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Abstract

Motivation: With increasing availability of temporal real-world networks, how to efficiently study

these data? One can model a temporal network as a single aggregate static network, or as a series

of time-specific snapshots, each being an aggregate static network over the corresponding time

window. Then, one can use established methods for static analysis on the resulting aggregate

network(s), but losing in the process valuable temporal information either completely, or at the

interface between different snapshots, respectively. Here, we develop a novel approach for study-

ing a temporal network more explicitly, by capturing inter-snapshot relationships.

Results: We base our methodology on well-established graphlets (subgraphs), which have been

proven in numerous contexts in static network research. We develop new theory to allow for

graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different

from existing dynamic network approaches that are based on temporal motifs (statistically signifi-

cant subgraphs). The latter have limitations: their results depend on the choice of a null network

model that is required to evaluate the significance of a subgraph, and choosing a good null model

is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when

we aim to characterize the structure and function of an entire temporal network or of individual

nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal

information helps. We apply dynamic graphlets to temporal age-specific molecular network data to

deepen our limited knowledge about human aging.

Availability and implementation: http://www.nd.edu/�cone/DG.

Contact: tmilenko@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Motivation
Networks (or graphs) are powerful models of complex systems in

various domains, from biological cells to societies to the Internet.

Traditionally, due to limitations of data collection techniques, re-

searchers have mostly focused on studying the static network repre-

sentation of a given system (Newman, 2010). However, many real-

world systems are not static but change over time (Holme and

Saramäki, 2012). With new technological advancements, it has

become possible to record temporal changes in network structure

(or topology), corresponding to arrival or departure times of nodes

or edges. Examples of temporal networks include cellular (Przytycka

et al., 2010), functional brain (Valencia et al., 2008), person-to-

person communication (Priebe et al., 2005), online social (Leskovec

et al., 2008) or citation (Leskovec et al., 2005) networks.

The increasing availability of temporal real-world networks,

while opening new opportunities, has also raised new challenges for

researchers. Namely, despite a large arsenal of powerful methods

that already exist for studying static networks, these methods cannot

be directly applied to temporal networks. Instead, the simplest ap-

proach to deal with a temporal network is to completely discard its

time dimension by aggregating all nodes and edges from the tem-

poral data into a single static network. While this would allow to

directly apply to the resulting aggregate network the existing and

well-established methods for static network analysis, such an aggre-

gate or static approach loses all important temporal information

from the data. To overcome this, one could model the temporal

network as a series of snapshots, each of which is a static network

that aggregates the temporal data observed during the correspond-

ing time interval. Then, with such a snapshot-based network
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representation, one could use a static-temporal approach to study

each snapshot independently via the existing methods for static net-

work analysis and then consider time-series of the results. However,

this strategy treats each network snapshot in isolation and discards

relationships between the different snapshots. Clearly, both static

and static-temporal approaches overlook temporal information that

is important for studying a dynamic system (Holme and Saramäki,

2012). Therefore, proper analysis of temporal networks requires

development of novel strategies that can fully exploit the temporal

information from the data. This is the focus of our study.

1.2 Related work
1.2.1 Static networks

One way to study the structure of a static network is to compute its

global properties such as the degree distribution, diameter or cluster-

ing coefficient (Kuchaiev et al., 2011; Newman, 2010). However, al-

though global network properties can summarize the structure of

the entire network in a computationally efficient manner, they are

not sensitive enough to capture detailed topological characteristics

of the complex real-world networks (Pržulj, 2011). Thus, local

properties have been proposed that can capture more detailed as-

pects of complex network structure. For example, one can study

small partial subgraphs called network motifs that are statistically

significantly over-represented in a network compared with some

null model (Milo et al., 2002, 2004). The practical usefulness of net-

work motifs has been questioned, since the choice of null model can

significantly affect the results (Artzy-Randrup et al., 2004), and

since selecting an appropriate null model is not a trivial task

(Milenković et al., 2009). To address this issue, graphlets have been

proposed (Pržulj et al., 2004), which are small induced subgraphs of

a network that can be employed without reference to a null model

(Fig. 1a), unlike network motifs. Also, unlike network motifs,

graphlets must be induced subgraphs, whereas motifs are partial

subgraphs, which makes graphlets more precise measures of net-

work topology compared to motifs (Pržulj, 2011).

Graphlets have been proven in static network research. They

were used as a basis for sensitive measures of network (Pržulj, 2007;

Pržulj et al., 2004) or node (Milenković and Pržulj, 2008) similar-

ities. These measures in turn have been used to develop state-of-the-

art algorithms for many computational problems such as network

comparison (Lugo-Martinez and Radivojac, 2014; Malod-Dognin

and Pržulj, 2014; Vacic et al., 2010; Wong et al., 2014; Yaveroğlu

et al., 2014), alignment (Hsieh and Sze, 2014; Kuchaiev et al., 2010;

Milenković et al., 2010b; Saraph and Milenković, 2014), clustering

(Hulovatyy et al., 2014a; Solava et al., 2012) or de-noising

(Hulovatyy et al., 2014b), as well as for various application prob-

lems in computational biology, such as studying human aging

(Faisal et al., 2014; Faisal and Milenković, 2014), cancer (Ho et al.,

2010; Milenković et al., 2010a) and other diseases (Wang et al.,

2014), pathogenicity (Milenković et al., 2011; Solava et al., 2012)

or receptor–ligand interactions (Singh et al., 2014).

1.2.2 Temporal networks

Just as static networks, temporal networks can be studied by con-

sidering evolution of their global properties (Leskovec et al., 2005;

Nicosia et al., 2012). Since this again leads to imprecise insights into

network changes with time, recent focus has shifted onto local-level

dynamic network analysis via notion of ‘temporal motifs’. In the

simplest case of the static-temporal approach, static motifs are

counted in each snapshot and then their counts are compared across

the snapshots (Braha and Bar-Yam, 2009). To overcome this

approach’s limitation of ignoring any motif relationships between

different snapshots, the notion of static network motifs has been ex-

tended into several notions of temporal motifs (Bajardi et al., 2011;

Chechik et al., 2008; Jurgens and Lu, 2012; Kovanen et al., 2011,

2013; Zhao et al., 2010). However, the temporal motif approaches

suffer from the following drawbacks. (1) They only deal with motif

structures of limited size or topological complexity (e.g. linear paths)

(Bajardi et al., 2011; Jurgens and Lu, 2012; Zhao et al., 2010),

which limits their practical usefulness to capture complex network

structure in detail. (2) They pose additional constraints, such as lim-

iting the number of events (temporal edges) a node can participate

in at a given time point (Kovanen et al., 2011, 2013). (3) They allow

for obtaining the motif-based topological ‘signature’ of the entire

network only but not of each individual node (Bajardi et al., 2011;

Braha and Bar-Yam, 2009; Chechik et al., 2008; Jurgens and Lu,

2012; Kovanen et al., 2011, 2013; Zhao et al., 2010), whereas the

latter is useful when aiming to link the network topological position

of a node to its function via, e.g. network alignment or clustering.

(4) Importantly, like static motifs, all temporal motif approaches

rely on a null model, which again questions their practical usefulness

(Artzy-Randrup et al., 2004; Milenković et al., 2008, 2009),

Fig. 1. Illustration of the difference between static and dynamic graphlets. (a)

All nine static graphlets with up to four nodes, along with their 15 ‘node sym-

metry groups’ (or formally, automorphism orbits) (Milenković and Pržulj,

2008; Pržulj et al., 2004). Within a given graphlet, different orbits are denoted

by different node colors. For example, there is a single orbit in graphlet G2, as

all three nodes are topologically identical to each other. But there are two

orbits in graphlet G2, as the two end nodes are topologically identical to each

other but not to the middle node (and vice versa). (b) All dynamic graphlets

with up to three events, along with their automorphism orbits. Multiple

events along the same edge are separated with commas. Node colors corres-

pond to different orbits. (c) All four dynamic graphlets Di whose static back-

bone is G1
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especially since choosing an adequate null model is even harder in

the dynamic than static setting.

Analogous to extending the notion of network motifs from the

static to dynamic setting, recently, we used graphlets as a basis of a

static-temporal approach to study human aging from biological net-

works (Faisal and Milenković, 2014). We counted static graphlets

within each snapshot (corresponding to a given human age), and

then we studied the time-series of the results to gain insights into

network structural changes with age (Faisal and Milenković, 2014).

In this initial study, we only used the static graphlets within a static-

temporal approach that ignored important relationships between

different snapshots, in order to demonstrate that accounting for at

least some temporal information in the static-temporal fashion can

improve results compared with using the traditional static (aggre-

gate) approach. Further important temporal inter-snapshot informa-

tion remains to be explored via a novel truly temporal approach. We

aim to develop such an approach, as follows.

1.3 Our contribution
To overcome the issues of the existing methods for temporal net-

work analysis, we take the well-established static graphlets to the

next level to develop new theory of dynamic graphlets that allow for

efficient temporal analysis. Unlike the existing temporal motif

approaches, our dynamic graphlets allow for all of the following. (1)

They can study topological and temporal structures of arbitrary

complexity, as permitted by available computational resources. (2)

There are no limitations on, e.g. the number of events that a node

can participate in. (3) They can capture the topological signature of

the entire network and of each individual node. (4) They allow for

studying temporal networks without relying on a null model. Also,

unlike the existing static-temporal graphlet approach, dynamic

graphlets explicitly account for inter-snapshot relationships.

Of the existing methods, the closest to our study are temporal

motifs as defined in Kovanen et al. (2011), static graphlets

(Milenković and Pržulj, 2008; Pržulj et al., 2004) and static-temporal

graphlets (Faisal and Milenković, 2014). Since temporal motifs de-

pend on a null model and have other limitations, they cannot be dir-

ectly and fairly compared with our dynamic graphlets. Static and

static-temporal graphlets are directly comparable with our dynamic

graphlets. By comparing the different graphlet approaches, we can

fairly evaluate the effect on result accuracy of the amount of temporal

information that each graphlet approach can consider.

In the rest of the article, we formally define our novel notion of

dynamic graphlets (Section 2). We thoroughly evaluate their ability

to characterize the structure and function of an entire temporal net-

work as well as of individual nodes. Namely, on both synthetic and

real-world temporal network data, we measure how well our

approach can group (i.e. cluster) temporal networks (or nodes) of

similar structure and function and separate dissimilar networks (or

nodes). We find that our dynamic graphlet approach outperforms

both static and static-temporal graphlet approaches in all of these

tasks (Section 3). This confirms our hypothesis that accounting for

more temporal information helps. We demonstrate one possible

application of dynamic graphlets: to study age-specific structural

and functional changes in the cell from temporal aging-related

molecular network data of human (Section 3.4).

2 Methods

We introduce dynamic graphlets in Section 2.1, give an algorithm for

their counting in Section 2.2 and describe our evaluation in Section 2.3.

2.1 Dynamic graphlets
Let G(V, E) be a temporal network, where V is the set of nodes and

E is the set of events (temporal edges) that are associated with a start

time and duration (Holme and Saramäki, 2012). An event can be

represented as a 4-tuple ðu; v; tstart;rÞ, where u and v are its endpoint

nodes, tstart is its starting time and r is its duration. Thus, each event

is linked to a unique edge in the aggregate static network, whereas

each static edge may be linked to multiple events with different start-

ing times. Note that here we consider undirected events, but most

ideas can be extended to directed events as well.

Given a temporal network (as defined above), our goal is to ex-

tend the notion of static graphlets in order to capture how the net-

work neighborhood of a node changes over time. For example, since

multiple events can occur over the same edge, the same static graph-

let G1 (Fig. 1a) can correspond to multiple dynamic graphlets

(defined below), such as D4 and D6 (Fig. 1b), depending on the

order of events in the temporal network. For this reason, we aim to

develop methodology that allows for distinguishing between such

different temporal network structures.

To formalize this desired intuition of dynamic graphlets, we first

introduce the notion of a time-respecting path, whose goal is to con-

nect two nodes so that for any two consecutive events in the path, the

later event starts no later than Dt time after the earlier event ends (i.e.

so that the two events are Dt-adjacent). Formally, we say that two

nodes s and d are connected by a Dt-time-respecting path if there is a

sequence of events ðv0;u0; t0;r0Þ; ðv1; u1; t1; r1Þ, . . . ; ðvk; uk; tk; rkÞ,
such that v0 ¼ s, uk¼d, 8i 2 ½0;k� 1� ui ¼ viþ1 and

tiþ1 2 ½ti þ ri; ti þ ri þ Dt�. The above Dt constraint allows a user to

control how much time (at most) can pass between two events so that

they are considered to be consecutive (i.e. Dt-adjacent).

Given the above definitions, a temporal network is called

Dt-connected if for any (unordered) pair of nodes there exists a

Dt-time-respecting path between the two nodes. Also, we define a

G0ðV 0;E0Þ to be a temporal subgraph of G with V 0 � V and E0 � E,

where E0 is restricted to nodes in V 0. Then, a dynamic graphlet is an

equivalence class of isomorphic Dt-connected temporal subgraphs;

equivalence is taken with respect to the relative temporal order of

events, without considering the events’ actual start times. Hence,

two Dt-connected temporal subgraphs will correspond to the same

dynamic graphlet if they are topologically equivalent and their cor-

responding events occur in the same order. Figure 1b illustrates all

dynamic graphlets with up to three events, but we evaluate larger

graphlets as well.

Note that if for a given dynamic graphlet with n nodes and

k events we discard the order of the events and remove duplicate

events over the same edge, we get a static graphlet with n nodes and

k0�k edges (e.g. G1 from D6), which we call the backbone of the

dynamic graphlet. Each dynamic graphlet has a single backbone,

while one backbone can correspond to different dynamic graphlets

(Fig. 1c and Supplementary Table S1).

The above definitions allow us to describe all dynamic graphlets

of a given size in the entire network, in order to obtain topological

signature of the network. There already exists a popular notion of

topological signature of an individual node in a static network,

called the graphlet degree vector (GDV) of the node, which describes

the number of each of the static graphlets that the node ‘touches’ at

a specific ‘node symmetry group’ (or automorphism orbit) (Fig. 1a)

(Milenković and Pržulj, 2008). Here, we aim to describe the node’s

dynamic GDV equivalent. In this case, automorphism orbits of a dy-

namic graphlet will be determined based on both topological (as in

static case) and temporal (unlike in static case) positions of a node
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within the dynamic graphlet. Thus, a dynamic graphlet with n>2

nodes will have n different orbits (Fig. 1b), whereas the number of

orbits in a static graphlet of size n is typically less than n (Fig. 1a);

only for a dynamic graphlet with n¼2 (e.g. D3), there will be only

one orbit, since events are undirected and thus the two end nodes in

such a graphlet are topologically equivalent.

Next, we aim to compute D(n, k), the number of dynamic graph-

let types with n nodes and k events. Since at least n – 1 edges are

needed to connect n nodes, it follows that Dðn;kÞ ¼ 0 for k < n� 1.

Further, since our events are undirected, if follows that Dð2;kÞ ¼ 1,

for any k. To compute D(n, k) when n�3 and k�n� 1, notice

that each dynamic graphlet with k events can be formed from a

dynamic graphlet with k – 1 events and either n – 1 or n nodes, by

adding a new event between some two existing nodes or between

an existing node and a new node, respectively (Fig. 2). From

these observations, we get the following recursive formulas for

D(n, k): Dð3; kÞ ¼ 3Dð3; k� 1Þ þDð2;k� 1Þ;n ¼ 3 and Dðn; kÞ ¼
ð2n� 3ÞDðn; k� 1Þ þ 2Dðn� 1; k� 1Þ;n > 3, plus the correspond-

ing closed-form solution (Supplementary Section S1 and Table S2):

Dðn; kÞ ¼
Xn�2

i¼0

ð�1Þnþi
�

n� 2
i

�
ð2iþ 1Þk�1

2ðn� 2Þ! ; n�3:

Since now we can compute D(n, k), we next consider the task of

enumerating and generating each of these dynamic graphlet types

(in Section 2.2, we discuss the process of counting each of the gener-

ated graphlets in a given network). We build upon the fact that each

dynamic graphlet with k events has a unique ðk� 1Þ-‘prefix’

(see above). Thus, we start with a single event (dynamic graphlet

D0 with n¼2 and k¼1) as the current graphlet and then recursively

extend the current graphlet until the desired size is reached.

Supplementary Algorithm S1 illustrates our enumeration procedure.

2.2 Counting dynamic graphlets in a network
As now we know the number of dynamic graphlet types of a given

size and how to enumerate and generate each one of them, how to

actually count each of the dynamic graphlets in a given network?

Here, we discuss key ideas behind our counting procedure; for a

detailed description and the corresponding algorithms, see

Supplementary Section S2.

We perform dynamic graphlet counting in the same way as we

generate the graphlet types. That is, for each event in a temporal net-

work, we use this event as the current dynamic graphlet (of type D0)

and then search for larger graphlets that are grown recursively from

the current one (Fig. 3). Supplementary Algorithms S2–S4 describe

this procedure. Its running time depends on the structure of the

given temporal network. In general, since the algorithm explicitly

goes through every dynamic graphlet that it counts, the running

time is proportional to the number of dynamic graphlets. For a net-

work with D Dt-adjacent event pairs, counting all dynamic graphlets

with up to k events takes O jEj þ jEj D
jEj

� �k�1
� �

. As with static

graphlets, the running time of exhaustive dynamic graphlet counting

is exponential in graphlet size (but is still practical, as we will show).

Yet, as elegant non-exhaustive approaches were proposed for faster

static graphlet counting (Hočevar and Demšar, 2014; Marcus and

Shavitt, 2012; Rahman et al., 2014), similar techniques can also be

sought for dynamic graphlet counting.

In a network having dense neighborhoods or many events over

the same nodes, a given dynamic graphlet type will likely be detected

more times than in a network having sparse neighborhoods and few

events between the same nodes. Thus, dynamic graphlet counting in

the former network type will be computationally expensive, due to

having to consider a large number of occurrences of a given graphlet

type. Moreover, the occurrences of a given graphlet type will likely

be just artifacts of the consecutive snapshots ‘sharing’ the same

(dense) network structure. Thus, we propose a modification to the

counting process that is expected to reduce the count for a given dy-

namic graphlet type, as illustrated in Figure 3 and described in

Supplementary Section S2. This modification, which we call con-

strained dynamic graphlet counting, is consequently expected to re-

duce computational complexity of the counting process compared

to the regular dynamic graphlet counting procedure described above

(which we will demonstrate in Section 3). Importantly, this change

from regular to constrained dynamic graphlet counting affects only

Fig. 2. Illustration of how we extend a dynamic graphlet with an additional

more recent event, on the example of D9. There are seven possible exten-

sions of D9 (which contains four nodes and three events) with the most recent

event 4 (shown in bold) into a dynamic graphlet with four events. Five of the

extensions keep the same number of nodes but increment the number of

events, while the remaining two extensions increment both the number of

nodes and events. Note that in order to extend D9 with event 4, at least one

of the nodes involved in event 3 has to participate in event 4 as well

Fig. 3. Illustration of our dynamic graphlet counting procedure. The temporal

network is a sequence of three snapshots. Dashed lines denote instances of

the same node in different snapshots. Colored lines denote the path of how

the temporal network is explored in order to count the given dynamic graph-

let. Regular dynamic graphlet counting will detect all three of the dynamic

graphlets D1 (involving nodes c and f ), D2 (involving nodes c, d and f ), and

D9 (involving nodes a, b, c and d ). Constrained dynamic graphlet counting

(Supplementary Section S2) will detect only the first two dynamic graphlets,

but not D9. This is because nodes c and d are interacting in both the second

and third snapshots. That is, according to constrained counting, the event be-

tween c and d at time t3, which is necessary for identifying a graphlet D9 in

the network, is considered to be redundant to the event between c and d at

time t2. As such, the event between c and d at time t3 is ignored by con-

strained counting and thus no D9 can be detected
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the count of how many times a given dynamic graphlet type appears

in the network of interest; it does not affect what graphlet types will

be searched for and counted in the network.

2.3 Experimental setup
2.3.1 Graphlet methods under consideration and network

construction

We compare static, static-temporal, dynamic and constrained

dynamic graphlets. To count static graphlets in a temporal network,

we aggregate the temporal data into a single static network, by keep-

ing the node set the same, and by adding an edge between two nodes

in the static network if there are at least w events between these

nodes in the temporal network. For other methods, we use a snap-

shot-based network representation: we split the whole time interval

of the temporal network into time windows of size tw, and for each

window, we construct a static snapshot by aggregating the temporal

data during this window with the parameter w, as above. We tested

multiple values of w and tw (Supplementary Section S3). Since we

observed no qualitative differences in results of the different choices,

we report results for w¼1 and tw¼2, unless noted otherwise. Note

that in all studied networks all events are instantaneous (i.e. ri ¼ 0

for each event ei). Also, for static and static-temporal graphlets, we

vary the number of graphlet nodes n, and for dynamic and con-

strained dynamic graphlets, we vary both the number of graphlet

nodes n and the number of graphlet events k. Here, we report results

for multiple parameter choices.

2.3.2 Network classification

An approach that captures network structure (and function) well

should be able to group together similar networks (i.e. networks

from the same class) and separate dissimilar networks (i.e. networks

from different classes) (Yaveroğlu et al., 2014). To evaluate our

(constrained) dynamic graphlets against static and static-temporal

graphlets in this context, we generate a set of synthetic (random

graph) temporal networks of nine different classes corresponding to

nine different versions of an established network evolution model

(see below) (Leskovec et al., 2008). We use synthetic temporal net-

work data because obtaining real-world temporal network data for

multiple different classes and with multiple examples per class is

hard. And even if a wealth of temporal network data were available,

we typically have no prior knowledge of which real-networks are

(dis)similar, i.e. which networks belong to which functional class.

The network evolution model that we use was designed to simu-

late evolution of real-world social networks. The model is parame-

terized by the node arrival function that corresponds to the number

of nodes in the network at a given time, a parameter that controls

the lifetime of a node, and parameters that control how active the

nodes are in adding new edges. By choosing different options for the

model parameters, we generate networks with nine different evolu-

tion processes (Supplementary Section S3).

To test the robustness of the graphlet methods to the network

size, in each of the nine network classes, we test three network sizes:

1000, 2000 and 3000 nodes. For each network size and class, we

generate 25 random graph instances. We report results for the larg-

est network size of 3000 nodes. Results for the other network sizes

were qualitatively similar.

Given the resulting aggregate or snapshot-based network repre-

sentations, we then compute static, static-temporal or (constrained)

dynamic graphlet counts in each network and reduce the dimension-

ality of the networks’ graphlet vectors with principle component

analysis (PCA). We consider as few PCA components as needed to

account for at least 90% of variation. Here, this leads us to con-

sidering the first two PCA components. Then, we use Euclidean dis-

tance in this PCA space as a network distance measure and evaluate

whether networks from the same class are closer in the graphlet-

based PCA space than networks from different classes, as described

below.

In addition to studying the nine versions of the above network

model that was originally proposed in the domain of social net-

works, we perform the same analysis on four different versions of

two well-established network models from the computational biol-

ogy domain: geometric gene duplication model with probability cut-

off (Pržulj et al., 2010) and scale-free gene duplication model

(Vazquez et al., 2001). Both models start with a small initial seed

network and then grow it by adding new nodes while relying on

principles of gene duplication and mutation. The models were

shown to mimic well evolution of protein–protein interaction net-

works (Pržulj et al., 2010). For more details, see Supplementary

Section S3.

2.3.3 Node classification

We also evaluate whether the graphlet methods can group together

similar nodes (rather than entire networks). We measure the ability

of the methods to distinguish between functional node labels (i.e.

classes) based on the nodes’ graphlet-based topological signatures.

As a proof of concept, we do this on a publicly available Enron data-

set (Priebe et al., 2005), which is both temporal and contains node

labels. Unfortunately, availability of additional experimentally

inferred temporal and labeled network data is limited. (In Section

3.4, we use a computationally inferred network from the computa-

tional biology domain to study human aging.) The Enron network is

based on email communications of 184 users from 2000 to 2002,

with seven user roles in the company as node labels: CEO, president,

vice president, director, managing director, manager and employee.

For an aggregate or snapshot-based network (Supplementary

Section S3), we compute static, static-temporal or (constrained) dy-

namic graphlet counts of each node in the network and reduce the

dimensionality of the given node’s graphlet vector with PCA. Here,

we need to keep the first three PCA components to account for at

least 90% of variation. We use Euclidean distance as a node distance

measure, and evaluate whether same-label nodes are closer in the

PCA space than nodes with different labels, as follows.

2.3.4 Evaluation strategy

Given a set of objects (networks or nodes), graphlet-based PCA dis-

tances between the objects, and the objects’ ground truth classifica-

tion (with respect to nine/four network classes or seven node labels),

we evaluate a graphlet approach by measuring if it correctly places

close (far) in the PCA space those objects whose classes match (do

not match). First, we sort all object pairs in terms of their increasing

distance, and consider k closest pairs. Then, we compute the accur-

acy in terms of precision, the fraction of class-matching pairs out of

the considered pairs, and recall, the fraction of considered class-

matching pairs out of all class-matching pairs (Supplementary

Section S3). We find the value of k where precision and recall are

equal, and we refer to this precision and recall value as the break-

even point. Since lower precision means higher recall, and vice versa,

we combine the two measures into F-score and report the maximum

F-score over all values of k. To summarize these results over the

whole [0–100%] range of k, we measure average method accuracy

by computing the area under the precision-recall curve (AUPR).

Also, we compute the area under the receiver operator characteristic
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curve (AUROC) (Supplementary Section S3). AUPRs are more cred-

ible than AUROCs when there exists imbalance between the size of

the set of class-matching object pairs and non-matching pairs. With

the expectation that PCA distances between class-matching pairs

would be statistically significantly lower than distances of non-

matching pairs, we compare two sets of distances via Wilcoxon

rank-sum test (Supplementary Section S3) (Hulovatyy et al., 2014a).

For each of these evaluation tests, we evaluate all graphlet methods

against a random approach (Supplementary Section S3).

3 Results and discussion

We evaluate our novel (constrained) dynamic graphlet approach

against the existing static and static-temporal graphlet approaches

in the context of two evaluation tasks: network classification

(Section 3.1) and node classification (Section 3.2). Also, we dis-

cuss the effect of different method parameters on the results

(Section 3.3). We present a real-life computational biology applica-

tion of dynamic graphlets in the context of studying human aging

(Section 3.4).

3.1 Network classification
First, we test how well the different methods distinguish between

nine classes of synthetic temporal networks based on the networks’

graphlet counts; here, the networks come from a well-established

network model that was originally proposed in the social network

domain. The different evaluation criteria give consistent results:

while according to Wilcoxon rank-sum test, all methods have

intra-class distances significantly lower than inter-class distances

and thus show non-random behavior (P-values<10�100), (con-

strained) dynamic graphlets are superior in terms of both accuracy

and computational complexity, followed by static-temporal and

static graphlets, respectively (Fig. 4 and Supplementary Table S3).

Regular dynamic graphlets perform better than constrained

dynamic graphlets in terms of accuracy; the two are comparable in

terms of computational complexity (Supplementary Tables S3

and S4).

Second, we perform the same analysis on four different classes of

synthetic temporal networks that come from the computational

biology domain. The results are qualitatively similar to those from

Figure 4: (constrained) dynamic graphlets outperform both static

and static-temporal graphlets (Supplementary Fig. S1).

3.2 Node classification
Also, we test how well the different methods distinguish between

seven different classes of nodes in a real-world network based on the

nodes’ graphlet counts. The different evaluation criteria give consist-

ent results: while according to Wilcoxon rank-sum test, all methods

have intra-class distances significantly lower than inter-class dis-

tances and thus show non-random behavior (P-values<10�100), just

as with network classification, (constrained) dynamic graphlets are

again superior both in terms of accuracy and computational com-

plexity, followed by static-temporal graphlets, followed by static

graphlets (Fig. 4 and Supplementary Table S5).

Constrained dynamic graphlet counting takes significantly less

time than regular dynamic graphlet counting (Supplementary

Table S5), which justifies our motivation behind constrained count-

ing. This speedup allows us to consider larger graphlet sizes (e.g. six

or seven nodes) that are not attainable when using regular dynamic

graphlet counting due to computational constraints. Nonetheless,

constrained dynamic graphlet counting outperforms regular

dynamic graphlet counting even when controlling for graphlet size

(Supplementary Section S4 and Table S5).

Importantly, the four graphlet methods differ not only quantita-

tively (as shown above) but also qualitatively: static, static-temporal

and (constrained) dynamic graphlets identify different nodes as

topologically similar (Supplementary Fig. S2).

3.3 Effect of graphlet size on results
We test the effect on results of graphlet size in terms of the number

of nodes as well as events (Supplementary Section S4). For net-

work classification, increasing the values of these parameters does

not always improve accuracy, while it (drastically) increases the

running time of graphlet counting (Supplementary Tables S3 and

S4). Thus, using smaller graphlets should suffice to achieve satis-

factory accuracy at a reasonable computational complexity. On

the other hand, for node classification, using larger graphlets gen-

erally improves the performance. Nonetheless, there is an effect of

diminishing returns with increase of graphlet size (Supplementary

Table S5). This again implies that using smaller graphlets might

suffice.

The decrease of performance with increase of graphlet size in the

task of network classification (but not node classification) is not

alarming. Similar behavior has already been observed in static net-

work research (Hulovatyy et al., 2014b; Yaveroğlu et al., 2014). A

possible explanation for such behavior is discussed in

Supplementary Section S4. Further theoretical and empirical ana-

lyses of this behavior are subject of future work.

Fig. 4. Comparison of the graphlet approaches in the context of network and

node classification, in terms of (a) AUPR and AUROC values and (b) preci-

sion-recall curves. For each method, the highest-scoring graphlet size is

chosen. For other parameter choices, see Supplementary Tables S3 and S5
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3.4 Application to aging
3.4.1 Motivation

As susceptibility to diseases increases with age, studying human

aging is important. However, doing so experimentally is hard due to

long lifespan and ethical constraints. Network research can be used

to deepen current limited knowledge about human aging that has

been obtained mainly via other computational methods, e.g. ana-

lyses of gene expression or sequence data (Kriete et al., 2011). Here,

we aim to complement existing static (Faisal et al., 2014; Ferrarini

et al., 2005) or static-temporal (Faisal and Milenković, 2014) net-

work efforts to study human aging with our new temporal ap-

proach—(constrained) dynamic graphlets.

We already used a static graphlet-based node centrality measure

(Milenković et al., 2011), along with six other centrality measures,

to study human aging (Section 1.2) (Faisal and Milenković, 2014).

Because it is hard to experimentally obtain large-scale temporal mo-

lecular network data due to limitations of biotechnologies for data

collection, we integrated the current static protein–protein inter-

action network of human (Peri et al., 2004) with aging-related gene

expression data (Berchtold et al., 2008) to computationally infer

temporal age-specific network data. Then, we predicted as aging-

related those genes whose network centralities significantly changed

with age. In that study, we computed centrality of each node in each

snapshot and analyzed the time-series of the results. Hence, that was

a static-temporal approach. The study resulted in the set of 537

aging-related gene candidates, which we called DyNetAge, and

which we validated in a number of ways.

Here, we use the same temporal age-specific network data and

apply our dynamic graphlets to this dataset, to see whether we can im-

prove the prediction quality (i.e. gain additional aging-related predic-

tions) compared with the static-temporal DyNetAge approach. Also,

since the latter is quite different than our graphlet approaches from

this study (as it is based on the notion of changing node centralities

and on multiple measures of network topology), we also compare our

dynamic graphlets to the static and static-temporal graphlet

approaches from the previous sections. This allows for a fair evalu-

ation of the effect on prediction accuracy of the amount of temporal

information that each graphlet approach can consider.

3.4.2 Evaluation on known ‘ground truth’ aging-related data

Given the temporal network and two mutually exclusive node labels

(i.e. classes), corresponding to ‘aging-related gene’ if the given node

is present in DyNetAge or ‘non-aging-related gene’ if the given node

is absent from DyNetAge, we perform the same node classification

analysis as in Section 3.2: we ask whether aging-related genes are

closer to each other than to non-aging-related genes in the graphlet-

based PCA space (here, we need to consider the first two PCA com-

ponents to account for at least 90% of variation; Section 2.3). We

find that the results are consistent with those from Section 3.2: (con-

strained) dynamic graphlets are again superior compared with static

and static-temporal graphlets (Supplementary Fig. S3). Moreover,

similar results hold even when we use non-network-based ‘ground

truth’ aging-related data instead of DyNetAge (Supplementary

Figs S4 and S5).

The above analysis mimics precisely our node classification ana-

lysis from Section 3.2. Next, we perform a modified analysis: we do

not consider the entire k range (Section 2.3) but instead focus only

on high-scoring node pairs, i.e. on a low k threshold. We do this be-

cause we are interested in making as accurate predictions as possible

(corresponding to higher precision) at the expense of reducing the

number of predictions (corresponding to lower recall). Since

precision drastically decreases as we increase k while recall barely

increases (Supplementary Fig. S3), we study only the highest-scoring

node pairs. For illustration purposes, we choose two such values of

k: 0.00005 and 0.0001%. Since we are dealing with millions of

node pairs, even such low k values result in sufficiently many (hun-

dreds of) high-scoring node pairs. When we compare precision of

the graphlet methods at each of the two values of k, our dynamic

graphlets are again comparable or superior to static and static-tem-

poral graphlets (left side of Table 1). All methods have the same

(low) recall of 0.001, as expected for such small values of k. Similar

results hold when we use non-network-based ‘ground truth’ aging-

related data (Supplementary Table S6).

Finally, we perform an additional analysis to evaluate the differ-

ent graphlet approaches in the context of aging. Since in the follow-

ing section we aim to predict novel aging-related knowledge, and

since there are significantly many more non-aging-related than

aging-related genes in the network data, we perform the same evalu-

ation as above (considering the same two k values) while discarding

all of the highest scoring node pairs in which both genes are non-

aging-related. We do this because node pairs in which both genes

are non-aging-related would mistakenly lead to high precision (this

is exactly why the random approach has a high precision in the left

side of Table 1). Again, we find that dynamic graphlets are overall

superior to static and static-temporal graphlets (right side of

Table 1). Note that the lower precision values in the previous ana-

lysis (left side of Table 1) compared with this analysis (right side of

Table 1) are expected. This is because the number of false positives

(gene pairs involving an aging-related gene and a non-aging-related

gene) stays the same, while the number of true positives decreases

(since we have removed some of the true positive gene pairs, i.e.

those pairs involving two non-aging-related genes).

3.4.3 Evaluation of novel aging-related predictions

The above analysis suggests that because dynamic graphlets do not

achieve precision of 1 (Table 1), they rank as high-scoring a node

pair in which one gene is aging-related while the other one is not.

Given this scenario, we hypothesize that the non-aging-related gene

in such a pair is actually aging-related (i.e. that it was missed by the

DyNetAge study) and we predict it as such. We generalize this pre-

diction strategy to all graphlet approaches. This way, static, static-

temporal, dynamic and constrained dynamic graphlets produce 84,

16, 16 and 80 novel aging-related predictions at the first k threshold

and 86, 43, 47 and 81 novel predictions at the second k threshold,

respectively (Supplementary Fig. S6 and Table S7).

Table 1. Precision of the different methods in the context of aging

at the two k values when considering all node pairs (left) and ignor-

ing all node pairs in which both genes are non-aging-related (right)

Considering

all node pairs

Ignoring

non-aging-related

node pairs

k1 k2 k1 k2

Static 0.981 0.981 0.492 0.489

Static-temporal 0.992 0.992 0.915 0.788

Dynamic 0.998 0.998 0.983 0.784

Constrained dynamic 0.993 0.993 0.684 0.681

Random 0.850 0.851 0.041 0.035

For each method, the highest-scoring graphlet size is chosen. In a column,

the value in bold is the best result over all methods.
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Next, we aim to validate each approach’s predictions by measur-

ing their gene, functional [i.e. Gene Ontology (GO)] (Ashburner

et al., 2000), and disease (Du et al., 2009) overlaps with independ-

ent known ‘ground truth’ aging-related data, as described in (Faisal

and Milenković, 2014). The more statistically significant and larger

the overlap, the better the given approach. Here, we find that dy-

namic or constrained dynamic graphlets are superior to static and

static-temporal graphlets in 67% of all tests, and they are compar-

able in the remaining 33% of all tests (Table 2). Thus, (constrained)

dynamic graphlets not only improve the prediction quality of the

DyNetAge approach and uncover the known aging-related know-

ledge more precisely than static or static-temporal graphlets, but

also, more of their novel knowledge can be validated.

When we qualitatively zoom into the results from Table 2, we

find evidence that the novel knowledge predicted by (constrained)

dynamic graphlets is indeed aging-related. First, functional overlap

is significant (P-values<0.05) between dynamic graphlets and each

‘ground truth’ dataset, for each k value; only in one case, P-value is

only marginally significant (0.06). Some significant functional over-

laps also exist for static-temporal graphlets. For the second k value,

only dynamic graphlets significantly overlap (P-value of 4� 10�4)

with SequenceAge (de Magalhães et al., 2009), the most trusted

source of ‘ground-truth’ aging-related knowledge in human ob-

tained mainly via genomic sequence analyses. Second, for both k

values, only predictions resulting from (constrained) dynamic graph-

lets are enriched in some diseases that the ‘ground truth’ data are

also enriched in; this does not hold for static or static-temporal

graphlets. Dynamic graphlets’ disease overlap with SequenceAge is

significant (P-value of 0.03) for the second k value.

Zooming further into the two overlaps of DyNetAge and

SequenceAge at the second value of k, while nine GO terms overlap

between dynamic graphlets’ predictions and SequenceAge, eight

additional GO terms are enriched in predictions of dynamic graph-

lets but not in those from SequenceAge (Supplementary Table S8).

Similarly, while four diseases (Parkinson disease, oral cancer,

chronic obstructive airway disease and embryoma) overlap between

the two datasets, bipolar disorder is also enriched in dynamic graph-

lets’ predictions but not in SequenceAge. However, we find litera-

ture evidence that many of these GO terms and diseases that are

enriched in dynamic graphlets’ predictions but not in SequenceAge

are actually linked to aging. One such GO term is response to zinc

ion, and we find that carnosine, which serves as a metal ion (e.g.

zinc) chelator, possesses anti-aging functions [PubMed ID (PMID):

25158972]. Another such GO term is rRNA processing, and we find

that human N-acetyltransferase 10 is both a promising target for

therapies against premature aging and a catalyzer involved in rRNA

processing (PMID: 25411247). Additional such GO terms are xeno-

biotic metabolic process, cellular metabolic process, cellular protein

metabolic process, and we find the following. First, when analyzing

gene expression profiles associated with the early steps of age-

related cell transformation, bioinformatics analyses highlighted

metabolic pathways, the top scoring one being the metabolism of

xenobiotics by cytochrome P450 (PMID: 24929818). Second, a link

has already been established between metabolism and many aging-

related diseases, including Alzheimer’s disease, stroke, diabetes

(PMID: 25538685). The disease enriched in dynamic graphlets’ pre-

dictions but not in SequenceAge is bipolar disorder, and we find the

following. First, mood disorders, such as bipolar one, are associated

with accelerated aging (Simon et al., 2006). Second, protein S100B

is both elevated in mood disorders and linked to aging, with higher

levels in elderly depressed subjects (PMID: 23701298). Third, bipo-

lar disorder causes mitochondrial dysfunction (Kato and Kato,

2000), and the latter in turn is a cause of aging (PMID: 18226094).

These results further validate novel aging-related predictions of

Table 2. Overlaps (given as percentages of the smaller of the compared data sets), along with P-values of the overlaps (shown in parenthe-

ses), of (1) genes, (2) enriched functions and (3) enriched diseases, between each graphlet approach’s novel predictions and the three inde-

pendent ‘ground truth’ aging-related datasets (BrainExpression2004Age, BrainExpression2008Age and SequenceAge), for the two k values

Overlap type Method ‘Ground-truth’ aging-related data

BrainExpression2004Age BrainExpression2008Age SequenceAge

k1 k2 k1 k2 k1 k2

1. Gene Static 2.4% (0.81) 2.3% (0.82) 40.5% (0.14) 39.5% (0.18) 0.0% (N/A) 0.0% (N/A)

Static-temporal 0.0% (N/A) 0.0% (N/A) 50.0% (0.14) 39.5% (0.28) 0.0% (N/A) 0.0% (N/A)

Dynamic 0.0% (N/A) 0.0% (N/A) 50.0% (0.14) 27.7% (0.87) 0.0% (N/A) 0.0% (N/A)

Constrained dynamic 3.8% (0.56) 3.7% (0.57) 41.3% (0.11) 40.7% (0.13) 0.0% (N/A) 0.0% (N/A)

2. Functional Static 9.1% (N/A) 6.7% (N/A) 36.4% (9E-03) 33.3% (6E-03) 18.2% (0.54) 13.3% (0.71)

Static-temporal 10.5% (0.05) 0.0% (N/A) 25.0% (1E-05) 75.0% (2E-03) 35.5% (2E-05) 25.0% (N/A)

Dynamic 10.5% (0.05) 17.6% (0.06) 25.0% (1E-05) 47.1% (3E-05) 35.5% (2E-05) 53.0% (4E-04)

Constrained dynamic 2.9% (N/A) 2.9% (N/A) 28.6% (4E-04) 28.6% (4E-04) 14.3% (0.67) 14.3% (0.67)

3. Disease Static 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A)

Static-temporal 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A)

Dynamic 0.0% (N/A) 20.0% (N/A) 0.0% (N/A) 0.0% (N/A) 0.0% (N/A) 80.0% (0.03)

Constrained dynamic 14.3% (N/A) 14.3% (N/A) 14.3% (N/A) 14.3% (N/A) 42.9% (0.33) 42.9% (0.33)

The first two ‘ground truth’ datasets have been derived via gene expression analyses, whereas the latter has been derived via genomic sequence analyses; see

Faisal and Milenković (2014) for details. ‘N/A’ is shown when there are fewer than two objects (genes, functions or diseases) in the overlap. Statistically significant

P-values (at 0.05 threshold) are shown in bold. Note that low P-values are extremely encouraging, since we are aiming to validate novel aging-related knowledge.

For the same reason, it is not necessarily discouraging when a result is not statistically significant (Faisal and Milenković, 2014). Also, note that a larger relative

(percent) overlap between two sets does not necessarily mean a lower P-value, as the P-value also depends on the size of the two sets of interest; see the description

of the hypergeometric test in e.g. Faisal and Milenković (2014). There are 3� 3� 2 ¼ 18 combinations of overlap type, ‘ground truth’ data, and value of k.

For each combination, the value in gray is the best result over the four graphlet methods. By ‘best result’, we mean the lowest P-value, if at least one of the four

P-values is significant; otherwise, we mean the largest overlap, unless the overlap is 0. In 12=18 ¼ 67%; 6=18 ¼ 33%, and 0=18 ¼ 0% of the combinations,

(constrained) dynamic graphlets are superior, comparable or inferior, respectively, to static and static-temporal graphlets.
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dynamic graphlets. Importantly, dynamic graphlets’ literature-

validated connections between GO terms or diseases and aging have

been missed by SequenceAge. This implies that our dynamic graph-

let approach can be used to complement not just the existing (static

and static-temporal) network research but also non-network

genomic sequence research.

3.5 Implementation of the methods
We make publicly available our software for (constrained) dynamic

graphlet counting (http://www.nd.edu/�cone/DG) Given as input a

temporal network of interest and the (maximum) graphlet size to be

considered, the software outputs a vector of (constrained) dynamic

graphlet counts for the entire temporal network as well as for each

individual node. To obtain static or static-temporal graphlet counts

of the entire aggregated network or of individual temporal

snapshots, respectively, one can use GraphCrunch (Kuchaiev et al.,

2011; Milenković et al., 2008).

As different input parameter values may be optimal for different

network types (e.g. networks from different domains), we recom-

mend testing several different combinations, as permitted by compu-

tational resources. A good starting point could be testing graphlets

with three to five nodes and five to seven events.

4 Conclusions

The increasing availability of temporal real-world network data

has raised new challenges to network researchers. While one can

use the existing static approaches to study the aggregate or

snapshot-based network representation of the temporal data,

doing so overlooks important temporal information from the data.

Hence, we develop a novel approach of dynamic graphlets that can

capture the temporal information explicitly. In a systematic and

thorough evaluation, we demonstrate the superiority of our

approach over its static counterparts. This confirms that efficiently

accounting for temporal information helps with structural and

functional interpretation of the network data. This in turn illus-

trates real-life relevance of our new dynamic graphlet method-

ology, especially because the amount of available temporal

network data is expected to continue to grow across many

domains, including computational biology.
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Holme,P. and Saramäki,J. (2012) Temporal networks. Phys. Rep., 519,

97–125.

Hsieh,M.-F. and Sze,S.-H. (2014) Finding alignments of conserved graphlets

in protein interaction networks. J. Comput. Biol., 21, 234–246.

Hulovatyy,Y. et al. (2014a) Network analysis improves interpretation of af-

fective physiological data. J. Complex Netw., 2, 614–636.

Hulovatyy,Y. et al. (2014b) Revealing missing parts of the interactome via

link prediction. PLoS One, 9, e90073.

Jurgens,D. and Lu,T.-C. (2012) Temporal motifs reveal the dynamics of editor

interactions in Wikipedia. In: The 6th International AAAI Conference on

Weblogs and Social Media, Dublin, Ireland, June 4–7.

Kato,T. and Kato,N. (2000) Mitochondrial dysfunction in bipolar disorder.

Bipolar Disord., 2, 180–190.

Kovanen,L. et al. (2011) Temporal motifs in time-dependent networks. J. Stat.

Mech.: Theory Exp., 2011, P11005.

Kovanen,L. et al. (2013) Temporal motifs reveal homophily, gender-specific

patterns, and group talk in call sequences. Proc. Natl Acad. Sci., 110,

18070–18075.

Kriete,A. et al. (2011) Computational systems biology of aging. Wiley

Interdisciplinary Rev.: Syst. Biol. Med., 3, 414–428.

Kuchaiev,O. et al. (2010) Topological network alignment uncovers biological

function and phylogeny. J. R. Soc. Interface, 7, 1341–1354.

Kuchaiev,O. et al. (2011) GraphCrunch 2: software tool for network model-

ing, alignment and clustering. BMC Bioinformatics, 12, 24.

Leskovec,J. et al. (2005) Graphs over time: densification laws, shrinking diam-

eters and possible explanations. In: Proceedings of the 11th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM

Press, pp. 177–187.

Leskovec,J. et al. (2008) Microscopic evolution of social networks. In:

Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM Press, pp. 462–470.

Lugo-Martinez,J. and Radivojac,P. (2014) Generalized graphlet kernels for

probabilistic inference in sparse graphs. Netw. Sci., 2, 254–276.
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