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Background and objectives. Sepsis is a life-threatening organ dysfunction caused by the imbalance of the body’s response to
infection. Delay in sepsis diagnosis has become a primary cause of patient death. +is study aims to identify potential biomarkers
of sepsis based on bioinformatics data analysis, so as to provide new gene biomarkers for the diagnosis and treatment of sepsis.
Methods. Gene expression profiles of GSE13904, GSE26378, GSE26440, GSE65682, and GSE69528 were obtained from the
National Center for Biotechnology Information (NCBI). +e differentially expressed genes (DEGs) were searched using limma
software package. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms
of DEGs and screen hub genes. Results. A total of 108 DEGs were identified in the study, of which 67 were upregulated and 41 were
downregulated. 15 superlative diagnostic biomarkers (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK,
IL2RB, IL7R, ITK, KLRB1, and PRF1) for sepsis were identified by bioinformatics analysis. Conclusion. 15 hub genes (CCL5,
CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) have been elucidated
in this study, and these biomarkers may be helpful in the diagnosis and therapy of patients with sepsis.

1. Introduction

According to the latest guidelines (sepsis 3.0), sepsis is a
syndrome of life-threatening organ dysfunction caused by
the imbalance of the body’s response to infection. It is one of
the main causes of death in patients with critical care
medicine (CCM) [1]. In 2020, a study showed that the in-
cidence of sepsis in the world was 677.5 cases per 100
thousand persons [2]. Due to the characteristics of acute
onset, complex clinical manifestations, and high mortality of
sepsis, early diagnosis of sepsis is the basis of improving the
survival rate of sepsis patients [3]. +erefore, finding bio-
marker is the first step in the early diagnosis of sepsis.
However, the sensitivity and specificity of the main labo-
ratory indexes for clinical diagnosis of sepsis are not sat-
isfactory, including C-reactive protein (CRP), interleukin-6
(IL-6), and procalcitonin (PCT) [4]. Although a variety of
means have been widely used in the treatment of sepsis in
recent years, including active removal of the source of

infection, appropriate antibiotic treatment, hemodynamic
support, and respiratory support, the mortality of sepsis
remains high [5–7]. Finding more effective treatment
method for sepsis is an urgent problem to be solved.

At present, the use of bioinformatics technology to mine
microarray gene expression data has been widely used to
analyze disease-related differentially expressed genes
(DEGs), to find key genes, and screen biomarkers related to
disease diagnosis, treatment, and prognosis. It was found
that fibronectin 1 (FN1), epidermal growth factor (EGF),
and transthyretin (TTR) showed considerable diagnostic
efficiency for focal segmental glomerulosclerosis, which was
based on bioinformatics analysis [8]. According to bio-
informatical analyses between rheumatoid arthritis and
osteoarthritis, Li et al. identified 15 DEGs which might be
therapeutic targets and biomarkers for rheumatoid arthritis
treatment [9]. According to bioinformatical analyses,
TRPM4 and TRPV2 were considered as two novel prog-
nostic biomarkers and a promising targeted therapy in uveal
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melanoma (UVM) [10]. After decades of research, the
specific pathogenesis and molecular mechanism of sepsis are
still unclear. +erefore, finding potential molecular markers
of sepsis is very important for developing effective diagnosis
and treatment strategies. Benefiting from the development
of bioinformatics technology in recent years, researchers can
quickly find hub gene clusters through computer programs.
+rough the comprehensive analysis of sepsis, screening
differential genes, establishing gene networks, finding po-
tential key molecular targets, and obtaining early diagnostic
markers of sepsis, it is possible to provide a new under-
standing of the pathogenesis of sepsis and new ideas of the
clinical treatment of sepsis. Potential molecular markers are
also therapeutic targets for drugs, but the discovery and
development of new drugs are long and expensive processes.
+erefore, a more effective and rational approach is needed.
In this regard, in-silico techniques have been proven to be
credible, fast, inexpensive, and effective in tackling the
abovementioned problems [11, 12], so many drugs can be
better used in the clinic through the in-silico techniques
[13–17].

+ere has been no significant progress in the diagnosis
and treatment of sepsis in recent years, and new techniques,
including bioinformatics analysis, may contribute to
addressing the existing gap between basic research and
clinical. In this study, we got sepsis-related mRNA micro-
array datasets in Gene Expression Omnibus (GEO) and used
bioinformatics analysis to screen DEGs in sepsis, so as to
provide new gene biomarkers for the diagnosis and treat-
ment of sepsis.

2. Materials and Methods

2.1. Processing Microarray Data. After retrieving sepsis-re-
lated GSE through Gene Expression Omnibus (GEO), the
microarray dataset GSE13904, GSE26378, GSE26440,
GSE65682, and GSE69528 were downloaded. +e sepsis
patients (n� 1181) and controls (n� 168) were collected
from GSE13904, GSE26378, GSE26440, GSE65682, and
GSE69528.

2.2. Screening of DEGs. +e original data were downloaded
in MINiML format (https://www.ncbi.nlm.nih.gov/). +e
extracted data were normalized by log2 transformation. +e
microarray data were normalized by the normalized quantile
function of the preprocessing core package in R software
(version 4.0.3) [18]. According to the annotation informa-
tion of standardized data in the platform, the probe was
converted into gene symbol. +e probes matching multiple
genes were removed, and the average gene expression value
measured by multiple probes was calculated as the final
expression value. +e differentially expressed mRNA was
studied using limma package in R software. “P< 0.05 and
Log (Fold Change)> 3 or Log (Fold Change)< -3” were
defined as the threshold for the differential expression of
mRNAs. +e volcano plot was constructed using the fold
change values and P-value. Red dots indicated upregulated
genes and blue dots indicated downregulated genes. Heat

maps were generated using pheatmap package.+e heat map
showed data in a two-dimensional form, in which colors
represented the values.

2.3. KEGG and GO Pathway Enrichment Analyses of DEGs.
To better understand the gene of mRNA, ClusterProfiler
package (version: 4.0.3) in R was employed to enrich the
KEGG pathway and analyze the GO function of potential
targets [18]. +e enriched KEGG pathways were selected to
demonstrate the primary biological actions of major po-
tential mRNA. +e abscissa indicated gene ratio, and the
enriched pathways were presented in the ordinate. Gene
ontology (GO) analysis of potential targets of mRNAs. +e
biological process (BP), cellular component (CC), and
molecular function (MF) of potential targets were clustered
based on ClusterProfiler package in R software (version:
4.0.3). Colors represent the significance of differential en-
richment, the size of the circles represents the number of
genes, the larger the circle, the greater the number of genes.
In the enrichment result, P< 0.05 or FDR <0.05 is consid-
ered to be a meaningful pathway.

2.4. PPI Network Construction of DEGs. DEGs were uploa-
ded to the STRING database (https://cn.string-db.org/), the
interaction score was set to the highest confidence ≥0.4, and
PPI analysis was performed. Cytoscape 3.9.2 software
(https://cytoscape.org/) was used to visualize PPI network.
+e MCODE of Cytoscape was used to screen hub genes in
the PPI network [19].

3. Result

3.1. Screening of DEGs. +e sepsis patients (n� 1181) and
controls (n� 168) were collected from the gene expression
profile GSE13904, GSE26378, GSE26440, GSE65682, and
GSE69528. +e result of the data preprocessing was assessed
by boxplot. A boxplot was made after data normalization.
Different colors represented different datasets. Rows rep-
resented samples, and columns represented the gene ex-
pression values in the samples (Figure S1A). +e PCA was
the result before batch removal from multiple datasets.
Different colors represented different datasets (Figure S1B).
+e PCA results after batch removal were the intersection of
five datasets, which could be used for subsequent analysis
(Figure S1C). +e volcano plot was utilized to analyze the
cluster analysis of the identified DEGs in the GSE13904,
GSE26378, GSE26440, GSE65682, and GSE69528 database.
Based on the standard of P< 0.05 and Log (Fold Change)> 3
or Log (Fold Change)< -3, we screened 108 DEGs, including
67 upregulated genes and 41 downregulated genes (Fig-
ure 1). In the GSE13904, GSE26378, GSE26440, GSE65682,
and GSE69528 database, the heat map was utilized to analyze
the cluster analysis of the identified DEGs, and the results
showed a significant difference between the sepsis and the
control group (Figure 2). +e statistical differences of
identified DEGs were shown in Figure S2.
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3.2. KEGG and GO Pathway Enrichment Analyses of DEGs.
+rough ClusterProfiler package (version: 4.0.3) in R
analysis, the KEGG pathways of upregulated DEGs were
majorly enriched in transcriptional misregulation in cancer
and shigellosis. +e GO pathways of upregulated DEGs were
majorly enriched in neutrophil degranulation and neutro-
phil activation involved in immune response. +e KEGG
pathways of downregulated DEGs were majorly enriched in
cytokine-cytokine receptor interaction. +e GO pathways of

downregulated DEGs were majorly enriched in T cell acti-
vation (Figure 3).

3.3. PPI Network Construction of DEGs. +e screened DEGs
were used to construct the PPI network through the
STRING database, a co-expression module enriched of
DEGs. Vertexes correspond to genes and edges correspond
to expression correlation. Only the edges with the absolute
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Figure 1: Volcano plot shows the differentially expressed genes of sepsis.
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Figure 2: Heat map analysis of identified DEGs between patients with sepsis and uninfected controls. +e red color shows the upregulated
DEGs, and the blue color shows the downregulated DEGs.
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value of PCC≥0.4 were shown. Upregulated DEGs were
colored in red while downregulated DEGs were colored in
blue (Figure 4). +rough Cytoscape, we could summarize
that CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY,
GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and
PRF1 were hub genes of sepsis (Figure 5). Summary of the
hub genes is showed in Table 1.

4. Discussion

+e pathogenesis of sepsis is very complex, including
pathogen invasion, host immune response, and various
tissue damage caused by their complex interaction. Sepsis is
one of the most common causes of death in intensive care
medicine [20]. Although there has been great progress in
pathophysiology of sepsis, we still lack the early diagnostic

indicator to minimize the incidence rate of sepsis. Bio-
informatics analysis enables us to understand the molecular
mechanism of disease occurrence and development and
provides a new and effective method for the prevention and
treatment of sepsis to identify potential diagnostic bio-
markers and therapeutic targets.

After the analysis of the sepsis gene expression sequences
of GSE13904, GSE26378, GSE26440, GSE65682, and
GSE69528 in GEO, we obtained 108 DEGs between the
sepsis and control groups, including 67 upregulated genes
and 41 downregulated genes. According to KEGG and GO
enrichment analyses, upregulated DEGs were enriched in
transcriptional misregulation in cancer, shigellosis, neu-
trophil degranulation, and neutrophil activation involved in
immune response, and downregulated DEGs were majorly
enriched in cytokine-cytokine receptor interaction and Tcell
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Figure 3: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) functional analysis of
the up-regulated and down-regulated DEGs, respectively.
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activation. In sepsis, the inflammatory cytokines include
tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18),
and interleukin-1β (IL-1β) [21]. Cytokines can promote the
occurrence and development of sepsis through the inter-
action with cytokine receptors. Using neutralizing anti-
bodies against TNF-α can protect mice from mortality
during sepsis [22]. Monitoring the level of IL-18 can ef-
fectively evaluate the severity and rehabilitation of patients
with sepsis [23]. Our study also demonstrated that cytokine-
cytokine receptor interaction might regulate the

development of sepsis. Mart́ın-Fernández confirmed that
neutrophil degranulation is a central event in sepsis phys-
iopathology [24]. Previous study showed that sepsis results
in a deluge of proinflammatory and anti-inflammatory
cytokines, leading to lymphopenia and chronic immuno-
paralysis [25]. +is was consistent with our study.

+ere have been many research studies looking for
markers for the diagnosis and treatment of sepsis, including
microRNAs, long noncoding RNAs, circular RNAs, pan-
creatic stone protein, and lipopolysaccharide-binding pro-
tein [26–30]. In our research, we identified 15 major hub
genes (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY,
GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and
PRF1) in the PPI network, and all of them were down-
regulated genes in sepsis. CCL5 is a chemokine gene clus-
tered on the chromosome 17, which is a potential target for
sepsis [31]. Li M identified a gene signature, containing the
hub genes CCL5, and established a model that could be used
to diagnose patients with sepsis [32].+e protein encoded by
CCR7 is a member of the G protein coupled receptor family.
It can activate B lymphocytes and T lymphocytes, control the
migration of memory T cells to inflammatory tissues, and
stimulate the maturation of dendritic cells [33]. Yang found
that CCR7 was significantly changed in patients with sepsis
compared with matched controls [34]. Li Y found that CCR7
might participate in the mechanism of community-acquired
pneumonia (CAP) with sepsis [35]. +e protein encoded by
CD2 is a surface antigen found on all peripheral blood
T cells. Another study also found that CD2 is separately
identified as the downregulated crucial gene set in sepsis
[36]. +e protein encoded by CD27 is a member of the
tumor necrosis factor receptor superfamily and is also

Figure 4: A co-expression module enriched of DEGs. Vertexes correspond to genes and edges correspond to expression correlation. Only
the edges with the absolute value of PCC≥0.4 are shown. Up-regulated DEGs are colored in red while down-regulated DEGs are colored in
blue.
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necessary for the production and long-term maintenance of
T cell immunity. CD27 can help differentiate the preterm
septic neonates from those with risk factors [37]. CD274,
also known as PDL1, is a ligand that binds to the receptor
PD1. It is usually found on T cells and plays a role in
preventing T cell activation [38]. In sepsis mice model,
upregulation of PDL1 can delay human neutrophil apoptosis
and promote lung injury [39]. CD3D is involved in T cell
development and signal transduction, which is an effective
tool to identify patients with high or low risk of sepsis after
abdominal surgery [40]. Almansa R proposed that genes
involved in T cell (CD3D) and NK cell immunity were
inversely associated with SOFA and mortality [41]. +is was
consistent with our study. GNLY is a cytolytic antimicrobial
peptide (AMP) released from the granules of both cytotoxic
T lymphocytes (CTLs) and natural killer (NK) cells, which
mainly involved in the occurrence of psoriasis [42]. ZhangQ
found that the hub genes GNLY may be associated with the
prognosis of sepsis [43]. GZMA is a serine protease specific
for T cells and NK cells. It may be a necessary common
component for cytotoxic T lymphocytes and NK cells to
cleave target cells. Garzón-Tituaña verified that GZMAwas a
key regulator of the inflammatory response during

abdominal sepsis [44]. Inhibition of GZMA can reduce
inflammation and improve survival during E. coli sepsis [45].
GZMH is constitutively expressed at high levels in NK cells
and plays a pivotal role in NK cell mediated cytolysis [46].
Mediated by perforin and streptolysin O, GZMH can ef-
fectively kill host cells. Dead cells show the typical char-
acteristics of programmed cell death, such as reactive oxygen
species (ROS) production, mitochondrial depolarization,
DNA degradation, and chromatin condensation, while
programmed cell death often occurs in sepsis [47]. GZMK is
a member of the serine-proteases family, which is mainly
expressed by T lymphocytes [48]. In human infectious
diseases, GZMK can activate the protease activated receptor-
1 (PAR-1) in endothelial cells and induce the production of
inflammatory cytokines (TNF-α, IL-1, and IL-6) [49].
Turner et al. found that GZMK could affect wound healing
by increasing inflammation and hindering epithelialization
[50]. IL2RB is part of a receptor signaling complex, and its
function is highly pleiotropic. Activation of IL2RB by en-
dogenous IL2 or biased therapeutic stimulation can lead to
the expansion of immune cells, especially CD4 +, CD8+ ,
and NK cells [51]. Targeting IL2RB can reduce acute lung
injury caused by sepsis [52]. IL7R is important for the body’s

Table 1: +e summary of hub genes.

Gene
symbol Full name Function

CCL5 C-C motif chemokine
ligand 5

+is gene is one of several chemokine genes clustered on the q-arm of chromosome 17.
Chemokines form a superfamily of secreted proteins involved in immunoregulatory and

inflammatory processes.

CCR7 C-C motif chemokine
receptor 7

Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or
of normal lymphocyte functions.

CD2 CD2 molecule
+e protein encoded by this gene is a surface antigen found on all peripheral blood T-cells. +e
encoded protein interacts with LFA3 (CD58) on antigen presenting cells to optimize immune

recognition.
CD27 CD27 molecule +e protein encoded by this gene is a member of the TNF-receptor superfamily.

CD274 CD274 molecule +is gene encodes an immune inhibitory receptor ligand that is expressed by hematopoietic and
non-hematopoietic cells, such as T cells and B cells and various types of tumor cells.

CD3D CD3d molecule +e protein encoded by this gene is part of the T-cell receptor/CD3 complex (TCR/CD3
complex) and is involved in T-cell development and signal transduction.

GNLY Granulysin +e product of this gene is a member of the saposin-like protein (SAPLIP) family and is located
in the cytotoxic granules of T cells, which are released upon antigen stimulation.

GZMA Granzyme A GZMA is a Tcell- and natural killer cell-specific serine protease that may function as a common
component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.

GZMH Granzyme H
+is protein is reported to be constitutively expressed in the NK (natural killer) cells of the
immune system and may play a role in the cytotoxic arm of the innate immune response by

inducing target cell death and by directly cleaving substrates in pathogen-infected cells.

GZMK Granzyme K +is gene product is a member of a group of related serine proteases from the cytoplasmic
granules of cytotoxic lymphocytes.

IL2RB Interleukin 2 receptor
subunit beta

Receptor for interleukin-2. +is beta subunit is involved in receptor mediated endocytosis and
transduces the mitogenic signals of IL2. Probably in association with IL15RA, involved in the

stimulation of neutrophil phagocytosis by IL15.
IL7R Interleukin 7 receptor +e protein encoded by this gene is a receptor for interleukin 7 (IL7).

ITK IL2 inducible T cell kinase
+is gene encodes an intracellular tyrosine kinase expressed in T-cells.+e protein contains both
SH2 and SH3 domains which are often found in intracellular kinases. It is thought to play a role

in T-cell proliferation and differentiation.

KLRB1 Killer cell lectin like
receptor B1 Plays an inhibitory role on natural killer (NK) cells cytotoxicity.

PRF1 Perforin 1 +is gene encodes a protein with structural similarities to complement component C9 that is
important in immunity.
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immune responses and plays a role in regulating develop-
ment, differentiation, and survival of Tcells [53]. Studies had
shown that the level of IL7R in sepsis was significantly re-
duced, which was consistent with our results [54]. ITK is a
member of the Tec family tyrosine kinases and mediates
T cell receptor (TCR) signaling pathway [55]. Nadeem A
proposed that ITK signaling plays a significant role in sepsis-
induced acute lung injury [56]. ITK inhibition may be an
effective strategy to terminate sepsis-related acute renal
injury [57]. KLRB1, also known as killer cell lectin like
receptor B1, is a gene encoding CD161. CD161 is expressed
on immune cells (natural killer cells (NK), CD4 +, CD8+ ,
and other T cell subgroups) [58]. CD161 is also a prognostic
biomarker and immunotherapeutic target for low-grade
gliomas [59]. Lu J identified that KLRB1 was identified as the
downregulated crucial gene set in sepsis [36]. PRF1 belongs
to the membrane-attack-complex/PRF (MACPF) protein
family, which is mainly involved in the particle-dependent
killing activity of cytotoxic T lymphocytes (CTL) and NK
cells. As a clear marker of the killing ability of immune cells,
PRF1 is involved in the establishment of immune homeo-
stasis, pathogen clearance, and tumor monitoring [60].

Our study also demonstrated that cytokine-cytokine
receptor interaction might regulate the development of
sepsis. Plasma concentrations of specific cytokines TNF-α,
IL-1β, IL-6, and IL-8 are often elevated in patients with
sepsis, and cytokine concentrations are associated with the
severity and prognosis of sepsis [61]. TNF-α can bind to its
receptors TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR,
which involved in the regulation of a wide spectrum of
biological processes including cell proliferation, differenti-
ation, apoptosis, lipid metabolism, and coagulation [62]. IL-
6 binds to its membrane-anchored receptor (IL-6R), and the
complex of IL-6 and IL-6R recruits a dimer of the trans-
membrane signal transducer glycoprotein 130 (gp130).
Barkhausen et al. found that selective inhibition of IL-6
trans-signaling by sgp130Fc had considerable potential for
the treatment of sepsis and related disorders [63]. +e ac-
tivation of macrophage plays a very important role in the
immune pathogenesis of sepsis [64]. Macrophages mainly
include classically activated M1 macrophages and alterna-
tively activated M2 macrophages [65]. M1 macrophage is
associated with hyper-inflammatory phenotype, which
mainly secretes IL-1, IL-12, and IL-23 cytokines, and the
corresponding cytokine receptors are IL-1R, IL12RB1/2, and
IL-23R [65]. M2 macrophage is associated with hypoin-
flammatory phenotype, which mainly secretes TGF-β,
VEGF, and EGF cytokines, and the corresponding cytokine
receptors are TGFBR3, VEGFR, and EGFR [65]. Among the
15 hub genes mentioned above, CCL5 is a cytokine and
CCR7, CD27, CD274, IL2RB and IL7R are cytokine re-
ceptors. CCL5 is a chemokine for blood monocytes, memory
T helper cells, and eosinophils. It functions as one of the
natural ligands for the chemokine receptor chemokine (C-C
motif) receptor 5 (CCR5) [66]. CCR7 binds to the CCL19
and plays an important role in the trafficking of immune
cells as well as cancer metastasis [67]. CD27 binds to ligand
CD70 and plays a key role in regulating B cell activation and
immunoglobulin synthesis [68]. CD274 is a ligand and binds

with the receptor PD1, commonly found on Tcells, and acts
to block T cell activation [38]. IL2RB binds to ligand IL2,
which is involved in Tcell-mediated immune responses [69].
IL7R binds to ligand IL7, and the IL7R signals through the
JAK/STAT pathway. Loss-of-function mutations and some
polymorphisms of the IL7Rα were associated to immuno-
deficiency and inflammatory diseases, respectively [70].

+is study has some limitations. First, the universality of
hub gene in sepsis patients is not verified, which limits the
application of the hub gene in sepsis. Second, the involve-
ment of hub gene in the pathogenesis of sepsis needs to be
further explored. Finally, we will collect clinical samples to
further explore the relationship between the prognosis of
patients with sepsis and the expression of CCL5, CCR7,
CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH,
GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1 through
relevant experiments in the future.

5. Conclusion

In conclusion, a total of 15 hub genes (CCL5, CCR7, CD2,
CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK,
IL2RB, IL7R, ITK, KLRB1, and PRF1) have been screened
out as sepsis biomarkers in this study, all of them were
downregulated genes in sepsis. Some are cytokines, some are
cytokine receptors, and some are proteases or kinases.
Cytokine-cytokine receptor interaction might regulate the
progress of sepsis. Proteases or kinases are usually expressed
in T cell and/or NK cell, participating in sepsis. +e hub
genes reported in our study may help to unravel some
unexplored regulatory pathways, leading to the identifica-
tion of critical molecular targets for increased diagnosis,
prognosis, and drug efficacy in sepsis. Next, we will further
elaborate the specific signaling mechanism of these 15 hub
genes in sepsis through experiments and find the most
suitable genes in clinical practice.
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differentially expressed mRNAs after reducing data di-
mensions. Figure S1 Batch effect processing between dif-
ferent datasets. Different colors represent different datasets.
Rows represent samples, and columns represent the gene
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batch removal for multiple datasets. Different colors rep-
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M. Lipp, “CCR7 regulates lymphocyte egress and recircula-
tion through body cavities,” Journal of Leukocyte Biology,
vol. 87, no. 4, pp. 671–682, 2010.

[34] X. W. Yang, H. Li, T. Feng et al., “Impairment of antigen-
presenting function of peripheral cδ T cells in patients with
sepsis,”Clinical and Experimental Immunology, vol. 207, no. 1,
pp. 104–112, 2021.

[35] Y. Li, J. Wang, Y. Li et al., “Identification of immune-related
genes in sepsis due to community-acquired pneumonia,”
Computational and Mathematical Methods in Medicine,
vol. 2021, pp. 1–11, 2021.

[36] J. Lu, Q. Li, Z. Wu et al., “Two gene set variation indexes as
potential diagnostic tool for sepsis,” American Journal of
Tourism Research, vol. 12, no. 6, pp. 2749–2759, 2020.
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