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Diverse liver diseases undergo a similar pathophysiological process in which liver
regeneration follows a liver injury. Given the important role of the gut-liver axis in health
and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has
attracted much attention. It has been observed that the composition of gut microbiota
dynamically changes in the process of liver regeneration after partial hepatectomy, and gut
microbiota modulation by antibiotics or probiotics affects both liver injury and
regeneration. Mechanically, through the portal vein, the liver is constantly exposed to
gut microbial components and metabolites, which have immense effects on the immunity
and metabolism of the host. Emerging data demonstrate that gut-derived
lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial
metabolites, such as short-chain fatty acids and tryptophan metabolites, may play
multifaceted roles in liver injury and regeneration. In this perspective, we provide an
overview of the possible molecular mechanisms by which gut microbiota-derived signals
modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in
the development of gut microbiota-based therapies to alleviate liver injury and promote
liver regeneration.

Keywords: gut microbiota (GM), liver injury and regeneration, lipopolisaccharide (LPS), bile acid (BA), SCFA (short
chain fatty acids), tryptophan metabolites, gut microbial metabolites
INTRODUCTION

The liver has an outstanding regenerative capacity (1). Liver regeneration is a well-orchestrated
biological process that depends on a large series of signals. Following different types of damage, the
remnant liver initiates different types of reprogramming events, which activate different progenitor
cells to replace injured cells (2). The regenerating liver undergoes numerous adaptive responses in
gene expression, growth factor production, and morphological structure, which have been
extensively described (1, 3). The essential gene expressions required for liver regeneration cover
cytokine, growth factor, and metabolic, which interact with each other and fine-tune regenerative
org December 2021 | Volume 12 | Article 7755261
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responses to maintain hepatic homeostasis according to body
demands (4). The classical mechanisms of liver regeneration
focus on signaling pathways within the liver. However, recent
studies have evidenced that commensal gut microbiota plays
local and systematic roles in tissue repair and regeneration (5).
Therefore, it is extremely important to describe the interaction
between gut microbiota and liver in the regulation of liver injury
and regeneration.

Through the portal vein, the liver is constantly exposed to
bacterial components and gut microbial metabolites.
Lipopolysaccharide (LPS) is a cell wall component of gram-
negative bacteria, and a mild release of LPS from the gut can
stimulate liver regeneration and tissue repair (6–8). Besides, gut
microbial metabolites, such as bile acids, short-chain fatty acids
(SCFAs), and tryptophan metabolites, affect host metabolism
and immune system (9, 10), which may indirectly influence liver
injury and regeneration. Herein, the review aims to elucidate the
potential molecular mechanisms that gut microbiota interacts
with the liver from the perspective of injury and regeneration,
which may provide valuable clues to develop gut microbiota-
based therapies for liver diseases.
GUT MICROBIOTA AND LIVER DISEASES

Gut microbiota dysbiosis has been found in liver diseases with
distinct etiologies, including acute liver injury, viral hepatitis,
non-alcoholic fatty liver disease (NAFLD), alcohol-related liver
disease, autoimmune hepatitis (AIH), primary biliary cholangitis
(PBC), and primary sclerosing cholangitis (PSC) (11, 12).
(Table 1) Diverse liver diseases undergo a similar
pathophysiological process, in which the damaged liver needs
repair and gut microbiota may play an important role.

In pre-cirrhotic liver disease, the gut microbiota has changed.
The ratio of Bifidobacteria/Enterobacteriaceae is gradually
reduced in healthy individuals, hepatitis B virus carriers,
patients with chronic hepatitis B, and patients with
decompensated cirrhosis (13), suggesting that the alteration of
gut microbiota is associated with disease progression in hepatitis
B patients. In NASH patients, the relative abundance of
Bacteroides significantly increases and Prevotella decreases,
whereas the relative abundance of Ruminococcus is higher in F
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≥ 2 fibrosis patients (14). A recent study finds that high-alcohol-
producing Klebsiella pneumoniae is associated with almost 60%
of NAFLD, and high-alcohol-producing Klebsiella pneumoniae
supplement by oral gavage induces NAFLD in mice (15),
suggesting that endogenous alcohol production by gut
microbiota drives NAFLD in some cases. In addition, a gut
microbiota-based metagenomic signature can be used to
distinguish mild and moderate NAFLD from advanced fibrosis
(23). For AIH, increased abundance ofVeillonella dispar is linked
to disease severity, and the combination of Veillonella,
Lactobacillus, Oscillospira, and Clostridiales discriminates AIH
from controls (16). The relative abundance of Veillonella is also
enriched in PSC compared with healthy controls and ulcerative
colitis patients without liver diseases (17). Microbial diversity is
significantly reduced in PBC patients, and Faecalibacterium is
further decreased in gp210-positive than gp210-negative PBC
patients (18). These correlations between pre-cirrhotic liver
diseases and gut microbiota indicate that the primary injury of
liver diseases shape, and are shaped by, changes in gut
microbiota composition.

Gut dysbiosis is more obvious in liver cirrhosis, the pathological
end-stage of chronic liver disease, and can cause complications.
The enrichment of potential ly pathogenic bacteria
Enterobacteriaceae and Streptococcaceae and the reduction of
beneficial bacteria Lachnospiraceae in patients with liver cirrhosis
have a positive and negative correlation with the Child-Turcotte-
Pugh score, which is used to assess the severity of cirrhosis based on
five clinical parameters, respectively (19). Quantitative
metagenomics reveals that a combination of 15 optimal
microbiota-targeted gene markers (NLF009_gene_80134,
H16_gene_75905, et al.) discriminates liver cirrhosis patients
from healthy individuals with a training AUC value of 0.918 and
a validating AUC value of 0.836 (24). Decompensated liver
cirrhosis could be accompanied by a severe central nervous
system, namely hepatic encephalopathy (HE). There is no
difference in stool microbiota between HE and no-HE patients,
but mucosal microbiota obtained by sigmoidoscopy is different
with increased abundance of Enterococcus, Veillonella,
Megasphaera, and Burkholderia and decreased abundance of
Roseburia in HE patients (20). The further development of
decompensated liver cirrhosis towards acute-on-chronic liver
failure (ACLF). The cirrhosis dysbiosis ratio (Lachnospiraceae +
TABLE 1 | Gut dysbiosis in liver diseases.

Liver disease Organism Reference

Hepatitis B Bifidobacteria/Enterobacteriaceae ↓ (13)
NASH Bacteroides ↑, Prevotella ↓, Ruminococcus ↑ (14)
NAFLD High-alcohol-producing Klebsiella pneumoniae ↑ (15)
AIH Veillonella dispar ↑ (16)
PSC Veillonella↑ (17)
PBC Microbial diversity ↓, Faecalibacterium ↓ (18)
Liver cirrhosis Enterobacteriaceae ↑, Streptococcaceae ↑, Lachnospiraceae ↓ (19)
Liver cirrhosis with HE Enterococcus↑, Veillonella ↑, Megasphaera ↑

Burkholderia ↑, Roseburia ↑
(20)

ACLF Lachnospiraceae + Ruminococcaceae + Veillonellaceae + Clostridiales Cluster XIV/Enterobacteriaceae + Bacteroidaceae ↓ (21)
HCC Actinobacteria ↑, Verrucomicrobia ↓ (22)
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Ruminococcaceae + Veillonellaceae + Clostridiales Cluster XIV/
Enterobacteriaceae + Bacteroidaceae) is lower in patients who
progress to ACLF and associated with an elevated risk of extra-
hepatic failure and death (21). Besides, most hepatocellular
carcinoma (HCC) develops in the setting of advanced liver
cirrhosis. Dysbiosis of gut microbiota is associated with increased
inflammation, impaired intestinal barrier, and immune system
disorders, which are involved in HCC development (22). The
complexity and role of gut microbiota in end-stage chronic liver
disease suggest that gut microbiota modulation may be a way to
deal with difficulties in liver injury and regeneration.

Consequently, these studies suggest that gut microbiota may
have a significant impact on the pathophysiology of liver diseases,
in which abnormal ductular responses, excessive fibrosis, and
impaired innate immunity can inhibit normal regeneration and
lead to liver failure or tumors. How to restore the regenerative
ability of the failed liver is an essential problem to be solved in
clinical scenarios. A comprehensive understanding of the
underlying mechanisms may enable appropriate targets of gut
microbiota-based therapies to reduce the factors that inhibit liver
regeneration or directly stimulate liver regeneration.
GUT MICROBIOTA DYNAMICALLY
CHANGES DURING LIVER
REGENERATION

The relationship between gut microbiota and liver regeneration
has been studied in the animal partial hepatectomy models
Frontiers in Immunology | www.frontiersin.org 3
(Figure 1). Dynamic changes of gut microbiota are observed in
mice from 0 hours to 9 days after partial hepatectomy (25).
Partial hepatectomy leads to a distinct change in the composition
of gut microbiota, early at 1 hour after partial hepatectomy, with
steadily increased Bacteroidetes and decreased Firmicutes,
which account for the most abundant phyla. At the family
level, increased S24-7 and Rikenellaceae make up the most
abundant taxa within Bacteroidetes phylum, while decreased
Clostridiaceae, Lachnospiraceae and Ruminococcaceae are the
most abundant representatives in Firmicutes phylum. Moreover,
alteration of S24-7, Lachnospiraceae, and Ruminococcaceae is
closely associated with hepatic metabolism and proliferation.
The shifts of bacterial populations persist for 9 days in mice after
partial hepatectomy, which almost covers all of the priming
phase, proliferative phase, and termination phase of regenerating
liver (25).

In the other study, fluctuating alterations of gut microbiota
are observed in rats after partial hepatectomy (26). In this study,
the abundance of Bacteroidetes rapidly decreases at 12 hours
after partial hepatectomy, but steadily increases to the initial level
at 48 hours, and then decreases to a low level again at 72 hours
and lasts to the endpoint. Compared with Bacteroidetes, the
alteration of Firmicutes shows a different trend. The ratio of
Firmicutes to Bacteroidetes (F/B) is fluctuant throughout the
process of liver regeneration. Notably, the abundance of
Proteobacteria has a remarkable elevation at 48 hours after
partial hepatectomy, but it almost decreases to the initial level
before the endpoint. At the family level, Lachnospiraceae and
Ruminococcaceae increase in 12-24 hours and 3-14 days after
partial hepatectomy, but they are decreased in 30-48 hours.
FIGURE 1 | The composition of gut microbiota is fluctuant in the course of liver regeneration. After partial hepatectomy, the relative abundance of Firmicutes
decreases while Bacteroidetes and Proteobacteria increase, which probably continues until the middle of the proliferation phase of liver regeneration. As proliferation
and termination of liver regeneration progress, the final composition of gut microbiota remains controversial and needs further study.
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Furthermore, cluster analysis indicates that the composition of
gut microbiota is different along with the process of liver
regeneration (26).

Although the changing trends of gut microbiota are not
identical in the only two published studies, which may be the
consequence of different experimental designs, increased
Bacteroidetes and decreased Firmicutes are recognized in the
priming phase and the partial proliferative phase of liver
regeneration. As the proliferation and termination of liver
regeneration progress, whether the composition of gut
microbiota is finally restored or attains a new state remains
unclear and needs further study. These data indicate that gut
microbiota has a potential influence on the regenerating liver or
vice versa.
GUT MICROBIOTA MANIPULATIONS
AFFECT LIVER INJURY AND
REGENERATION

Gut microbiota is depleted in germ-free model and can be
modulated by antibiotics, probiotics, prebiotics, such as dietary
fibers (27), fecal microbiota transplant (FMT), and colon
Frontiers in Immunology | www.frontiersin.org 4
resection. All of these gut microbiota manipulations influence
liver injury and regeneration (Figure 2).

Gut bacterial depletion using oral non-absorbable antibiotics
depresses liver regeneration in rats after partial hepatectomy, and
liver regeneration is also impaired in germ-free mice with partial
hepatectomy (7, 8). Likewise, liver regeneration is suppressed in
rats with simultaneous liver and colon partial resection (28). These
studies indicate that gut microbiota is required for normal liver
regeneration. Interestingly, gut microbiota participates in liver
injury as well as liver regeneration. Oral antibiotics prevent
liver injury induced by hepatotoxic agents, such as CCl4,
acetaminophen, D-Gal, and alcohol (29), whereas a complete
absence of gut microbiota as in germ-free rodents can exacerbate
the acute liver injury (30), suggesting that gut microbiota also
contributes to the pathophysiology of drug-induced liver injury.

Moreover, FMT normalizes impaired liver regeneration in
rats with gut decontamination by antibiotics (26), which further
manifests that normal gut microbiota plays a driving role in liver
regeneration. Probiotics improve the outcome of partial
hepatectomy, not only in animal experiments but also in some
clinical trials (31–33). Probiotic supplement improves mitosis in
the liver of rats with simultaneous 70% partial hepatectomy and
colon anastomosis probably by preventing bacteria translocation
(31). In hepatocellular carcinoma (HCC) patients receiving
FIGURE 2 | Gut microbiota manipulations affect liver injury and regeneration. Gut microbiota depletion by several approaches, including germ-free, antibiotics, and
colon resection, suppresses liver regeneration to varying degrees, while fecal microbiota transplant (FMT) can normalize liver regeneration in the antibiotic-treated
model, and probiotics/prebiotics can promote liver regeneration. In addition, both probiotics and oral antibiotics alleviate drug-induced acute liver injury, which is
aggravated in germ-free rodents.
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hepatic resection, preoperative and postoperative probiotics
improve liver function and reduce complications (32). In
another pilot study with 19 patients subjected to right
hepatectomy, symbiotics can improve liver function after liver
resection in the uncomplicated subgroup (33). Likewise,
emerging evidence demonstrates that probiotics alleviate drug-
induced liver injury in animal experiments. Lactobacillus
rhamnosus improves liver function and ameliorates alcohol-
induced liver injury in mice (34, 35). Bifidobacterium
adolescentis, Bacillus cereus, and Lactobacillus helveticus
pretreatments can modify the gut microbiota and alleviate liver
injury in D-Gal-treated rats (36–38). Akkermansia muciniphila
protects mice from immune-mediated liver injury (39).

Dynamic changes of gut microbiota during liver regeneration
and the benefits of FMT and probiotics on liver injury and
regeneration indicate that the crosstalk between the liver and
gut microbiota is important for liver regeneration, which is
probably mediated by gut microbiota-derived components
and metabolites.
GUT-DERIVED LPS HAVE MULTIPLE
EFFECTS ON LIVER INJURY AND
REGENERATION

Gut-derived LPS, produced by enteric gram-negative bacteria,
are continually presented to the liver (6), and low-grade portal
venous LPS can be cleared by the liver (40). Under normal
conditions, gut-derived LPS can be phagocytized and detoxified
by Kupffer cells in the liver reticuloendothelial system (RES) (41).
When the liver suffers from an extended injury, homeostasis
between the formation and removal of gut-derived LPS is
broken, which may be due to the following reasons. First,
sensitivity to gut-derived LPS is increased after the initial liver
damage. Second, RES injury leads to hampered detoxification
and clearance of gut-derived LPS. Third, gut barrier dysfunction
allows more translocation of LPS. Last, bacteria overgrowth and
delay of gastrointestinal motility increase production and
spillover of gut-derived LPS.

Gut-Derived LPS Aggravate the
Liver Injury
Gut-derived LPS as a cofactor plays a universal role in acute liver
injury, which has been demonstrated in acute liver injury models
induced by different hepatotoxic agents, including CCl4,
acetaminophen, alcohol, and D-Gal (29). Under primary liver
damage, gut-derived LPS can activate Kupffer cells to release pro-
inflammatory mediators, such as TNF-a, interleukins (IL-1 and
IL-10), lysosomal enzymes (protease and phosphatase), and
superoxide, which aggravate inflammatory responses and
necrosis (29). Induction of LPS tolerance protects rats from
CCl4-induced liver necrosis, and LPS-binding protein also has
a protective effect on acute liver injury (29).

In addition to acute liver injury, gut-derived LPS plays a
critical role in chronic liver injury. Elevated plasma endotoxin is
observed in patients with alcoholic liver disease (ALD) and
Frontiers in Immunology | www.frontiersin.org 5
experimental models of alcoholic liver injury, which can be
attenuated by oral antibiotics (42, 43). However, LPS alone
fails to mimic ethanol-induced steatosis, but together with
ethanol, which is metabolized to acetaldehyde by gut bacteria
and intestinal mucosa, leads to hepatocyte steatosis (42). Besides,
fibrogenesis usually occurs in the advanced ALD and other
chronic liver diseases, such as nonalcoholic fatty liver disease
(NAFLD) and chronic hepatitis B (CHB), which can develop into
cirrhosis (44). Chronic liver diseases are accompanied by
dysbiosis of gut microbiota, which contributes to intestinal
dysmotility, inflammation, and mucosal leakage, leading to
continuous and excessive liver exposure to gut-derived LPS
(45). Toll-like receptor-4 (TLR4) mutation and gut sterilization
prevent hepatic fibrosis in mice, revealing that gut-derived LPS
contribute to hepatic fibrosis (46). On one hand, when the liver is
exposed to increased gut-derived LPS, TLR4 activation of hepatic
stellate cells upregulates the production of chemokine (CCL2)
and induces chemotaxis of Kupffer cells (47). On the other hand,
LPS binding to TLR4 on hepatic stellate cells downregulates
transforming growth factor b (TGF-b) pseudoreceptor BAMBI
through Myd88- NF-kB-dependent signals, which sensitizes
hepatic stellate cells to TGF-b released by Kupffer cells,
promoting transdifferentiation of quiescent hepatic stellate cells
to activated scar-forming myofibroblasts (46) , and
myofibroblasts generate extracellular matrix (ECM) materials,
including collagen, laminin, and fibronectin. Excessive
deposition of ECM will cause aberrant scar formation and
fibrosis, which diminishes liver regeneration (48).

In addition, chronic liver diseases are driven by vicious cycles
of liver injury, inflammation, repair, and regeneration, which
make an opportunity for hepatocellular carcinoma (HCC)
development (49). Previous TLR4-deficient, gut-sterilized,
germ-free, and LPS-treated animal experiments have evidenced
that gut-derived LPS contribute to hepatocarcinogenesis (50, 51).
Mechanistically, the LPS-TLR4 pathway contributes to liver
tumor promotion by increasing proliferation and preventing
apoptosis of non-bone marrow-derived resident liver cells, and
in the early phases of HCC, TLR4-dependent secretion of
hepatomitogen epiregulin by hepatic stellate cells mediates
HCC promotion (51).

The broad roles of gut-derived LPS in liver injury are well
established and accepted, but applicating this knowledge to
develop an effective treatment remains challenging, which
needs further study.
Gut-Derived LPS Promote Liver
Regeneration
Gut-derived LPS also plays an important role in liver
regeneration. Restriction of gut-derived LPS by gut bacterial
depletion, endotoxin neutralization, and induction of
endotoxin tolerance significantly impairs liver regeneration in
rats, which is reversed by exogenous LPS supplements (7). In
addition, impaired liver regeneration is also observed in germ-
free mice receiving partial hepatectomy and in rats
simultaneously receiving partial hepatectomy and colon bowel
resection (8, 28).
December 2021 | Volume 12 | Article 775526
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When the liver is subjected to an experimental physical or a
chemical injury, gut-derived LPS will pass through the
compromised liver and spill into the general circulation,
leading to low-grade systemic endotoxemia, which
elicits hepatotrophic factors production, such as insulin,
glucagon, epidermal growth factor (EGF), vasopressin and
triiodothyronine (T3) (6, 52). In addition, gut-derived LPS
activates Kupffer cells by binding to TLR-4 for activation of
NF-kB and subsequently stimulates the production of TNF-a,
which in return activates Kupffer cells to secrete interleukin-6
(IL-6) (53). IL-6 trans-signaling through the soluble IL-6/IL-6R
complex induces hepatic stellate cells to produce hepatocyte
growth factor (HGF) (54). HGF cooperates with other
extrahepatic factors, such as T3, insulin, and EGF, allowing the
remnant hepatocytes to overcome cell-cycle checkpoint control
to proliferate, which is essential for the priming phase of liver
regeneration after partial hepatectomy (53, 54). Finally, when the
liver regenerates sufficiently and the phagocytosis function of the
Kupffer cell is restored, gut-derived LPS in the portal blood can
be detoxified again (6).

Therefore, gut-derived LPS are important for liver
regeneration as well as liver injury, liver fibrosis, and liver
tumors, which may depend on the degree and duration of
exposure (Figure 3). However, it is difficult to determine the
beneficial level of gut-derived LPS for the liver in different
scenarios to avoid the deleterious effects of excessive TLR-4
activation. One promising strategy is modulating gut
microbiota by probiotics, prebiotics, and perhaps appropriate
antibiotics, such as rifaximin, to control gut-derived LPS.
GUT MICROBIOTA-ASSOCIATED BILE
ACID METABOLISM IS INVOLVED IN
LIVER INJURY AND REGENERATION

Bile acids (BAs), produced from cholesterol, are assembled as
primary conjugated BAs in the liver and actively transported into
the biliary system. A small fraction of BAs circulates from
cholangiocytes to the liver through the cholangio-hepatic
shunt, while most of them are stored in the gallbladder and
released into the duodenum after food intake. Approximately
95% of BAs are reabsorbed via the apical sodium-dependent bile
acid transporter (ASBT) in the terminal small intestine and
return to the liver through the portal vein. Conjugated primary
BAs can also be deconjugated by the gut microbiota and escape
reabsorption, further dehydroxylated by microbial bioconversion
to secondary BAs. A part of secondary BAs is passively absorbed
by colonic cells. Spillover of BAs into systemic circulation can be
cleared via urinary excretion. Bile acids that are lost in urinary
and fecal excretion are replenished by hepatic synthesis (55, 56).

In normal conditions, BAs almost recycle within the
enterohepatic circulation, which has important physiological
roles in nutrient absorption and biliary secretion of lipids and
toxic metabolites, and only traces of BAs escape to the systemic
circulation. After partial hepatectomy, BAs that are reabsorbed
from the intestine suddenly become too high for the remnant
Frontiers in Immunology | www.frontiersin.org 6
liver, which leads to an abrupt and massive spillover of BAs to
the systemic circulation (57, 58). Bile acids overload beyond a
certain threshold is deleterious (59). However, BAs are also
necessary for normal liver regeneration. Depletion of BAs by
cholestyramine (a BA-sequestering resin) leads to suppression of
liver regeneration (60). In rats after partial hepatectomy and
mice with CCl4-induced injury, elevated BAs accelerate liver
regeneration, while low levels of BAs impair liver regeneration
(60, 61). The similar phenomenon is observed in clinical
scenarios, following a major hepatectomy, patients without
external biliary drainage have better liver regeneration than
those with external biliary drainage (62). Gut microbiota-
dependent BA metabolism is likely to participate in liver injury
and regeneration by modifying the quality (conjugated vs
deconjugated and primary vs secondary BAs) and quantity of
the BA pool (Figure 4).

Gut Microbiota-Mediated Deconjugation
of BAs Participates in Liver Injury and
Regeneration
After partial hepatectomy, to protect the remnant liver and
biliary tree from excess BAs, the basolateral uptake and BAs
production are decreased and the basolateral efflux and biliary
excretion are increased. Deconjugation (removal of the glycine or
taurine) by gut microbiota with bile salt hydrolase (BSH)
prevents reabsorption of BAs in the small intestine (63). BSH
is enriched in the human gut microbiota and mediates bile
tolerance (64). Conjugated BAs are transported by sodium
taurocholate cotransporting polypeptide (NTCP) and organic
anion-transporting polypeptide (OATP) isoform, which are the
major uptake transports of BAs in the liver. The mRNA levels of
NTCP, OATP1, and OATP2 are decreased with the most
prominent decrease of NTCP, while the protein level of NTCP
is markedly decreased during the initial phase of liver
regeneration (65). Downregulated NTCP relieves basolateral
over uptake of BAs in the liver, but OATP expressing
hepatocytes could ensure ongoing basolateral uptake of BAs
after partial hepatectomy. However, one study demonstrates
that the mRNA and protein levels of NTCP are unchanged
after partial hepatectomy (66).

Despite the conflicting effects of partial hepatectomy on
NTCP expression, high levels of BAs in the remnant liver are
generally accepted. BAs overload inhibits the synthesis of BAs by
negative feedback regulation through the nuclear receptor
farnesoid X receptor (FXR), which is highly expressed in the
liver and ileum (63). Chenodeoxycholic acid (CDCA) is the most
potent efficacious ligand of FXR, followed by lithocholic acid
(LCA), deoxycholic acid (DCA), and cholic acid (CA) (67). LCA
and DCA are secondary BAs transformed from primary BAs by
microbial 7a-dehydroxylation, which is a characteristic of
Clostridium and Eubacaterium (68, 69). In the liver, FXR
activation induces expression of small heterodimer partner 1
(SHP-1), which can inhibit expression of CYP7A1, the rate-
limiting enzyme of BAs synthesis, by reducing the activity of liver
receptor homolog 1 (LRH-1) (70). Therefore, BAs overload leads
to decreased BAs production by repressing the transcription of
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the rate-limiting enzyme in BAs synthesis. In addition, increased
basolateral efflux and biliary excretion of BAs reduce BAs
concentrations in hepatocytes, which protects the liver from
BA-induced liver injury. Conjugated BAs are primarily secreted
into bile via the canalicular bile salt export pump (BSEP) (55).
The expression of BSEP is increased from days 1 to 3 after partial
hepatectomy, which depends on the activation of FXR (60).
Frontiers in Immunology | www.frontiersin.org 7
Thus, the remnant liver copes with the BAs overload via FXR to
maintain normal BAs levels, including both repressions of
synthesis and induction of export.

Besides, hepatic FXR plays a critical role in the expression of
Foxm1b, a key regulator of the hepatic cell cycle, promoting liver
regeneration after either partial hepatectomy or CCl4-induced
liver injury (71). Moreover, compared with liver-specific FXR
FIGURE 3 | Role of gut-derived LPS in liver injury and regeneration. 1) When the liver suffers from an acute injury, primary damage reduces the activity of the
reticuloendothelial system (RES) and increases liver sensitivity to LPS. LPS binding to Toll-like receptor 4 (TLR4) on Kupffer cells triggers the production of tumor
necrosis factor-a (TNF-a), which leads to hepatocyte necrosis and aggravates the primary damage. 2) In addition, gut-derived LPS also contributes to chronic liver
injury. Dysbiosis of gut microbiota leads to elevated LPS and impaired gut barrier function. Continuous LPS exposure sensitizes hepatic stellate cells to transforming
growth factor-b (TGF-b) and promotes the transdifferentiation of hepatic stellate cells into myofibroblasts, resulting in the generation of extracellular matrix (ECM)
materials. Excessive deposition of ECM interferes with normal regeneration, leading to liver cirrhosis and hepatocellular carcinoma (HCC) promotion. Besides, LPS
accelerates the development of premalignant hepatocytes and stimulates hepatic stellate cells to secret epiregulin, which facilitates HCC promotion. 3) Moreover,
after partial hepatectomy, gut-derived LPS activate Kupffer cells to secrete TNF-a, which in return stimulates Kupffer cells to produce interleukin-6 (IL-6). IL-6/IL-6
receptor complex induces the production of hepatocyte growth factor (HGF) by hepatic stellate cells. In addition, gut-derived LPS that escape Kupffer cells spilling
into the general circulation elicit systemic hepatotrophic factors production. HGF, TNF-a, and other hepatotrophic factors allow remnant hepatocytes to overcome
cell-cycle checkpoint and support liver regeneration.
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knock-out (KO) mice, conventional FXR KO mice show
significantly decreased liver regeneration response at 36 h and
72 h after partial hepatectomy, suggesting that FXR activation in
other tissues also contribute to liver regeneration (71).

Intestinal FXR may participate in the promotion of liver
regeneration through secreting fibroblast growth factor (FGF)
15 in mice or FGF19 in humans. Trans-enterocytic BAs flux
Frontiers in Immunology | www.frontiersin.org 8
from the intestinal lumen to the basolateral side drives FXR-
dependent FGF15 synthesis in the ileum (72). FGF15 reaches the
liver and regulates BA homeostasis by an FGFR4-dependent
activation of c-Jun N-terminal kinase (JNK) and extracellular
signal-regulated kinase (ERK) pathways, leading to
transcriptional inhibition of CYP7A1 in hepatocytes (72).
Therefore, BAs-mediated intestinal FXR-dependent FGF15
FIGURE 4 | Role of gut microbiota-associated bile acids metabolism in liver injury and regeneration. After a liver injury or partial hepatectomy, bile acids (BAs)
absorbed from the intestine suddenly become too high for the remnant liver, leading to secondary liver injury. Excessive BAs binding to hepatic farnesoid X receptor
(FXR) inhibits transcription of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), which reduces the production of primary BAs. In addition, activated FXR
can promote the secretion of primary BAs into bile canaliculus and upregulate expression of Foxm1b, thus relieving BAs overload and facilitating liver regeneration.
Meanwhile, in the small intestine, BAs activate intestinal FXR to secret fibroblast growth factor (FGF) 15/19, which binds to fibroblast growth factor receptor 4
(FGFR4). FGFR4/agonist also induces expression of Foxm1b and improves proliferation. Gut microbiota is responsible for secondary BAs production in the large
intestine. Secondary BAs binding to intestinal transforming growth factor 5 (TGR5) elicits secretion of glucagon-like peptide 1 (GLP1), which activates the insulin
signaling pathway. Absorbed secondary BAs binding to hepatic TGR5 has an anti-inflammatory effect by suppressing the release of TNF-a from the Kupffer cell.
TGR5 activation also promotes BAs secretion by secreting HCO−

3 and Cl- from cholangiocyte and increasing transformation of hydrophilic BAs from hydrophobic
BAs, which reduce BAs load and BAs toxicity-induced liver injury, promoting liver regeneration. Moreover, primary BAs stimulate and secondary BAs suppress the
expression of chemokine (C-X-C motif) ligand 16 (CXCL16) by liver sinusoidal endothelial cells (LSECs). CXCL16 is a chemokine that recruits natural killer T (NKT)
cells, which suppress liver tumors.
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production appears as a necessary gut-derived signal for liver
protection after partial hepatectomy by maintaining BAs
homeostasis. Besides, FGF15 may directly contribute to liver
regeneration by stimulating the proliferation of hepatocytes and
cholangiocytes (73). Mechanistically, the FGF15-FGFR4-STAT3
signaling pathway, which is required for Foxm1 transcription
and cell cycle progression, controls hepatocyte proliferation in
the regenerating liver (74). Furthermore, it should be noted that
FXR is expressed in the kidney at high levels and in the thymus,
spleen, ovary, testes, heart, and eyes at lower levels (63).
Increased systemic BAs after partial hepatectomy may also
act on these tissues and organs in an FXR-dependent
manner and indirectly affect liver regeneration, which needs
further exploration.

Taken together, gut microbiota-mediated deconjugation
improves the reabsorption of BAs and the abundance of
colonic primary conjugated BAs, which may induce protective
as well as proliferative cascades in the damaged liver by initiating
FXR-dependent responses.

Gut Microbiota-Dependent Production of
Secondary BAs Facilitates Liver
Regeneration
Gut microbiota dehydrogenates primary BAs to secondary BAs
mainly in the colon. Secondary BAs are the most efficient
agonists of Taketa G-protein-coupled receptor 5 (TGR5) (75).
TGR5 is ubiquitously expressed in many tissues, including the
liver, gallbladder, intestine, brown and white adipose tissue,
skeletal muscle, and so on (63). In the liver, TGR5 is highly
expressed in cholangiocytes, Kupffer cells, and endothelial cells
but weakly or not expressed in hepatocytes (76). Therefore,
TGR5-dependent protective effects against BAs overload are
likely due to other mechanisms rather than regulation of BAs
synthesis. TGR5 regulates BA size and composition by reducing
Frontiers in Immunology | www.frontiersin.org 9
hydrophobicity and increasing secretion. A shift towards a more
hydrophobic BAs pool is associated with inhibition of liver
regeneration (77). TGR5-KO mice have a more hydrophobic
BAs composition and hydrophobic BAs accumulation in the
liver leads to toxic injury, which is alleviated by a BA resin
enriched diet (58). In addition, TGR5 promotes cystic fibrosis
transmembrane conductance regulator (CFTR)-dependent Cl-

secretion and BAs uptake into biliary epithelia and reduces
biliary bile acid concentrations (78). TGR5-dependent
increased output of biliary HCO−

3 and Cl- after partial
hepatectomy also enhances bile secretion, which prevents the
remnant liver from BAs-induced toxicity (58). Furthermore, the
production and release of the cytokine after partial hepatectomy
are crucial for normal liver regeneration. It has been
demonstrated that the immunosuppressive effect of secondary
BAs on macrophage is mediated by TGR5 (79), which inhibits
LPS-induced expression of cytokines and reduces liver injury
(80), by suppressing NF-kB transcription activity and its target
gene expression (81). Therefore, gut microbiota-controlled
activation of TGR5 may contribute to liver regeneration by
regulating hepatic inflammatory response and limiting
hepatocyte necrosis after partial hepatectomy. Moreover, TGR5
in skeletal muscle and brown adipose tissue promotes energy
expenditure through iodothyronine deiodinase 2 enzyme
(DIO2), which converts inactive thyroxine into active thyroid
hormone (63). TGR5 in colonic L cells mediates synthesis and
secretion of intestinal glucagon-like peptide-1 (GLP-1), which
could stimulate insulin secretion (82). Thyroid hormone and
insulin cooperated with other growth factors allow the
hepatocyte to overcome cell-cycle checkpoint control, initiating
and regulating liver regeneration (53).

Gut microbiota-dependent conversion of primary BAs to
secondary BAs is also involved in the development of liver
cancer (83). Primary BAs stimulate, whereas secondary BAs
FIGURE 5 | Role of other microbial metabolites in liver injury and regeneration. Gut microbiota is responsible for the production of short-chain fatty acids (SCFAs)
and indoles from cellulose and tryptophan in food-intake, respectively. SCFAs can activate host G-protein-coupled receptor (GPR) 41/43, and indoles can activate
aryl hydrocarbon receptor (AHR)/pregnane X receptor (PXR), contributing to gut barrier protection, metabolism homeostasis, and immune regulation, which may
facilitate liver regeneration by alleviating liver injury.
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suppress, the expression of chemokine (C-X-C motif) ligand 16
(CXCL16) by liver sinusoidal endothelial cells, which induces
accumulation of hepatic CXCR6+ natural killer T (NKT) cells
and production of interferon-g, inhibiting both primary and
metastatic liver tumors.

In general, gut microbiota-dependent production of
secondary BAs may reduce the inflammatory response and
promote liver regeneration by TGR5-dependent regulation of
the BA pool and production of T3 and GLP-1. Elucidating ways
to fine-tune gut microbiota-BAs-host interaction is a promising
strategy to assist normal liver regeneration.
GUT MICROBIAL METABOLITES SHORT-
CHAIN FATTY ACIDS AND INDOLES MAY
ASSIST LIVER REGENERATION IN A
SIMILAR WAY

Short Chain Fatty Acids May Assist Liver
Regeneration
Short-chain fatty acids (SCFAs) produced by gut microbial
fermentation have multiple physiological functions (84). The
most abundant SCFAs in the gut are acetate, propionate, and
butyrate (85, 86). Bacteroidetes produce acetate and propionate,
and Firmicutes are the primary butyrate producers (87–90).

The intestinal tract is the major site of SCFAs production and
the biological concentration gradient falls from the gut to the
peripheral tissues. Butyrate is largely metabolized in the
intestinal epithelium, and the rest is degraded in the liver (91,
92). Most propionate is degraded in the liver, and a substantial
portion of acetate passes into the systemic circulation (92, 93).
SCFAs function as extracellular agonists for G-protein-coupled
receptor (GPR) 41 and GPR43 (94). Butyrate, but not acetate or
propionate, also activates the GPR109A (95). GPR41, GPR43,
and GPR109A are expressed by intestinal epithelial cells and
immune cells (84). Stimulation of GPRs by SCFAs activates
ERK1/2, c-JNK, and p38/mitogen-activated protein kinases
(MAPKs) (96). In addition, butyrate broadly affects
transcription by activating histone acetyltransferases (HATs)
and suppressing nuclear class I histone (HDACs) (84).
Butyrate can also act as an extracellular agonist activating
peroxisome proliferator-activated receptor g (PPAR-g), which
plays anti-inflammatory effects (97, 98).

SCFAs are important substrates for the integrity of the
epithelial barrier, which limits pro-inflammatory load to the
liver. Butyrate enhances gut barrier function by increasing
the expression of claudin-1 and zonula occludens-1 (ZO-1),
decreasing LPS translocation and inhibiting downstream
inflammatory responses (99, 100). Therefore, SCFAs may
indirectly affect liver injury and regeneration through
maintaining gut barrier function.

In addition, SCFAs play potential roles in metabolism
homeostasis during liver regeneration. Acetate, propionate, and
butyrate regulate hepatic glucose and lipid homeostasis in a
PPAR-g dependent manner (101). Acetate and propionate
inhibit adipocyte lipolysis via GPR43, which reduces free fatty
Frontiers in Immunology | www.frontiersin.org 10
acid (FFA) flux to the liver and ameliorates the deterioration of
glucose homeostasis caused by fatty liver (102, 103). Propionate
and butyrate have metabolic benefits through activating
gluconeogenesis gene expression (104). Moreover, SCFAs
stimulate gut hormone production of GLP-1 and peptide YY
(PYY), improving the metabolic phenotype (105). Butyrate
inhibits NF-kB activation in lamina propria macrophages and
reduces the responsiveness of lamina propria macrophages to
commensal bacteria (106, 107). Butyrate alleviates ischemia-
reperfusion liver injury by preventing NF-kB activation and
reducing inflammatory factors production (108). Propionate
and butyrate have potential roles in the production and
function of regulatory T cells via inhibiting histone deacetylase
(HDAc) (109, 110).

These studies highlight the interaction between gut
microbiota-derived SCFAs and the immune and metabolic
homeostasis of the host, which may play an important role in
liver injury and regeneration (Figure 5).

Indoles May Assist Liver Regeneration
Tryptophan is one of the essential amino acids and must be
supplied by dietary uptake. The majority of tryptophan is
absorbed in the small intestine, and a significant fraction may
also reach the colon. Intestinal tryptophan metabolism follows
three major pathways: (1) the kynurenine pathway in epithelial
and immune cells through indoleamine 2,3-dioxygenase 1
(IDO1); (2) the serotonin pathway in enterochromaffin cells
through tryptophan hydroxylase 1 (TpH1); and (3) direct
transformation by commensal bacteria into indole and indole
derivatives (111). Numerous bacterial species can metabolize
tryptophan, which has been described in a previous review (112).
Indole is the most abundant metabolite of gut microbial
tryptophan, which is followed by indol-3-acetic acid (IAA) and
indole-3-propionic acid (IPA), in adults (112). Indole and many
indole derivatives, such as IAA, IPA, indole-3-aldehyde (IAld),
tryptamine (TA), 3-methylindole (skatole), and indoxyl-3-sulfate
(I3S), are endogenous ligands of aryl hydrocarbon receptor
(AhR) (113). AhR is initially well-known for its major role in
the metabolism and elimination of environmental toxicants, but
it also serves as a key transcription factor controlling many
critical cellular functions and organ homeostasis (114).

Given the production site, the role of gut microbial
tryptophan metabolism is preponderant in intestinal AhR
activity. Activation of AhR in the gut improves intestinal
barrier function by decreasing gut permeability and mucosal
inflammation (83). Indole upregulates the expression of genes
involved in the maintenance of epithelial-cell tight-junction
resistance (115, 116). Indoleacrylic acid (IA) improves
intestinal epithelial barrier function by promoting goblet cell
differentiation and mucus production, which is possibly
mediated by AhR activation (117). Moreover, in the context of
indole, IPA also regulates intestinal barrier function by acting as
a ligand for the pregnane X receptor (PXR) (118). These studies
suggest that tryptophan metabolites enhance the intestinal
epithelial barrier function by AhR and PXR signaling
pathways, which decreases translocation of gut-derived LPS
and then could participate in liver injury and regeneration.
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Similar to SCFAs, indole is also able to modulate the secretion of
GLP-1 from colonic L cells and influence host metabolism in an
AhR-dependent manner (119, 120). GLP-1 has an important role
in glucose homeostasis and liver function, which is probably
involved in liver regeneration.

In addition, AhR is expressed by many immune cells and plays
an important role in the regulation of immune response in health
and disease (113). Gut microbiota-derived IAA and TA reduce
inflammatory responses in macrophages and hepatocytes (121),
suggesting that gutmicrobial tryptophanmetabolites could regulate
immune responses in the liver as well, which indicates their
potential roles in liver injury and regeneration. However, the
exact effects of gut microbial tryptophan metabolites on liver
regeneration still need further research (Figure 5).
CONCLUSION

Mechanisms of liver regeneration are complex. The crosstalk
between gut microbiota and liver allows that gut-derived signals
are orchestrated in liver injury and regeneration. Gut-derived
LPS and gut microbiota-associated bile acid metabolism appear
to have multiple effects on liver injury and regeneration, while
SCFAs and tryptophan metabolites produced by gut microbiota
have potential benefits in liver regeneration. A comprehensive
understanding of these roles of gut-derived signals in liver injury
and regeneration will enable the further development of rational
Frontiers in Immunology | www.frontiersin.org 11
specific therapies to either directly improve liver regeneration or
prevent complications that appear in the process of liver
regeneration. The role of gut-derived signals in animal models
of liver regeneration has been briefly described in this review, but
lessons learned from animal models still need to be confirmed in
more clinical settings, such as chronic liver injury with abnormal
liver architecture and advanced liver fibrosis, in which normal
regeneration of compromised liver is expected. However, gut-
derived signals have the promise to motivate translational and
interventional studies of liver injury and regeneration.
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