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Abstract

Among the fish of the genus Oryzias, two species are frequently used as model animals in

biological research. In Thailand, Oryzias mekongensis is usually found in natural freshwater

near the Mekong Basin in the northeast region, while O. songkhramensis inhabits the

Songkhram Basin. For differential morphological identification, the coloured bands on the

dorsal and ventral margins of the caudal fin are used to distinguish O. mekongensis from O.

songkhramensis. However, these characteristics are insufficient to justify species differenti-

ation, and little molecular evidence is available to supplement them. This study aimed to

investigate the molecular population and transcriptome profiles of adult O. mekongensis

and O. songkhramensis. In the molecular tree based on cytochrome b sequences, O.

mekongensis exhibited four clades that were clearly distinguished from O. songkhramensis.

Clade 1 of the O. mekongensis population was close to the Mekong River and lived in the

eastern portion of the upper northeast region. Clade 2 was far from the Mekong River and

inhabited the middle region of the Songkhram River. Clade 3 was positioned to the west of

the Songkhram River, and clade 4 was to the south of the Songkhram River Basin. After

RNA sequencing using an Illumina HiSeq 2500 platform, the gene category annotations

hardly differentiated the species and were discussed in the text. Based on the present find-

ings, population dispersal of these Oryzias species might be associated with geographic

variations of the upper northeast region. Molecular genetics and transcriptome profiling

might advance our understanding of the evolution of teleost fish.

Introduction

In the teleost genus Oryzias, commonly called “medaka” or “ricefish”, there are more than 25

recognized species in East Asia and Southeast Asia [1, 2]. Two species, Japanese medaka (O.

latipes) and Java medaka (O. javanicus), have been utilized as nonmammalian vertebrate
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models in many molecular biology studies [3, 4]. Experiments using medaka have been per-

formed in fields including molecular physiology, endocrinology, genetics and evolution [3, 5–

7]. In Thailand, five species of Oryzias have been reported: O. minutillus, O. javanicus, O. dan-
cena, O. mekongensis and O. songkhramensis [1, 8, 9]. Oryzias minutillus is found throughout

freshwater environments in all regions [10], while O. javanicus and O. dancena have a wide

range in brackish water [1].

In the northeast region of Thailand, O. mekongensis is widely found in natural freshwater,

such as paddy fields and shallow ponds, in the Mekong River Basin, while O. songkhramensis is

commonly found in the middle area of the upper northeast region based on the Songkhram

River Basin [8, 11]. For morphological identification, orange-red and black bands on the dor-

sal and ventral portions of the caudal fin are predominant in O. mekongensis [11]. In contrast,

light yellow and thin black bands appear on the dorsal and ventral margins of the caudal fin of

O. songkhramensis [8]. However, these characteristics are too obscure or insufficient to justify

the differentiation of O. mekongensis from O. songkhramensis in the overlapping habitats of

both species [12].

Cytochrome b (cytb) is a mitochondrial DNA-encoded polypeptide that has been used for

molecular genetic variation in several studies of bony fish [13–15]. Takehana et al. [16] previ-

ously clarified the natural distribution of wild Japanese medaka in association with geographic

variations based on the cytochrome b gene. The cytb gene is also a potential molecular genetics

tool to evaluate fish populations, including medaka [13–16]. In Thailand, only O. minutillus
has been investigated at the population genetics level in association with geographic variation

[12]. In contrast, the genetic diversity of O. mekongensis and O. songkhramensis in the north-

east region of Thailand remains unclear [12].

Transcriptome sequencing is an approach for the analysis of mRNAs that allows the investi-

gation of a set of RNA transcripts to obtain information about gene prediction, gene pathways

and gene function [17, 18]. This approach has provided profiles that improved our under-

standing of molecular processes in many organisms [19–22].

RNA sequencing (RNA-Seq) has been used to achieve transcriptome profiling in teleost

fish research [23]. For instance, previous works included transcriptome analysis of Selincuo

naked carp (Gymnocypris selincuoensis) [24], comparative transcriptome analysis of four Perci-

dae [25] and transcriptomic characterization of the response to ectoparasitic infection in man-

grove rivulus (Kryptolebias marmoratus) [26]. In fish species of Oryzias, transcriptome

sequencing data sets have been reported for O. javanicus, O. melastigma, O. latipes and O.

woworae [3, 27–30]. Recently, Ngamniyom et al. [12] provided transcriptome profiling data

for male and female O. minutillus.
Therefore, the aims of this study were to investigate the molecular populations and tran-

scriptome profiles of wild adult fish of O. mekongensis and O. songkhramensis from Thailand.

Furthermore, we emphasized the RNA-Seq data of both species of Oryzias to improve the

genetic resources for freshwater teleosts.

Materials and methods

Fish were randomly captured from shallow ponds, ditches and paddy fields in the northeast

region of Thailand by using a hand net (Fig 1A) and (Table 1). All field sites for fish sampling

were in public areas that did not require any special permit. To confirm the species of Oryzias,
adult fish individuals with a standard length (>18 mm) were anaesthetized with 100 mg/L tri-

caine methanesulfonate solution (MS-222) (Sigma-Aldrich, MO, USA). After anaesthesia, O.

mekongensis and O. songkhramensis were identified according to the key ricefish species in

Thailand described by Magtoon [8] and Termvidchakorna and Magtoon [9]. The caudal fins
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of O. mekongensis and O. songkhramensis were dissected from the fish bodies and stored in

absolute ethanol at −20˚C prior to DNA extraction. The procedure used for the sacrifice of fish

was consistent with the Canadian Council on Animal Care Guidelines on the Care and Use of

Fish in Research, Teaching and Testing, 2005 (https://www.ccac.ca/Documents/Standards/

Guidelines/Fish.pdf) and the National and Institutional Guidelines for Animal Care and Use

Fig 1. Map drawing of fish collections in the northeast region of Thailand. (A) Neighbour joining (NJ) method (B) and maximum likelihood (ML) method (C) for

the molecular trees of O. mekongensis and O. songkhramensis based on the mitochondrial cytb gene. Brown, red, blue and green circles indicate the individual sample of

O. mekongensis for each clade. Yellow circles represent the samples of O. songkhramensis. White circles indicate O. minutillus as an outgroup.

https://doi.org/10.1371/journal.pone.0242382.g001
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for Vertebrates from the Institute for Animals for Scientific Purpose Development (IAD)

National Research Council of Thailand (NRCT). The Animal Care and Use Committee of Sri-

nakharinwirot University provided ethics approval for all animal experiments in this study,

and the approval license was SWU-A-026_2562.

The genomic DNA of the medaka fin was extracted by using the DNeasy Blood & Tissue

Kit (Qiagen, Germany) according to the manufacturer’s protocol. The paired primers used for

DNA target amplification of cytb were 5´–ggACgCTCCgCTgCTAgCCC–3´ and 5´–

CCTggTTTgggAgTCAggg–3´ (~1394 bp) with Ex Taq polymerase (Takara, Japan). The PCR

thermal cycling steps consisted of an initial denaturation at 95˚C for 3 min; 33 cycles of dena-

turation for 30 s at 94˚C, annealing for 40 s at 55˚C, and extension for 2 min at 72˚C; and a

final extension for 5 min at 72˚C. The PCR products were confirmed on 1% agarose gels

Table 1. Geographic coordinates of collection sites and accession numbers of cytb sequences.

specimen geographic coordinate species accession number

Bueng Kan1 18˚23’45.2"N 103˚25’58.4"E O. songkhramensis MN657279

Bueng Kan35 18˚24’29.2"N 103˚27’40.4"E O. songkhramensis MN657280

NongBen2 18˚20’34.1"N 103˚39’50.4"E O. mekongensis MN657281

Nakorn Phanom ThaU3 17˚38’22.0"N 104˚26’02.5"E O. mekongensis MN657282

GudChap4 18˚24’00.6"N 103˚32’48.9"E O. songkhramensis MN657283

Nong Khai Rattanawapi5 18˚14’20.8"N 103˚11’13.6"E O. songkhramensis MN657284

Na Dong6 18˚16’11.2"N 103˚17’32.1"E O. songkhramensis MN657285

Sawang Daen Din8 17˚24’00.3"N 103˚21’25.5"E O. mekongensis MN657286

Na Kae10 16˚57’45.8"N 104˚27’48.8"E O. minutillus MN657287

Vientiane11 18˚12’17.0"N 102˚49’31.8"E O. songkhramensis MN657288

Udon NongK13 17˚43’04.3"N 102˚50’50.8"E O. minutillus MN657289

Mukdahan Aum14 16˚21’55.5"N 104˚33’24.8"E O. mekongensis MN657290

Chanuman15 16˚13’48.3"N 104˚59’09.7"E O. mekongensis MN657291

Si Songkhram16 17˚43’12.0"N 104˚19’06.2"E O. mekongensis MN657292

Mae Sod17 16˚42’27.2"N 98˚36’43.8"E O. minutillus MN657293

Pak Phli18 14˚05’37.1"N 101˚16’37.0"E O. minutillus MN657294

Si Wilai19 17˚57’31.1"N 104˚02’15.5"E O. mekongensis MN657295

Thung Yai20 17˚30’24.8"N 103˚12’03.2"E O. mekongensis MN657296

Seka22 18˚11’46.3"N 103˚44’57.1"E O. mekongensis MN657297

Wisit24 18˚22’17.0"N 103˚37’08.8"E O. mekongensis MN657298

Phon Charoen26 18˚01’32.0"N 103˚37’31.1"E O. mekongensis MN657299

Chai Sakon28 17˚20’48.2"N 104˚15’54.7"E O. mekongensis MN657300

SKusuman29 17˚21’47.7"N 104˚10’29.5"E O. mekongensis MN657301

Sophisai30 18˚08’25.4"N 103˚31’03.0"E O. mekongensis MN657302

Fao Rai31 17˚59’30.5"N 103˚23’16.4"E O. mekongensis MN657303

Nong Chun33 17˚35’46.7"N 104˚00’23.4"E O. mekongensis MN657304

Kan Bueng Kan34 18˚15’24.6"N 103˚52’10.9"E O. mekongensis MN657305

Phon Phisai36 18˚05’18.2"N 103˚04’57.7"E O. songkhramensis MN657306

Huai Plaeo Nuea37 18˚03’06.7"N 103˚08’07.3"E O. songkhramensis MN657307

Huai Plaeo Nuea38 18˚03’41.0"N 103˚08’56.4"E O. songkhramensis MN657308

Kut Suai39 17˚54’19.6"N 103˚03’12.3"E O. minutillus MN657309

Wat Luang40 17˚55’25.3"N 103˚03’28.6"E O. mekongensis MN657310

Nong han44 17˚15’39.3"N 104˚09’16.8"E O. mekongensis MN657311

Nakhon Phanom45 17˚36’42.3"N 104˚26’12.1"E O. mekongensis MN657312

os Nong46 18˚03’26.9"N 103˚05’25.4"E O. songkhramensis MN657313

https://doi.org/10.1371/journal.pone.0242382.t001
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stained with SmartGlow™ Safe Green Pre-Stain (Accuris Instruments, US) under a Blue light

DNA transilluminator, and they were extracted from the gels by using the QIAquick Gel

Extraction Kit (Qiagen, Germany) according to the manufacturer’s instructions. DNA

sequencing was conducted using an automated DNA analyser ABI 3730xl system (Applied

Biosystems, US). Nucleotide sequences were deposited in GenBank from the National Center

for Biotechnology Information (NCBI) with the following accession numbers:

MN657279-MN657313 for cytb. The nucleotide sequences of all samples were aligned and

trimmed with MUltiple Sequence Comparison by Log-Expectation (MUSCLE) software [31]

and curated using Gblocks [32]. Molecular trees with neighbour-joining and maximum likeli-

hood were generated and rendered using PhyML with 1000 bootstraps and TreeDyn [33].

Bootstrap support was justified at> 70%.

For RNA-Seq analysis, twenty males and twenty females of O. mekongensis (n = 40) sam-

pled evenly from all sites and twenty males and twenty females of O. songkhramensis (n = 40)

sampled equally from all sites were separated by sex and species and maintained in aquariums

containing freshwater without chlorine. The environments of the aquaria were established,

and the fish were allowed to acclimatize for 1 week under the following conditions: pH, 6.9–

7.3; salinity, 0.05–0.06 ppt; 27–29˚C; dissolved oxygen, 6.0–6.5 mg/L. The fish were fed ad libi-
tum 2 times per day with Kyorin Hikari food for medaka (Kyorin Food Industries, Hyogo,

Japan) under a photoperiod of 12 hr light:12 hr darkness. The water in the fish aquaria was

changed every day.

Total RNA extractions were performed by using an RNeasy Mini Kit (Qiagen, Germany)

according to the manufacturer’s instructions. During RNA purification, the nucleic solutions

were treated with RNase-free DNase I (Qiagen, Germany). The quality of the total RNA was

evaluated by gel electrophoresis in 1% agarose gels. The concentrations were quantified by

using Thermo Scientific™ NanoDrop 2000 and 2000c (Thermo Fisher Scientific, MA, USA)

and confirmed via Qubit 2.0 fluorometric quantitation (Thermo Fisher Scientific, MA, USA).

Equal concentrations of RNA of both species were preserved at –80˚C.

After the quality control procedures, the mRNAs were enriched from the total RNA using

oligo(dT)25 beads (200 ng RNA per sample), and fragments were randomly placed in RNA

fragmentation buffer (Illumina, CA, USA). The rRNA was removed using the Illumina Ribo-

Zero Plus rRNA Depletion Kit (Illumina, WI, USA). For first-strand synthesis, complementary

DNA (cDNA) synthesis was performed using a TruSeq mRNA kit (Illumina, CA, USA) with

random hexamers and a SuperScript1 III First-Strand Synthesis System (Invitrogen, CA,

USA). Second-strand cDNA was synthesized in a buffer (mRNAseq Illumina, CA, USA) sup-

plemented with E. coli polymerase I, RNase H and dNTPs, and the cDNAs were purified by

AMPure XP beads. The cDNA library quantification was measured by using a Qubit 2.0 fluo-

rometer, and the insert size was verified with an Agilent 2100 Bioanalyzer with an Agilent

RNA 6000 Nano Kit (Agilent Technologies, MD, USA). The sequencing was processed on a

HiSeq 2500 Sequencing System (Illumina, CA, USA) according to Dillies et al. [34]. The acces-

sion numbers of the transcriptome data were GSE142602, GPL27950, GSM4232740,

PRJNA635451 and SAMN15041390, which were deposited in a public functional genomics

database, the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and

Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra). For transcrip-

tome reconstruction, SOAPnuke v1.5.2 software was used to filter raw reads, low-quality

reads, noisy reads, adaptor-polluted reads and reads with a high content of unknown bases to

obtain clean reads. Trinity software (r20140413p1) composed of Inchworm, Chrysalis and

Butterfly was used to analyse the assembly data, and Tgicl v2.0.6 was applied to cluster tran-

scripts [35]. Nt (nucleotide) databases were annotated by using NCBI blast v2.2.23. Diamond

software v0.8.31 was used for Nr (NCBI non-redundant protein sequences), KOG (euKaryotic
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Orthologous Groups) and KAAS r140224 for KEGG (Kyoto Encyclopedia of Genes and

Genome). Pfam and protein prediction were analysed by the HMMER 3.0 package hmmscan

and Blast2GO v2.5.0. NR was used to carry out Gene Ontology (GO) annotation. KEGG anno-

tations were assigned by using the KEGG Automatic Annotation Server. KEGG enrichment

was performed with GOSeq 1.10.0, topGO 2.10.0 for GO and KOBAS v2.0.12 for KEGG. Swis-

sProt (UniProtKB/Swiss-Prot) was used for the manually annotated and reviewed database of

the UniProt Knowledgebase (UniProtKB) (http://ftp.ebi.ac.uk/pub/databases/swissprot). Uni-

genes encoding predicted transcription factors (TFs) were mapped to the AnimalTFDB2.0

database to obtain the TF family using getorf EMBOSS:6.5.7.0 with–minsize 150 parameters

and hmmsearch v3.0. Differentially expressed genes (DEGs) were identified according to the

gene expression levels of both groups by using DEGseq, DEseq2, EBseq, NOIseq and Possion-

Dis to detect the DEGs. The DEG identification methods used the log2-fold change ratios

between samples and the P value (cut off 0.05) and q-value for PossionDis or DEseq2. Heat-

maps of TF expression and DEGs were created with pheatmap and the appropriate function

of R.

Results

The O. songkhramensis populations were found to be limited to the upper west part of the

Songkhram River Basin, while the O. mekongensis populations were spread throughout the

upper northeast region based on the Mekong River Basin (Fig 1A). Regarding molecular varia-

tion based on the cytb gene, O. mekongensis (n = 20) was clearly isolated from O. songkhramen-
sis (n = 10) with bootstrap support (� 80%) and from O. minutillus (n = 5) (� 100%) for the

neighbour-joining and maximum likelihood methods (Fig 1B and 1C).

All specimens of O. mekongensis were monophyletic and were a sister group to the O.

songkhramensis populations. Among the three Oryzias species, the O. mekongensis populations

were more closely related to O. songkhramensis than were the O. minutillus population. Four

clades of wild fish populations were represented at the molecular level in O. mekongensis
according to neighbour-joining and maximum likelihood (� 70%). In contrast, there were no

subgroups of the O. songkhramensis population, which had only a single clade. For the clades

of the O. mekongensis population, clade 1 approached the Mekong River and lived in the east-

ern part of the upper northeast region (n = 7). The fish in clade 2 spread out from the Mekong

River and were distributed across the middle part of the Songkhram River (n = 5). Clade 3 of

the O. mekongensis population naturally inhabited the western part of the Songkhram River

Basin (n = 4). Conversely, clade 4 comprised the fish population in the southern part of the

Songkhram River (n = 3). However, one sample of this clade was biased to the west (Fig 1B

and 1C).

In the transcriptomic analysis of the adult fish, the distributions of the non-redundant data-

base (NR) annotated species of O. mekongensis and O. songkhramensis were similarly matched

to O. latipes at 78.74 and 77.66%, respectively (Fig 2A and 2B). In KOG (euKaryotic Ortholo-

gous Groups), 25 functions were contained in O. mekongensis and O. songkhramensis, and

“signal transduction mechanisms” and “general function prediction only” dominated in both

species of medaka fish. In contrast, “coenzyme transport and metabolism” was the least repre-

sented among the gene function types in both O. mekongensis and O. songkhramensis (Fig 3A

and 3B). In the gene ontology (GO) annotation, the three main categories of gene or gene

products were represented, including “biological process”, “cellular component” and “molecu-

lar function”. Twenty-seven gene processes of “biological process” and twelve gene functions

of “molecular function” were detected in O. mekongensis and O. songkhramensis. However,

“cellular component” accounted for 19 and 16 components in O. mekongensis and O.
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songkhramensis, respectively. The categories “components of nucleoids”, “other organisms”

and “other organism parts” were lacking in O. songkhramensis. Cellular process, cell and bind-

ing accounted for the highest gene numbers for their categories in both species (Fig 4A and

4B). In the KEGG (Kyoto Encyclopedia of Genes and Genome), the six major classes consisted

of “cellular processes”, “environmental information processing”, “genetic information process-

ing”, “human diseases”, “metabolism” and “organismal systems”. Cellular community-eukary-

otes, signal transduction, folding, sorting and degradation, cancers: overview, global and

overview maps and immune system showed the highest gene numbers among their classes for

both O. mekongensis and O. songkhramensis (Fig 5A and 5B). In the SwissProt annotation, the

unigenes of O. mekongensis approached sp|Q5T197|DCST1_HUMAN with expectation values

(e-values) of 1.3e-27 and 1.0e-20 and sp|Q68F72|S15A4_XENLA with e-values of 1.2e-218 and

2.1e-55 in the SwissProt database. In O. songkhramensis, the unigenes were annotated to sp|

P58875|S14L2_BOVIN with e-values of 1.3e-108 and 5.6e-169, sp|Q91WM3|U3IP2_MOUSE

with an e-value of 1.6e-158, and sp|Q14416|GRM2_HUMAN with an e-value of 1.7e-148.

Details of the annotation list format are provided in the S1 Table for O. mekongensis and O.

songkhramensis. Regarding TF expression, one cluster showed quite low expression in O.

mekongensis compared with O. songkhramensis. In contrast, two clusters showed clearly lower

TF expression in O. songkhramensis than in O. mekongensis (Fig 6A). In the DEGs, there was

one gene cluster of differentially expressed factors who expression quite low in O. mekongensis

Fig 2. Distribution of non-redundant database annotated species (%) of O. Mekongensis (A) and O. Songkhramensis (B). The image refers to O. latipes, A. polyacanthus,
L. calcarifer and S. partitus.

https://doi.org/10.1371/journal.pone.0242382.g002
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compared with O. songkhramensis. The low gene expression of O. mekongensis (14.58–12.46

log2-fold) consisted of the microtubule-associated protein TAU (Mapt), integral membrane

protein 2B (Itm2b or Bri2), calpactin-1 light chain, interferon regulatory factor 2 binding pro-

tein 2 (Irf2bp2), heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1), microsomal gluta-

thione S-transferase 3 (Mgst3), lysophosphatidic acid receptor 6-like (Lpar6), histone-lysine

N-methyltransferase EHMT1-like, Wiskott-Aldrich syndrome protein (WASp) and 26S prote-

ase regulatory subunit 8 (Psmc5). Similarly, for the DEGs of O. mekongensis, one cluster

showed obviously lower gene expression in O. songkhramensis (Fig 6B). Gene expression of O.

songkhramensis was detected at low levels (16.16–12.57 log2-fold) compared with that of O.

mekongensis, followed by heat shock protein family A member 8 (Hspa8), tyrosine-protein

phosphatase non-receptor (Ptpn1), sister chromatid cohesion protein PDS5 homolog B

(Pds5b), cyclin-dependent kinase 8 (Cdk8), TBCC domain-containing protein 1 (Tbccd1),

protein disulfide-isomerase A3 (Pdia3), calpain-1, coatomer subunit alpha, junction plakoglo-

bin-like, plakophilin 2 and apolipoprotein A-IV-like (ApoA4).

Discussion

In this study, the populations of O. mekongensis could be divided into four groups based on

the mitochondrial cytb gene. This result was consistent with reports of fish populations that

examined genetic variation during succession by using the cytb gene [14, 15, 36]. In Oryzias,
Takehana et al. [16] reported the use of the cytb gene to understand the diversity of wild Japa-

nese medaka populations that correlated with their geographic variation in Japan. Therefore,

the cytb gene might be suitable for evaluating the genetic variation of O. mekongensis popula-

tions in the northeastern region of Thailand. Moreover, this mitochondrial gene is also a

potential tool to phylogenetically differentiate among O. mekongensis, O. songkhramensis and

O. minutillus. It is well known that the cytb gene is one of the standard DNA barcodes for

fishes [37, 38]. The cytb gene might converted to a molecular barcode and utilized in the fur-

ther identification of freshwater ricefish in Thailand. Ngamniyom et al. [12] reported a

Fig 3. EuKaryotic Orthologous Groups (KOG) classification and gene number in O. Mekongensis (A) and O. Songkhramensis (B). Twenty-five classes of KOG were

observed between the two species.

https://doi.org/10.1371/journal.pone.0242382.g003
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molecular diversity destitution of wild Thai medaka with biogeographic variation throughout

Thailand. In the present study, the wild populations of O. mekongensis showed genetic varia-

tion but the populations of O. songkhramensis did not. The physical geography of northeastern

Thailand is a plateau, and the upper part forms the structure of the Sakon Nakorn Basin

involving the Mekong River, Songkhram River and complexed canals [39, 40]. Thus, the

genetic diversity of O. mekongensis might depend on the Mekong and Songkhram River

Basins. Magtoon [8] described the natural habitat of O. songkhramensis, which mainly lives in

the upper part of the Mekong River Basin in northeastern Thailand. The distribution of O.

songkhramensis was not wider than that of O. mekongensis. The population of O. songkhramen-
sis in this study was similar to the original findings for this fish population in the report of

Magtoon [8]. These results suggest that the range distribution of O. songkhramensis may be

narrow, which may have resulted in the single group within the O. songkhramensis population

in this study.

Morphologically, O. mekongensis and O. songkhramensis have different coloured lines on

their caudal fins, but there are no colored lines on the caudal fin of O. minutillus [1, 8]. Among

the three species in this study, O. mekongensis was more closely related to O. songkhramensis
than O. minutillus based on the cytb partial sequences. This molecular biology result is congru-

ent with the morphology of the caudal fin, which may be considered both with and without

coloured lines.

In RNA-Seq analysis, the species distributions of O. mekongensis and O. songkhramensis
were closer to those of Japanese medaka than to those of the spiny chromis (Acanthochromis
polyacanthus), barramundi (Lates calcarifer), and bicolour damselfish (Stegastes partitus).
Investigators have already provided genome data for these fish species from transcriptome

profiling, genome information and biosystem databases of the NCBI [41]. Moreover, the spe-

cies distributions of both of the fish in this study were more similar to those of Japanese

medaka than to those of Thai medaka in a previous report by Ngamniyom et al. [12]. RNA-Seq

of O. mekongensis and O. songkhramensis confirmed that transcriptomic sequences of both

species were conserved with medaka species close to Japanese medaka. Furthermore, the

results of this study add to the molecular genetics resources for teleost fish.

In the databases of annotated genes, the KOG, GO and KEGG catalogue groups were quite

similar for the gene functions of O. mekongensis and O. songkhramensis. The predominant

gene functions and processes of O. mekongensis and O. songkhramensis are presented. In addi-

tion, the general gene functions of both fish species in this study were consistent with several

reports of freshwater fish, such as Thai medaka, pond loach (Misgurnus anguillicaudatus), Yel-

low River scaleless carp (Gymnocypris eckloni) and goldfish (Carassius auratus) [12, 42–44].

These results suggested that the represented gene predictions of O. mekongensis and O. songkh-
ramensis might conserve the main gene functions not only among Oryzias fish but also among

other freshwater fish. It is well known that unigene annotations against the databases of KOG,

GO and KEGG are important for understanding the candidate genes, gene functions and bio-

logical pathways in various organisms [45, 46]. The gene predictions of O. mekongensis and O.

songkhramensis were dominated by “signal transduction, signal mechanism, cellular processes,

cell and binding”. Therefore, these gene functional groups might be necessary for important

roles in the cell biology of O. mekongensis and O. songkhramensis, as annotated by KOG, GO

and KEGG. Regarding TF expression and DEGs, TFs have been investigated as an important

step in gene regulatory networks [47], and DEGs are utilized as potential markers to observe

Fig 4. Gene Ontology (GO) for annotation of gene number in O. Mekongensis (A) and O. Songkhramensis (B). Three

major criteria for GO between both species.

https://doi.org/10.1371/journal.pone.0242382.g004
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different patterns of gene expression [48]. In this study, there were polymorphisms of gene

expression clusters between O. mekongensis and O. songkhramensis. These findings might be

species-specific gene expression patterns that differ between O. mekongensis and O.

songkhramensis.
The analysis of DEGs can be performed through transcriptomic profiles to understand

alterations in genes or genes in different species [49–51]. For DEG screening, the transcrip-

tomic analyses showed that some gene expression levels were different between O. mekongensis
and O. songkhramensis. One cluster of genes was highly expressed in O. mekongensis compared

with O. songkhramensis. In contrast, one cluster showed higher gene expression in O. songkh-
ramensis than in O. mekongensis.

In general pathways or functions of gene, the Mapt is microtubules associated protein regu-

lated by phosphorylation [52], while the Itm2b plays a role of neurite outgrowth [53]. Calpac-

tin-1 light chain regulate cytoskeletal proteins [54], and WASp is regulator of the actin

cytoskeleton [55]. In vertebrates, Irf2bp2 is known as a transcriptional corepressor [56].

Hnrnpa1 is important regulation of RNA synthesis [57], but Histone-lysine N-methyltransfer-

ase EHMT1 exhibit functions in silencing of gene expression [58]. The Lpar6 is G protein-cou-

pled receptor of lipid signaling [59], and the Mgst3 is essential gene in metabolize of

endogenous and exogenous substrates [60]. In addition, Psmc5 plays the important processes

for the maintenance of protein homeostasis [61].

Hspa8 functions as a chaperone in a cellular folding of translation, and Ptpn1works as a

regulator of unfolding [62, 63]. It has known that Pds5b plays a role during meiosis and DNA

repair associated with chromatin [64], while Cdk8 is a coactivator in the regulated transcrip-

tion of genes [65]. Gonçalves et al [66] demonstrated that Tbccd1 was required for a

Fig 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) in O. Mekongensis (A) and O. Songkhramensis (B). They

represented the six main classifications and gene numbers.

https://doi.org/10.1371/journal.pone.0242382.g005

Fig 6. Unigenes encoding predictions of transcription factor expression (A) and differentially expressed genes (B) between O. Mekongensis and O. Songkhramensis from

the heatmap representations. Asterisks indicate the substantially lower expression of gene clusters in both species.

https://doi.org/10.1371/journal.pone.0242382.g006
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centrosome positioning. Pdia3 played the crucial role for catalysing formation of disulfide

bonds in proteins [67]. In neurons, the calpain-1is calcium-dependent cysteine protease for

neurodegeneration [68]. For cytosolic protein complex, the coatomer subunit alpha binds to

dilysine motifs between the endoplasmic reticulum and golgi body [69]. Plakophilin 2 is

known for a role in cell–cell adhesion [70]. In major component of high density lipoprotein,

ApoA4 plays an important function in lipoprotein metabolism [71]. Considering into all

above mentions of gene functions and pathways, they might therefore be differences in such

predominant level-specific gene expression profiles between the two fish.

To distribute the present knowledge, we provided the molecular populations of O. mekon-
gensis and O. songkhramensis and the transcriptomic patterns of these species from Thailand

in publicly available databases. These results may enhance the available genetic resources to

further understand the evolution of fish in the genus Oryzias.
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