pocket, while positions 91, 147, 189, and 193 are
located at the bottom of the binding pocket. We hypothesized
that the bulky residue M184 causes channel constriction,
thereby preventing substrate 1 from accessing the binding
pocket. Therefore, we selected smaller amino acids (Ala and
Gly) for mutation at position 184. This mutation may have
resulted in the larger volume binding pocket of BsSDR10. As
previously stated, the BsSDR10 S147Y/Y144W variant, which
exhibited 84.7% diastereoselectivity toward (S,R,R)-2, was thus
mutated to S147Y/Y144W/M184A and S147Y/Y144W/
M184G. The HPLC assays revealed that both variants
exhibited high diastereoselectivity (96.0% and 98.3%) toward
(S,R,R)-2 (Figure 2e, green, and Table S7). These results are
significant and provide exciting new opportunities for our
experimentation and understanding.
Furthermore, another BsSDR10 S147Y variant was identi-

fied from the in-house enzyme library, which exhibited
enhanced diastereoselectivity for (R,R,R)-2 (Figure 2b). The

Figure 2. Engineering of BsSDR10 using traditional directed evolution. (a) Kinetic resolution of (±)-TBZ. (b) Screening for KREDs capable of
reducing (±)-TBZ. (c) The residues selected for engineering of BsSDR10. (d) Mutations constructed for each of the chosen residues. (e) Directed
evolution of BsSDR10 for the synthesis of four distinct isomers of DHTBZ.
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single mutant S147Y was then used as the starting point to
construct a combinatorial library. For the first round of
evolution, we continue to mutate at position M184 and
incorporate the degenerate codon NDT (Figure 2d). After
screening and sequencing of the variants, it was found that the
diastereoselectivity of S147Y/M184V was increased from
37.5% to 46.8% for (R,R,R)-2 (the results of the remaining
variants are shown in Table S5). Since (R,R,R)-2 and (S,R,R)-2
have mutually flipped conformations in the binding pocket, the
bulky residue F at position 189 might shrink one side of the
pocket, while the smaller residue S at position 91 might enlarge
the other side of the pocket. We hypothesized that protein
engineering at positions 91 and 189 could reshape the binding
pocket compared to S147Y/Y144W/M184A or S147Y/
Y144W/M184G. Therefore, to test our hypothesis, we
constructed combinatorial mutations at positions 91 and 189
based on the S147Y/M184V variant, with the aim of further
improving the diastereoselectivity. As previously demonstrated,
these two residues are key to control the stereopreferences of
SDRs.46

For the S91 position of the BsSDR10 S147Y/M184V
variant, we constructed mutations with larger volumes or
hydrophobic amino acids (Phe, Lys, and Tyr) (Figure 2d).
The purpose of this modification is to enhance hydrophobic
interactions with the substrate and alter the pocket size.
Meanwhile, since F189 is a large hydrophobic amino acid, we
mutate F189 of the BsSDR10 S147Y/M184V variant into
amino acids with different side-chain properties, including
polar side chains such as Asn, Ser, and Thr, as well as
transforming it into smaller volume amino acid (Ala) (Figure
2d). Several studies have shown that the proper combination
of mutations is more important. Ultimately, the test results

showed that the combinatorial mutation S147Y/M184V/
S91Y/F189N increased the diastereoselectivity (58.3%)
toward (R,R,R)-2 (the remaining variants are shown in Table
S5), thereby illustrating the extensibility of combinatorial
mutations. Based on these findings, we selected S147Y/
M184V/S91Y/F189N as the parent for the subsequent
mutations. Similarly, the candidate residues at positions 193
and 139 were designed with the intention of covering a wide
range of types based on differences in volume and polarity
(Figure 2d). A combinatorial library containing the two
positions was thus screened, resulting in the identification of an
improved pentaploid mutant S147Y/M184V/S91Y/F189N/
L139F (the remaining variants at position 139 are shown in
Table S5). The HPLC assays showed that it has a high
diastereoselectivity of 95.6% toward (R,R,R)-2 (Figure 2e,
orange).
Meanwhile, our results showed that the stereopreference of

the variant S147Y/M184V/S91Y/F189N/L139F could be
switched by mutation L139F to L139G, resulting in an
81.2% diastereoselectivity toward (S,S,S)-2 for the S147Y/
M184V/S91Y/F189N/L139G variant. This variant was then
used as the starting point for a subsequent combinatorial
library, which contained the Y144, an additional site located at
the entrance of the binding pocket (Figure 2d). The test
results showed that replacing Y144 with two positively charged
residues, Arg (R) and His (H) (the remaining variants are
shown in Table S5), could alter the diastereoselectivity. The
S147Y/M184V/S91Y/F189N/L139G/Y144R variant ex-
hibited an 83% diastereoselectivity toward (S,S,S)-2, while
the S147Y/M184V/S91Y/F189N/L139G/Y144H variant
showed a diastereoselectivity of 64.9% toward (R,S,S)-2.
Following the initial investigation, a comprehensive exploration

Figure 3. Distribution of the training data set and the performance of GRU on the data set. (a) Machine learning model-assisted directed evolution.
ML models can help to explore the broader protein sequence space. (b) The distribution of the mutations in the data set. (c) The distribution of
the residues in the data set. (d) The distribution of diastereoselectivity in the data set. (e) The performance of GRU on four isomers in the data set.
The test set for four isomers is represented by black circles, while the train set is represented by blue, orange, green, and amber.
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of mutational effects was conducted. Single mutations were
performed at various sites, and it was found that mutagenesis
of residues at positions 189 and 184 to polar uncharged Thr
(T) and Ser (S) resulted in a significant increase in
diastereoselectivity (the remaining variants are shown in
Table S5). Ultimately, the S147Y/M184V/S91Y/F189T/
L139G/Y144R variant showed a >99% diastereoselectivity
toward (S,S,S)-2 (Figure 2e, blue), whereas the S147Y/
M184S/S91Y/F189N/L139G/Y144H variant showed a 96.5%
diastereoselectivity toward (R,S,S)-2 (Figure 2e, amber).
In summary, we were unable to obtain the protein crystal

structure or successfully perform molecular docking of
BsSDR10. Nevertheless, we were able to achieve high
diastereoselectivity through traditional directed evolution
(Figure 2e), resulting in four variants S147Y/M184V/S91Y/
F189T/L139G/Y144R (>99% for (S,S,S)-2), S147Y/M184V/
S91Y/F189N/L139F (95.6% for (R,R,R)-2), S147Y/Y144W/
M184A (96.0% for (S,R,R)-2), and S147Y/M184S/S91Y/
F189N/L139G/Y144H (96.5% for (R,S,S)-2). The diaster-
eoselectivity data highlight the significant adaptability of
BsSDR10, which implies a considerable diastereoselectivity of
products by mutating amino acids strategically positioned
around the binding pocket.
Engineering of BsSDR10 Using Machine Learning-Assisted
Directed Evolution

The traditional direct evolution approach has proven effective
in optimizing diastereoselectivity. However, the method is
constrained in that it can only sample a subset of protein
sequences. In contrast, machine learning-assisted directed
evolution enables the exploration of larger sequence spaces
(Figure 3a). A number of studies have been conducted on the
use of machine learning to predict sequence-selectivity
relationships.20,29 In this study, the use of machine learning
was employed to guide the directed evolution process in the
absence of the protein crystal structure, contributing to the
optimal diastereoselectivity of mutants. Research has demon-
strated that machine learning-assisted directed evolution could
reduce the screening burden and enhance efficiency compared
to traditional directed evolution. We subsequently utilized the
data from the aforementioned variants collected from the
mutational scanning library to train prediction models and
engineer BsSDR10 using machine learning-assisted directed
evolution to further enhance its diastereoselectivity.
A total of over 300 variants of data were produced by the

biocatalytic reactions mentioned above. These variants were
generated through the use of an in-house enzyme library, as
well as NDT-based saturation mutagenesis and combination
mutagenesis approaches. Our initial selection focused on
variants exhibiting diastereoselectivity ratios ranging from 0 to
80% for the four products, which constituted the primary data
set. Due to the limited number of samples with diaster-
eoselectivity in excess of 80%, their inclusion could potentially
lead to overfitting of the model and compromise its ability to
generalize. In addition, we also hope to identify highly
diastereoselective mutants that differ from those obtained
through traditional directed evolution.
The effectiveness of machine learning models can be

enhanced when trained on data that is widely distributed
across the input space.47 The presence of similar variants with
the same diastereoselectivity in a data set can result in data
redundancy.48,49 The simplification of the model by the
removal of these redundant data points reduces the complexity

of the model. Therefore, we removed data with identical
diastereoselectivity values for different variants, as well as
variants that showed no reaction toward the substrate. This
resulted in 128 variants of data, all of which were confirmed by
Sanger sequencing. Figure 3b shows that the percentage of
single mutations was the lowest (5%), while quadruple
mutations had the highest percentage (41%). The distribution
of mutations at the seven active sites is displayed in Figure 3c,
with the least proportion of mutations occurring at position
193 (7%). Figure 3d illustrates the diastereoselectivity intervals
of the mutation library for four products, along with the
percentage of mutations occurring at various intervals. The
diastereoselectivity of variants for products (S,S,S)-2, (R,R,R)-
2, (S,R,R)-2, and (R,S,S)-2 was mostly distributed in the 0−
20% interval, with percentages of 66, 57, 24, and 46%,
respectively. However, variants with diastereoselectivity in the
60−80% range were the least common for (R,S,S)-2, with a 4%
distribution. The absence of these data may have an impact on
the subsequent construction of the machine learning model.
Once the data set had been prepared, the input file for machine
learning was created.
In the feature selection step, 242 of the 249 amino acids in

BsSDR10 were excluded, as only seven of them were mutated
in the 128 variants under study. Furthermore, the biochemical
features of the amino acids at the seven positions, including
volume, hydrophobicity, hydrophilicity, isoelectric point, and
hydrogen bond (Table S6), were also incorporated. The
average number of hydrations (bound water molecules)
occurring each time indicates hydrophilicity.50 The hydro-
phobic index is used to express the hydrophobicity.51 Both the
hydrogen bond donors and full nonbonding orbitals were
introduced as features to describe the hydrogen bond.52 The
data were labeled to represent the ratio of the diastereose-
lectivity for four products of each variant. Subsequently, a
model was constructed to predict variants with higher
diastereoselectivity. A variety of models were used to achieve
the objective of prediction, including random forest (RF), deep
residual network 50 (ResNet50), decision tree regressor
(DTR), Gaussian process regressor (GPR), ridge regression
(RR), and gate recurrent unit (GRU). The data set was
randomly partitioned into a training set (75%) and a test set
(25%), and the hyperparameters were tuned for each model
(Table S2), and subsequently, the models were trained using
the data set.
The GRU predictor demonstrated superior performance

relative to other models, as evidenced by its exceptional
performance on test sets of four isomers (Figure 3e) and by its
ability to yield the lowest mean absolute error (MAE) values
(Figure S1). This model is then used to predict optimal
variants. Given the lack of a crystal structure for BsSDR10 and
the imprecise results of homology modeling, machine learning
is expected to predict high-diastereoselectivity variants. The
machine learning suggested that variants were ranked and
several were selected based on their predicted higher
diastereoselectivity toward four products: (S,S,S)-2, (R,R,R)-
2, (S,R,R)-2, and (R,S,S)-2. We then investigated their
diastereoselectivity through experiments.
To our delight, although the diastereoselectivity values were

diverse, a number of variants exhibited high diastereoselectiv-
ity. The BsSDR10 S91F/L139G/S147Y/M184V/F189G/
A193V variant (FGYYVGV) showed the highest diastereose-
lectivity (97.4%) toward (S,S,S)-2 (Figure 4, blue circles),
while the BsSDR10 S91F/L139M/S147Q/M184T/F189G/
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A193V variant (FMYQTGV) gave a 91% diastereoselectivity
toward (R,R,R)-2 (Figure 4, orange circles). Two variants,

named BsSDR10 L139G/Y144T/S147C/M184A/F189A
(SGTCAAA) (Figure 4, green circles) and BsSDR10 S91F/
L139I/S147Y/M184A/A193G (FIYYAFG) (Figure 4, amber
circles), gave diastereoselectivities of 99% and 91.8% for
(S,R,R)-2 and (R,S,S)-2, respectively. Additionally, there are
also some mutants that exhibit some degree of diastereose-
lectivity (Table S7), while these variants differ significantly
from the highly selective variants obtained in the traditional
directed evolution mentioned above. This suggests that
machine-directed evolution is not only capable of producing
mutants with high diastereoselectivity but also of predicting
previously unseen mutants. The model extends exploration to
a wider range of sequences. However, the experimental
diastereoselectivity of the majority of the variants obtained
from machine learning, particularly those for (S,S,S)-2,
(R,R,R)-2, and (R,S,S)-2, was found to be lower than the
predicted diastereoselectivity.
Kinetic Resolution for Synthesis of DHTBZ

It is important to note that short reaction times with enzymes
may not be an accurate indicator of mutant activity and
diastereoselectivity. Therefore, it is essential to measure the
conversion and diastereoselectivity over time. Following our
enzyme engineering, conversion was recorded for the S147Y/
M184V/S91Y/F189N/L139F, Y144W/S147Y/M184G, and
S147Y/M184S/S91Y/F189N/L139G/Y144H variants (to fa-
cilitate comparison with the machine learning variants, they
were named YFYYVNA, SLWYGFA, and YGHYSNA)
produced through traditional directed evolution and another
variant FGYYVGV generated by the machine learning-assisted
directed evolution. Under optimal conditions, the conversion
over time for the four variants is shown in Figure 5. The four
variants exhibited a gradual increase in conversion over the
tested time period, while YFYYVNA, FGYYVGV, and
YGHYSNA showed a slight decrease in diastereoselectivity
value.

Figure 4. Results of asymmetric reduction for the best variants
obtained by mutational scanning (gray) and machine learning-assisted
directed evolution (blue, orange, green, and amber). The x-axis
displays the predicted values from the model, while the y-axis shows
the values from experimental results, with the origin starting at 50%.
For the variants predicted by machine learning, (S,S,S)-2 is
represented in blue, (R,R,R)-2 in orange, (S,R,R)-2 in green, and
(R,S,S)-2 in amber. Additionally, variants obtained from traditional
directed evolution are also predicted using machine learning models
and are represented by gray circles (the seven residues represented in
order are positions 91, 139, 144, 147, 184, 189, and 193 of the
variants).

Figure 5. Time course of conversion and diastereoselectivity of the selected four variants producing each isomer of DHTBZ.
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The FGYYVGV variant showed the highest conversion and
significant diastereoselectivity values. Therefore, a comprehen-
sive investigation was conducted to ascertain the potential
applications of this variant in the synthesis of the isomer of
(S,S,S)-2. The scale-up preparation was successfully carried out
on 120 mL, with an isolated yield of 40.7% (68 mg) and a
diastereoselectivity value of 91.3%. In addition, the desired
isomer, (R,R,R)-2, was also prepared on a larger scale in a 120
mL system using the YFYYVNA variant. However, due to the
relatively low conversion rate and the unstable of (R,R,R)-2, an
isolated yield of 12.7% and a diastereoselectivity value of 92.5%
were obtained.

■ DISCUSSION
We have shown that machine learning-assisted directed
evolution is a straightforward and efficacious approach for
engineering KREDs. This method enables the identification of
mutants with comparable diastereoselectivity to traditional
methods by screening only a subset of the mutant library. In
our case, machine learning methods effectively address the
limitation of screening by offering a new exploration of protein
sequence space for high diastereoselectivity. Our findings
indicate that machine learning can alleviate the physical strain
of screening and expedite the acquisition of advantageous
mutations.
This work primarily focuses on the prediction of

diastereoselectivity, which is considerably more complex than
the prediction of enzyme mutational activity. The complexity
arises from the intricacy of the prediction, the quantity/
amount of data required, and the processing of the resulting
predictions. Diastereoselectivity depends not only on the
interaction between the enzyme and the substrate but also on
the relative position of the substrate in the active pocket.
Furthermore, the techniques required for diastereoselectivity
experiments are often more sophisticated and costly than those
required for activity assays. Nevertheless, the ability to predict
diastereoselectivity can offer valuable insights into how
mutations impact substrate selection and aid in the develop-
ment of highly specific enzymes with minimal side reactions.
Most enzymes require further optimization to achieve the

desired properties at the discovery stage. Traditional directed
evolution screening can only sample a small fraction of
sequences in the protein fitness landscape, and it tends to
ignore the nonadditive effects of accumulating multiple
mutations (epistasis). As a result, directed evolution efforts
may end up trapped in a local optimum. However, machine
learning models can be used to learn mappings between
protein sequences and their associated fitness values to
overcome this limitation. The models can then predict the
fitness of protein variants that have not been seen before,
enhancing the efficiency of screening by performing protein
evaluations in silico and increasing the breadth of exploration.
This allows more sequences to be explored compared to
traditional directed evolution methods.
Collecting data for machine learning and performing

traditional directed evolution are both labor-intensive but
they differ in their degree of difficulty. Traditional directed
evolution involves a multistep experimental process that
includes the design, preparation, selection, and evaluation of
mutant strains. This process is time-consuming and often
requires multiple iterations to achieve optimized results. In
contrast, although acquiring extensive training data for
machine learning can be labor-intensive, the workload

subsequently diminishes after successfully generating a high-
quality library of mutants through targeted mutation at active
sites. Once a potentially predictive model is established, the
prediction processes become faster. In addition, despite the
difficulties inherent in model interpretation, machine learning
is still regarded as a preferred strategy for enzyme evolution.
Therefore, machine learning is more efficient and time-saving
when sufficient experimental data and computational resources
are available or when screening is impractical due to cost, time,
or other constraints. Our study suggests that the machine
learning model may not perform optimally in predicting
(R,S,S)-selective and (R,R,R)-selective mutants due to the lack
of high-diastereoselectivity data. This deficiency may impede
the model training process and make it challenging to obtain
mutants with higher diastereoselectivity.
At present, machine learning-assisted directed evolution still

faces several challenges. One of the challenges is to enhance
the prediction accuracy and reliability of machine learning
methods. Further refinement is required in this study with
regard to the experimental diastereoselectivity of some of the
variants obtained by machine learning-assisted directed
evolution, which was found to be lower than their predicted
diastereoselectivity. Moreover, the performance of the variants
obtained by machine learning was found to be inferior to that
of the best variants obtained by traditional directed evolution
for three of the four dihydrotetrabenazine isomers. This may
be attributed to the limited quantity and quality of our training
set, for instance, the relative paucity of variants exhibiting
greater than 60% diastereoselectivity for the three products
(S,S,S)-2, (R,R,R)-2, and (R,S,S)-2. This can be achieved by
improving feature representation methods, selecting features
that are better suited to protein sequences, and using more
advanced machine learning algorithms and models. Addition-
ally, there is also the potential to explore more training data
and protein sequences to improve the generalization and
adaptability of the model.

■ CONCLUSIONS
This research presents two methods for the production of
variants of BsSDR10 with high diastereoselectivity in the
reduction of (±)-tetrabenazine: traditional directed evolution
and machine learning-assisted directed evolution. Moreover,
both methods yielded four isomers of dihydrotetrabenazine.
Furthermore, the results demonstrate that machine learning-
assisted directed evolution can predict the diastereoselectivity
of BsSDR10 variants. This is achieved through the processes of
model construction, data training, selectivity prediction, and
experimental validation. Machine learning-assisted directed
evolution is well-suited to applications in enzyme evolution,
offering the potential to efficiently explore a large sequence
space. In addition, the FGYYVGV variant, obtained through
machine learning-assisted directed evolution, demonstrated
successful potential application in the scaled-up reaction,
achieving an isolated yield of 40.7% and a diastereoselectivity
of 91.3% for (S,S,S)-dihydrotetrabenazine.
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