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Hispanics/Latinos are at an equal or a greater risk for Alzheimer’s disease (AD), yet risk

factors remain more poorly characterized as compared to non-Hispanic/Latino Whites.

Among non-Hispanic/Latino White cohorts, the apolipoprotein E (APOE) ε4 allele is

one of the strongest risk factors for AD with subtle declines in episodic memory and

brain volumes detectable in the preclinical stages. We examined whether the APOE

ε4 status had a differential impact on cognition and brain volumes among cognitively

healthy and mild cognitively impaired Hispanics/Latinos (n = 86; ε4 n = 23) compared

to a well-matched group of non-Hispanic/Latino Whites (n = 92; ε4 n = 29). Neither

the APOE ε4 status nor the interaction between the ε4 status and ethnicity was

associated with cognitive performance. The APOE ε4 status was associated with white

matter and not with gray matter volumes. APOE ε4 carriers had a significantly smaller

total brain white matter volumes, as well as smaller right middle temporal and left

superior temporal volumes. The Hispanics/Latinos had significantly smaller left middle

frontal gray matter volumes, yet marginally larger overall white matter volumes, than

the non-Hispanic/Latino Whites. Exploratory analysis within the Hispanic/Latino sample

found that those people whose primary language was Spanish had larger total brain

white matter volumes compared primarily to the English speakers. Importantly, primary

language differences only held for Hispanic/Latino ε4 carriers and did not differentiate

Hispanic/Latino non-carriers, underscoring the need for further investigation into the

impacts of language and acculturation on cognitive aging among the fastest growing

ethnic minority group in the United States.
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INTRODUCTION

Hispanics/Latinos appear to be at least as likely as non-
Hispanic/Latino Whites to develop Alzheimer’s disease (AD)
(Gurland et al., 1999; Haan et al., 2003), although estimated
prevalence rates vary widely across studies. The Alzheimer’s
Association (2019) estimates a 1.5 times increased likelihood of
developing the disease among Hispanics/Latinos compared to
non-Hispanic/Latino Whites. The differences across studies may
be due to the specific Hispanic/Latino country of origins studied
[e.g., Mexican Americans (Haan et al., 2003) vs. Caribbean
Hispanics/Latinos (Gurland et al., 1999)] or may be related
to differences in how Hispanics/Latinos are impacted by risk
factors for the disease and the degree to which such factors are
considered in prevalence studies.

One of the largest risk factors for AD among non-
Hispanic/Latino Whites is the apolipoprotein E (APOE) ε4
allele (Bertram et al., 2007). In the brain, the apolipoprotein
E transports cholesterol and plays a role in neuronal repair
(Villeneuve et al., 2014). Of the three allelic variants of the APOE
gene (ε2, ε3, and ε4), the ε4 variant increases the risk for AD.
Among non-Hispanic/Latino Whites, one copy of the ε4 allele
is associated with a 3-fold increase in AD risk, and two copies
of the ε4 allele are associated with a 15-fold increase in risk
(Farrer et al., 1997). The APOE ε4 status impacts cognition, even
among cognitively healthy (non-demented) older adults, perhaps
as a prodrome of the disease (Foster et al., 2013) or perhaps
independent of the disease (Greenwood and Parasuraman,
2003). Among cognitively healthy individuals, compared to non-
carriers, APOE ε4 carriers have lower episodic memory scores
in late middle age and older adulthood (Caselli et al., 2009) and
lower scores on the Mini-Mental State Examination (MMSE), a
measure of global cognition (Deary et al., 2002; Winnock et al.,
2002). According to a meta-analysis (Small et al., 2004), APOE
ε4 carriers have worse performance on episodic memory and
executive functioning tasks in addition to having lower global
cognition scores relative to non-carriers.

The APOE ε4 status is thought to impact cognition via
its impact on brain structure and function. The APOE ε4
status has been associated with both increases (Han et al.,
2007) and decreases (Filippini et al., 2011) in functional MRI

activation while performing encoding tasks. Additionally, MRI

deactivation during fixation relative to externally focused tasks

was smaller for ε4 carriers compared to non-carriers (Pihlajamäki
and Sperling, 2009). Data from PET suggest that compared
to cognitively healthy ε4 non-carriers, the ε4 carriers show
greater declines in brain metabolism within the temporal,
prefrontal, posterior cingulate, parahippocampal, thalamic, and
basal forebrain regions over a 2-year period (Reiman et al.,
2001). The connections between the brain structure and cognitive
performance are also influenced by the APOE ε4 status. For
example, Wang et al. (2019) studied the relationship between
the hippocampal volume and the long delay verbal memory
scores among ε4 carriers and non-carriers with mild cognitive
impairment (MCI). Among individuals with relatively small
hippocampal volumes, ε4 carriers had lower performance on
delayed verbal memory compared to non-carriers but the

ε4 status did not differentiate memory performance among
individuals with larger hippocampal volumes. Hippocampal
atrophy is one of the earliest biomarkers of AD, and the APOE
ε4 status has been associated with smaller hippocampi among
cognitively healthy middle-aged and older adults (den Heijer
et al., 2002; Taylor et al., 2014).

The impact of APOE ε4 status on the risk for AD among
Hispanics/Latinos is largely unknown. Hispanics/Latinos are
generally less likely to be carriers of the APOE ε4 allele than
non-Hispanic/Latino Whites (Campos et al., 2013; Qian et al.,
2017). In a study which combined data across more than 40
studies of older adults with and without AD (Farrer et al.,
1997), ∼15% of Hispanics/Latinos carried at least one ε4 allele
compared to 24% of non-Hispanic/Latino Whites. Additionally,
estimated frequencies of APOE ε4 carriers among individuals
with a diagnosis of AD are mixed. Some studies find similar rates
of ε4 carriers amongHispanics/Latinos and non-Hispanic/Latino
Whites with a diagnosis of AD (Harwood et al., 2004), while
others find lower rates of ε4 carriers among Hispanics/Latinos
relative to non-Hispanic/Latino Whites (Farrer et al., 1997;
Haan et al., 2003). Still, other studies find no increased risk
for developing AD associated with ε4 among Hispanics/Latinos
(Tang et al., 1998). For example, Farrer et al. (1997) reported
that, among patients with AD, ∼37% of non-Hispanic/Latino
Whites carried at least one ε4 allele compared to ∼19% among
Hispanics/Latinos (which is close to the population base-rate of
15% among Hispanics/Latinos reported by Farrer et al., 1997). In
contrast, when Hispanics/Latinos with AD, who identified their
race as White, were compared to non-Hispanic/Latino Whites,
the groups had equivalent rates (27%) of ε4 carriers (Harwood
et al., 2004).

Hispanic/Latino country of origin may contribute to the
difference in the prevalence of the APOE ε4 status and its
influence on the risk for AD. In a recent analysis of over 10,000
Hispanic/Latino Americans genotyped for the APOE ε4 status,
those from the Dominican Republic had the highest rates of ε4
carriers (at least one ε4 copy; 17.5%), while those from Mexico,
Central America, and South America had lower rates, closer
to 11% (González et al., 2018). In the same cohort, the APOE
ε4 status was not associated with MCI prevalence, and this
was consistent across the country of origin groups (González
et al., 2019). Among a unique group of predominantly (77%)
Cuban Hispanics/Latinos with AD, who identified their race as
White, whose primary language was Spanish, and who were
born outside of the United States, having at least one copy of
the ε4 allele was linked to an earlier age of onset compared
to non-carriers (Harwood et al., 2004). The earlier onset was
comparable to that of non-Hispanic/Latino White ε4 carriers,
but this association was statistically more robust among non-
Hispanic/Latino Whites. In a study on Mexican Americans and
non-Hispanic/Latino Whites comprising 28 individuals with AD
and 28 cognitively healthy people in each ethnic group (overall
N = 112), odds of developing AD based on APOE ε4 status
differed by ethnicity (Campos et al., 2013). Among Mexican
Americans, the presence of one or more ε4 allele made up ∼32%
of individuals in the group with AD and 25% of the cognitively
healthy group vs. ∼61 and 36% of non-Hispanic/Latino Whites
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who had AD or were cognitively healthy, respectively. Non-
Hispanic/Latino Whites with at least one ε4 allele were at
an increased risk for developing AD, controlling for age, sex,
and education, while Mexican Americans with at least one ε4
allele were not at an increased risk for AD once demographic
variables were taken into account. Similarly, in a larger study
of 267 Mexican-Americans genotyped for APOE ε4 (O’Bryant
et al., 2013), having at least one copy of the ε4 allele was not
related to the increased odds of having cognitive impairment
(either AD or MCI). When cognition was examined among the
combined diagnostic groups (i.e., cognitively healthy, MCI, and
AD), the APOE ε4 status was not associated with global cognitive
functioning [based on (MMSE)] among Mexican Americans but
was related to lower MMSE scores among non-Hispanic/Latino
Whites. Instead, among both Mexican Americans and non-
Hispanic/Latino Whites, having at least one ε4 allele was related
to greater dementia symptom severity (O’Bryant et al., 2013)
based on the Clinical Dementia Rating Scale (Morris, 1993).

Even less literature exists on the influence of the APOE
ε4 status on the brain and the cognition among cognitively
healthy Hispanics/Latinos. Consistent with studies among non-
Hispanic/Latino Whites (Alexander et al., 2002), a study
(Langbaum et al., 2010) on cognitively healthy middle-aged and
older Hispanics/Latinos found that ε4 carriers had lower cerebral
metabolism in the precuneus and posterior cingulate compared
to non-carriers. Regarding the white matter and brain structure,
among a racially diverse, predominantly Hispanic/Latino sample
of individuals with a wide range of cognitive functioning, the
APOE ε4 status was not associated with an increased risk for
microbleeds in the brain (Caunca et al., 2016). However, among
the same sample, ε4 carriers with higher total cholesterol had
smaller white matter hyperintensity volumes, a marker of small
vessel damage in the brain, compared to those with lower
cholesterol, and this relationship was not significant among non-
carriers (Willey et al., 2014).

Regarding cognition, among samples from 90-year-old Puerto
Ricans without dementia, the ε4 status was associated with higher
cognitive performance on a composite of visuospatial, naming,
and attention tasks compared to non-carriers (Carrión-Baralt
et al., 2009). Interestingly, the authors suggest that higher scores
among ε4s may be attributable to a survivor effect; in other
words, ε4 carriers who have survived up to their 90s may have
other resilience factors offsetting the ε4 risk, or the ε4 status
may actually be helpful among the oldest old (Carrión-Baralt
et al., 2009). It is unknown if the APOE ε4 status is associated
with higher or lower cognitive functioning performance among
cognitively healthyHispanics/Latinos inmiddle age and in earlier
older adulthood.

Taken together, at present, the impact of the APOE ε4 status
on aging Hispanics/Latinos is ambiguous, likely nuanced,
and particularly understudied among cognitively healthy
individuals. The present study examined whether ethnicity
(i.e., Hispanic/Latino vs. non-Hispanic/Latino) modulates the
relationships between the APOE ε4 status and (1) cognition
(i.e., episodic memory, executive functioning, and processing
speed) and (2) brain volumes among cognitively healthy older
adults, aged from 50 to 94. We were particularly interested in the

relationship between the hippocampal volume and the episodic
memory performance. We predicted that ε4 carriers, regardless
of ethnicity, would have lower episodic memory. Further,
we predicted that this association would be stronger among
non-Hispanic/Latino Whites than among Hispanics/Latinos.
Similarly, we hypothesized that ε4 carriers would have smaller
hippocampi than non-carriers and that this association would
be stronger among non-Hispanic/Latino Whites compared to
Hispanics/Latinos. In addition, we conducted a whole brain
voxel-based morphometric analysis to determine whether other
brain regions would be linked to the ε4 status, ethnicity, or the
interaction between these two factors.

METHOD

Participants
The present study included 183 late middle-aged and older adults
selected from the National Alzheimer’s Coordinating Center
(NACC)1 and the Alzheimer’s disease neuroimaging initiative
(ADNI) databases based on self-reported race and ethnicity and
availability of neuroimaging and cognitive data. All participants
provided informed consent. Data were collected in compliance
with the Declaration of Helsinki. The NACC data used in this
analysis were collected from 10 Alzheimer’s Disease Research
Centers from September 2005 to March 2016. The data used
in the preparation of this article were also obtained from the
ADNI database.2 The ADNI was launched in 2003 as a public–
private partnership, led by the principal investigator, Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of MCI and early AD.3 We have previously
published the data of 168 of these participants (see Stickel et al.,
2019) in a study on cardiovascular disease risk factors and
cognition. The present study included a total of 178 participants
without a diagnosis of dementia, who at a minimum underwent
neuroimaging and genotyping for APOE. The cohort included
Hispanics/Latinos who self-identified their race as White (n =

86), in order to control the confounded race which may impact
the strength of associations between risk factors and the brain
structure and cognition (DeCarli et al., 2008; Glymour and
Manly, 2008; Zahodne et al., 2015, 2017). Information about the
country of origin was only available for 57 of the participants,
with the majority (n = 47, 82.46%) of participants identifying
Mexico as their country of origin. Baseline neuropsychological
and neuroimaging examinations occurred between 2005 and
2015. Ethnic groups had age ranges from 50 to 94 years and were
matched on several additional demographics. Ethnic groups,
APOE ε4 groups, and the individual ethnicity by the APOE ε4
groups did not significantly differ in age, education, proportion
of individuals with MCI, or apolipoprotein E ε4 status (ethnic
group comparison only), systolic blood pressure, diastolic blood

1https://www.alz.washington.edu/.
2adni.loni.usc.edu.
3For up-to-date information, see www.adni-info.org.
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pressure, or body mass index (Fs ≤ 2.04, n.s.; ts ≤ |1.33|, n.s.;
χ
2s ≤ 1.33, n.s.) (see Table 1).

Cognitive Measures
Participants in NACC and ADNI completed all or parts of the
neuropsychological battery of the Uniform Data Set (Weintraub
et al., 2009).4 The Uniform Data Set has multiple Spanish
translations (Acevedo et al., 2009). There was no official Spanish
translation of the Uniform Data Set from September 2005 to
April 2007, and translations may have varied across Alzheimer’s
Disease Research Centers. Participants were tested in person and
in their preferred language. In the present study, we included
the following tests: the Wechsler Memory Scale (WMS) -III
or -R Logical Memory Story delayed recall (Wechsler, 1987,
1997), the WAIS-R Digit Span Backward, the WAIS-R Digit
Symbol (Wechsler, 1981), the Trail Making Test (Parts A and
B; Reitan, 1958), and the MMSE (Folstein et al., 1975). ADNI
participants were asked to take the Rey Auditory Verbal Learning
Test (RAVLT; Rey, 1941) but neither the Story Recall nor
the Digit-Symbol.

As described by Stickel et al. (2019), one memory measure
was calculated across NACC and ADNI participants based on
delayed recall on either a verbally presented story or a verbally
presented list. Specifically, the Logical Memory Story IIA, recall
(score range: 0–25), and the RAVLT (score range: 0–15) number
correct raw scores were transformed to z-scores separately using
the mean and SD of the corresponding NACC or ADNI sample.
As a measure of executive functions, raw completion time on
Trail B (score range: 0–300) was divided by a raw completion
time on Trail A (score range: 0–150) to obtain a task switching
measure (Trails B/A; Arbuthnott and Frank, 2000). Trail A
requires that participants to draw lines to sequentially connect
letters of the alphabet, and Trail B contains letters and numbers
which need to be ordered sequentially while also switching back-
and-forth between letters and numbers. The raw number of
correct trials on Digit Span Backward (score range: 0–12) was a
secondmeasure of executive functions. It requires the participant
to reverse the order of the verbally presented strings of numbers
of increasing length maintained in the working memory. Trail
A raw completion times and the raw number correct on the
Digit-Symbol (score range: 0–93) were used as separate measures
for processing speed. The Digit-Symbol requires individuals to
transcribe symbols that correspond with a given number. We
also included a general cognitive screening measure, the MMSE
(score range: 0–30).

Apolipoprotein E ε4 Status
To determine the APOE ε4 status, two single nucleotide
polymorphisms (rs429358, rs7412) were analyzed to define the
ε2, ε3, and ε4 alleles. The APOE ε4 status for NACC participants
was obtained from individual NACC sites, the AD Genetics
Consortium, and the National Cell Repository for Alzheimer’s
Disease (NCRAD). If the ε4 status of a participant differed

4http://www.adni-info.org/Scientists/CognitiveTesting.html.

between sources, then it was marked as missing.5 Specific
genotyping methods for ADNI participants are described in
Saykin et al. (2010). In the present study, the APOE ε4 status
is defined as a carrier [someone who had one or two ε4 alleles
(i.e., ε4 heterozygotes and homozygotes)] or a non-carrier (all
others with no ε4 allele). Within the APOE ε4 carrier group, there
were 47 (Hispanic n = 21) heterozygotes and 5 (Hispanic n =

2) homozygotes. Among APOE ε4 heterozygotes, 45 (Hispanic
n = 21) carried a ε3 allele and 2 (no Hispanics) carried a
ε2 allele. Given the small numbers of APOE ε4 homozygotes
and ε2/ε4 heterozygotes, we were unable to compare specific ε4
allelic combinations.

Image Acquisition
Participants underwent MRI collected on 1.5T and 3T scanners.
T1 high-resolution images were collected from all participants
included in the present study. The NACC neuroimaging
data were collected using various standard clinical and
research protocols available from multiple Alzheimer’s Disease
Research Centers. The ADNI encourages standardization by pre-
approving specific scanners at research sites and reimburses sites
for scans completed on pre-approved scanners. Both NACC
and ADNI MRI scans undergo quality control checks, which
help exclude scans with artifacts and those showing structural
abnormalities, making it feasible for scans to be combined across
imaging platforms (Beekly et al., 2007; Jack et al., 2010; Guo
et al., 2017).6 For NACC MRI scans, quality control checks
occur at the individual Alzheimer’s Disease Research Center
and then the de-identified MRI DICOM files were voluntarily
submitted to NACC. Therefore, motion and coverage artifacts
may occasionally be present despite the efforts by Alzheimer’s
Disease Research Center to avoid their inclusion and may not be
screened out upon submission to NACC.

Image Processing
Raw images were downloaded from the NACC and ADNI
databases. Images were reconstructed and a non-brain tissue
was removed using FreeSurfer v5.3 (Dale et al., 1999).7

Next, voxel-based morphometry (VBM) (Ashburner, 2007) was
performed using the Diffeomorphic Anatomical Registration
through Exponentiated Lie algebra (DARTEL) (Ashburner, 2007)
in SPM8, a statistical parametric mapping.8 More specifically,
whole brain volumes were aligned along the anterior to posterior
commissural plane. Aligned images were then re-sliced to 1 mm3

and segmented into gray matter, white matter, and cerebrospinal
fluid using tissue probability maps obtained from the VBM
toolbox. Intracranial volumes (ICV) were calculated based on the
summation of gray matter, white matter, and cerebrospinal fluid
volumes. ICV was used to control the head size in all subsequent

5Specifics on NACC genotype and sequencing data can be found at the following

(https://www.niagads.org/; https://alois.med.upenn.edu/adgc/about/overview.

html).
6Formore information onNACC and ADNIMRI procedures, see https://www.alz.

washington.edu/WEB/mri_main.html and Jack et al. (2010; http://adni.loni.usc.

edu/data-samples/mri/), respectively.
7https://surfer.nmr.mgh.harvard.edu/fswiki/.
8http://www.fil.ion.ucl.ac.uk/spm/.
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TABLE 1 | Combined Alzheimer’s disease neuroimaging initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) sample demographics organized by

ethnicity and the APOE ε4 status.

Ethnicity

Hispanics/Latinos

(n = 86)

Non-Hispanic/Latino Whites

(n = 92)

ε4 non-carriers

(n = 63)

ε4 carriers

(n = 23)

ε4 non-carriers

(n = 63)

ε4 carriers

(n = 29)

Age (years) M (±SEM) 72.03 (1.02) 71.87 (1.62) 72.22 (1.39) 68.90 (1.50)

Education (years) M (±SEM) 12.44 (0.62) 12.77 (0.80) 13.41 (0.37) 14.03 (0.47)

Systolic blood pressure (mm Hg) M (±SEM) 139.85 (2.38) 135.96 (4.53) 135.62 (2.82) 131.57 (2.89)

Diastolic blood pressure (mm Hg) M (±SEM) 72.84 (1.24) 75.30 (2.49) 74.70 (1.44) 73.82 (1.72)

Body mass index M (±SEM) 28.29 (0.67) 27.85 (0.96) 26.37 (0.54) 27.45 (1.02)

MCI (%) 44.44% 43.48% 42.86% 51.72%

Sex (% female) 61.90% 78.26% 60.32% 62.07%

No significant group differences on any measures. APOE, Apolipoprotein; MCI, mild cognitive impairment.

analyses of total and regional volumes. Additionally, the total
gray matter and the total white matter volumes extracted in
segmentation were used as total volumetric measures.

For the VBM analysis, DARTEL was used to create two
study-specific custom templates for gray and white matters
from the segmented gray and white matter images of all
participants, respectively. The gray and white matter images
of each participant were then normalized to the appropriate
study-specific template, modulated using Jacobian determinants,
and smoothed with a 10mm full-width-half-maximum (FWHM)
isotropic Gaussian kernel.

Two multiple regression analyses (one for gray matter, one for
white matter) were performed in SPM8, in order to identify the
regions of the brain in which the impact of the APOE ε4 status
was moderated by ethnicity. Regressions included the APOE
ε4 status and ethnicity as main exposures and the interaction
between the APOE ε4 status and ethnicity, as well as age and
ICV, as the control variables. Initially, the statistical threshold
cluster for each association tested was set at p < 0.05, with the
corrected false discovery rate (FDR) (Benjamini and Hochberg,
1995). However, no voxels met this criterion. The threshold was
then changed at p < 0.001, uncorrected, with a cluster of 50
contiguous voxels. This threshold was chosen based on a previous
study that tested the impact of a genetic risk factor for cognitive
impairment on brain volumes; see Stickel et al. (2018). The cluster
threshold was more conservative than previous VBM analyses
from our laboratory using the same p-threshold and a cluster size
of 18, which was determined based on Monte Carlo simulations
(Walther et al., 2011), but was less conservative than some other
VBM analyses using the same p-value (Glodzik et al., 2012:
k = 75; ten Kate et al., 2016: k = 100). MarsBaR (Brett et al.,
2002) was used to extract volumetric values per person for each
significant cluster identified in the VBM analysis. Volumes were
calculated as the average value across all significant voxels within
a given cluster.

Finally, given that we were also interested in the hippocampal
volumes, the Wake Forest University PickAtlas 2.0 (Maldjian
et al., 2003) and Automated Anatomical Labeling library

(Tzourio-Mazoyer et al., 2002) were used to create a mask of
the left and the right hippocampi that was applied to the gray
matter map of each individual in MarsBaR in order to extract
the hippocampal volumes. Regional and total volumes as well as
ICV values for each person were entered into SPSS v 25 (IBM
Corp, released 2017, Armonk, NY, USA). Once entered into
SPSS, all volumes were residualized for ICV prior to conducting
further analyses.

Statistical Analysis
In order to test the hypothesis that the APOE ε4 status is
related to cognition differentially between the two ethnic groups,
five [one per cognitive task (i.e., delayed verbal memory, Trails
B/A, Digit Span Backward, Trails A, and Digit-Symbol)] general
linear models (GLMs) were performed in SPSS v 25 (IBM
Corp, released 2017, Armonk, NY, USA). Each GLM tested the
independent impact of the APOE ε4 status and ethnicity, as well
as the interaction between the APOE ε4 status and ethnicity,
controlling for age and education.

Five additional GLMs were conducted to test the main
associations between exposures (APOE ε4 status, ethnicity, and
the interaction between APOE ε4 status and ethnicity) and total
gray matter, total white matter, and the hippocampal (left, right,
bilateral) volumes. Age was included as a covariate.

RESULTS

APOE ε4, Ethnicity, and Cognition
Results shown in Table 2 are F-statistics from GLMs unless
there was a violation of homoscedasticity, in which case robust
parameter estimates (t-statistics) are reported. Overall models for
delayed verbal memory, Digit Span Backward, Trail A, Digit-
Symbol, and the MMSE were significant. Controlling for age
and education, neither the APOE ε4 status nor the interaction
between the APOE ε4 status and ethnicity was related to
any cognitive measures (Fs ≤ 2.62, n.s.; ts ≤ |1.24|, n.s.).
Hispanics/Latinos had significantly lower scores on the Digit-
Symbol [F(1,85) = 22.58, p < 0.001] and marginally lower
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TABLE 2 | F-statistics for overall models (in bold) and exposure/covariate factors

for models.

Delayed verbal memory

Overall model F(5,152) = 5.91***

APOE F (1,152) = 2.03

Ethnicity F (1,152) = 1.63

Age F (1,152) = 19.27***

Education F (1,152) = 4.08*

APOE × ethnicity F (1,152) = 2.32

Digit span backward

Overall model F(5,117) = 7.01***

APOE t = −0.71

Ethnicity t = 1.71
†

Age t = −0.51

Education t = 3.14**

APOE × ethnicity t = 0.12

Trails B/A

Overall model F(5,149) = 0.96

APOE –

Ethnicity –

Age –

Education –

APOE × ethnicity –

Trail A

Overall model F(5,155) = 20.86***

APOE t = 0.52

Ethnicity t = −0.97

Age t = 3.13**

Education t = −5.44***

APOE × ethnicity t = −1.24

Digit-symbol

Overall model F(5,85) = 25.78***

APOE F (1,85) = 2.62

Ethnicity F (1,85) = 22.58***

Age F (1,85) = 15.14***

Education F (1,85) = 48.85***

APOE × ethnicity F (1,85) = 1.72

Mini-mental state examination

Overall model F(5,145) = 9.80***

APOE t = 0.50

Ethnicity t = 0.66

Age t = −1.72†

Education t = 4.05***

APOE × ethnicity t = 0.66

t-statistics from robust standard errors are included in place of F-statistics for

models in which there was a violation of homoskedasticity.
†
p < 0.10, *p < 0.05,

**p < 0.01, ***p < 0.001.

performance on Digit Span Backward (t = 1.71, p = 0.09)
compared to non-Hispanic/Latino Whites. Age and education
covariates were each associated with performance on delayed
verbal memory, Trail A, and Digit-Symbol (Fs ≥ 4.08, p < 0.05;
ts ≥ |3.13|, p < 0.01). Additionally, education was associated
with scores on Digit Span Backward (t = 3.14, p < 0.01) and the
MMSE (t = 4.05, p < 0.001).

TABLE 3 | F-statistics for overall models (in bold) and exposure/covariate factors

for models predicting total gray matter, total white matter, and hippocampal brain

volumes.

Total brain gray matter

Overall model F(4,173) = 4.59**

APOE t = −0.93

Ethnicity t = 0.003

Age t = −3.59***

APOE × ethnicity t = 0.15

Total brain white matter

Overall model F(4,173) = 3.01*

APOE F (1,173) = 4.18*

Ethnicity F (1,173) = 3.24†

Age F (1,173) = 2.73

APOE × ethnicity F (1,173) = 0.11

Left hippocampus

Overall model F(4,173) = 4.94***

APOE F (1,173) = 0.02

Ethnicity F (1,173) = 0.20

Age F (1,173) = 18.46***

APOE × ethnicity F (1,173) = 0.39

Right hippocampus

Overall model F(4,173) = 4.63**

APOE F (1,173) = 0.00003

Ethnicity F (1,173) = 0.31

Age F (1,173) = 17.41***

APOE × ethnicity F (1,173) = 0.17

Bilateral hippocampus

Overall model F(4,173) = 4.91***

APOE F (1,173) = 0.004

Ethnicity F (1,173) = 0.26

Age F (1,173) = 18.41***

APOE × ethnicity F (1,173) = 0.28

All brain volumes residualized for intracranial volume prior to analysis. t-statistics from

robust standard errors are included in the place of F-statistics for models, in which there

was a violation of homoskedasticity.
†
p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

APOE ε4, Ethnicity, and Total and
Hippocampal Volumes
All volumes were residualized for ICV prior to being analyzed.
Each GLM tested the independent associations of the APOE
ε4 status and ethnicity, as well as the interaction between the
APOE ε4 status and ethnicity on volumes, controlling for age.
Overall models for total brain gray matter, total brain white
matter, the left hippocampus, the right hippocampus, and the
bilateral hippocampus were significant. Controlling for age, the
ε4 carriers had significantly smaller total brain white matter
volumes [F(1,173) = 4.18, p < 0.05] than non-carriers, and
Hispanics/Latinos had marginally larger white matter volumes
than non-Hispanic/Latino Whites [F(1,173) = 3.24, p = 0.07].
Gray matter volumes and hippocampal volumes were not
associated with the APOE ε4 status, ethnicity, or the APOE ε4
status by ethnicity interaction (Fs ≤ 0.39, n.s.; ts ≤ |0.93|, n.s.).
Older age was associated with smaller brain volumes in all brain
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TABLE 4 | Participant demographics for Hispanics/Latinos organized by primary language and APOE ε4 status.

Primary language

English

(n = 49)

Spanish

(n = 37)

ε4 non-carriers

(n = 32)

ε4 carriers

(n = 17)

ε4 non-carriers

(n = 31)

ε4 carriers

(n = 6)

Age (years) M (±SEM) 71.94 (1.51) 72.65 (2.03) 72.13 (1.40) 69.67 (2.38)

Education (years) M (±SEM)** 14.03 (0.52) 13.76 (0.53) 10.69 (1.09) 9.40 (2.68)

Systolic blood pressure (mmHg) M (±SEM) 140.81 (3.18) 134.18 (5.42) 138.83 (3.62) 141.00 (8.51)

Diastolic blood pressure (mmHg) M (±SEM) 72.84 (1.63) 74.12 (3.06) 72.83 (1.90) 78.67 (4.10)

Body mass index M (±SEM) 28.14 (1.05) 27.42 (1.26) 28.45 (0.84) 29.05 (0.93)

MCI (%) 37.50% 35.29% 51.61% 66.67%

Sex (% female) 59.38% 76.47% 64.52% 83.33%

APOE, Apolipoprotein; MCI, mild cognitive impairment. **p < 0.01.

measures (Fs≥ 17.41; t =−3.59), except total brain white matter
volumes [F(1,173) = 2.73, n.s.]. See Table 3 for results.

Exploratory Analysis of Primary Language
and APOE ε4 Status Among
Hispanics/Latinos
Acculturation differences between Hispanics/Latinos have been
shown to influence lifespan in the presence of certain diseases
(Gallo et al., 2009). Greater adherence to Hispanic/Latino culture
is associated with more resiliency, but the impact of acculturation
on genetic risk for AD is unknown. In order to test if a
factor related to acculturation, the primary language, may have
influenced the impact of APOE ε4 status on total white matter
volumes, we conducted an exploratory post-hoc analysis specific
to the Hispanic/Latino sample. Briefly, Hispanics/Latinos with
Spanish as their primary language (n = 37) did not differ from
those whose primary language is English (n = 49) on age (t
= 0.19, n.s), with cardiovascular health indicators [i.e., systolic
blood pressure, diastolic blood pressure, body mass index (Fs
≤ 1.60, n.s.)], from different sex, cognitive status, or history of
hypertension (χ2s≤ 2.71, n.s.), but they had lower education, on
average (∼11 vs. 14 years, t < 3.66, p < 0.01). Additionally, the
primary Spanish language group had marginally fewer ε4 carriers
than the primary English language group [χ2

(1) = 3.67, p = 0.06]

(Table 4). We conducted GLMs in SPSS, testing the relationships
between total brain volumes and the APOE ε4 status, primary
language, and the interaction of the APOE ε4 status and primary
language, controlling for age and ICV. We also controlled for
education, given that the language groups significantly differed
on this variable. The interaction between the APOE ε4 status and
primary language was significantly linked to total brain white
matter volumes [F(1,77) = 4.04, p < 0.05]. Simple association
tests determined that ε4 carriers who primarily spoke English
had significantly smaller white matter volumes compared to ε4
carriers who primarily spoke Spanish (t = −2.09, p < 0.05)
as well as marginally smaller volumes compared to both non-
carrier groups (vs. Spanish: t = −1.89, p = 0.07; vs. English: t
= −1.91, p = 0.06). No other differences in simple associations

FIGURE 1 | Total brain white matter volumes residualized for intracranial

volume for Hispanics/Latinos whose primary language was English (left) and

whose primary language was Spanish (right). Apolipoprotein E (APOE) ε4

carriers whose primary language was English had marginally to significantly

smaller white matter volumes than the other three groups (ts ≥ |1.89|, ps <

0.07), controlling for age and education. No other group differences were

detected (ts ≤ |1.20|, n.s.). †p < 0.10; *p < 0.05.

were detected (ts≤ |1.20|, n.s.) (Figure 1). Older age (marginally)
and lower education were also associated with larger white matter
volumes [F(1,77) = 3.26, p = 0.08 and F(1,77) = 4.15, p < 0.05,
respectively]. The main association between the APOE ε4 status
and primary language were not associated with white matter
volumes (F ≤ 2.04, n.s.).

APOE ε4, Ethnicity, and Voxel-Based
Morphometry Analysis
As noted above, the voxel-based morphometry (VBM) analysis
tested the impact of the APOE ε4 status, ethnicity, and the
interaction between the APOE ε4 status and ethnicity on each
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FIGURE 2 | Brain images depicting the gray matter region in which

non-Hispanic/Latino Whites had larger gray matter volumes compared to

Hispanics/Latinos, controlling for age and intracranial volume (p <0.001, k >

50). This region (in red) is in the left middle frontal gyrus; Montreal Neurological

Institute (MNI) coordinates: −30, 40, 32.

gray and white matter voxel in the brain. At a threshold of
p < 0.001 and k = 50, one significant gray matter region
was identified: non-Hispanic/Latino Whites had larger gray
matter volumes in the left middle frontal gyrus compared to
Hispanic/Latino individuals (Figure 2). Within the white matter,
APOE ε4 carriers had smaller volumes in the left superior
temporal white matter near the temporal parietal junction and
in the right middle temporal lobe compared to non-carriers
(Figure 3). See Table 5 for the cluster table. The APOE ε4 by
ethnicity interaction was not associated with brain volumes.

DISCUSSION

In our study on Hispanics/Latinos and non-Hispanic/Latino
Whites, the APOE ε4 status was not associated with cognitive
outcomes but was linked to brain volumes. APOE ε4 carriers
had smaller white matter volumes overall (total brain) and within
bilateral temporal regions compared to non-carriers across both
ethnicities. Investigating the Hispanic/Latino sample further, we
found that ε4 carriers who primarily spoke Spanish had larger
total brain white matter volumes than those who primarily
spoke English, whereas volumes among non-carriers were similar
between language groups. Over and above the impact of the
APOE ε4 status, Hispanics/Latinos had marginally larger total
brain white matter volumes but significantly smaller gray matter
volumes in the left middle frontal gyrus compared to non-
Hispanic/LatinoWhites. Our results suggest important biological
commonalities between the ethnic groups while also highlighting

FIGURE 3 | Brain images depicting white matter regions in which APOE ε4

carriers had smaller volumes compared to non-carriers, controlling for age and

intracranial volume (p < 0.001, k > 50). These regions (in blue) are within the

right middle temporal and left superior temporal white matter; MNI coordinates

for depicted image slices: −44, −38, 12.

the importance of examining the factors that are highly relevant
and heterogeneous within the Hispanic/Latino population (e.g.,
language use, acculturation). Our findings are discussed in more
detail in the following sections.

Cognition
We did not detect an association between the APOE ε4 status
and performance in any cognitive domain examined: episodic
memory, executive functioning, and processing speed. Rather,
the covariates of age and education accounted for the majority
of the variance in cognition. In contrast to our predictions, the
APOE ε4 status was not associated with episodic memory. This is
in contrast to themajority of existing literature (Deary et al., 2002;
Caselli et al., 2009). According to a meta-analysis (Small et al.,
2004), lower performance on episodic memory, global cognition,
and executive functioning are consistently found among APOE
ε4 carriers relative to non-carriers.

There may be several reasons why we did not observe an
association of APOE ε4 status and cognition in the present
study. It may be that across the relatively wide age range (50–
94 years) in the present study, the impact of APOE ε4 status may
change with increasing age rather than having a uniform effect
among all older adults. Genetic factors that influence cognition
appear to have stronger impact in older age prior to the onset
of dementia (Lindenberger et al., 2008; Papenberg et al., 2015;
Stickel et al., 2018), possibly due to weakening structural integrity
and/or impairments in neural processing. Supporting this notion,
some have found that the presence of one or more APOE ε4
alleles is linked to poorer cognition, specifically among older
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TABLE 5 | Regions in which group (ethnicity or APOE ε4 status) differences in volumes were detected, p <0.001, k ≥ 50, controlling for age and intracranial volume.

MNI coordinates

Region x y z t-value (peak intensity) Cluster size

Gray matter region

Non-Hispanic/Latino Whites > Hispanics/Latinos

L middle frontal gyrus −30 40 32 3.66 1,498

White matter regions

APOE ε4 Non-carriers > carriers

R middle temporal 52 −38 −9 3.67 299

L superior temporal −42 −43 15 3.99 2,649

The Montreal Neurological Institute (MNI) coordinates of the location of maximal significance, the t-value, and cluster size (in mm3 ) of each cluster are provided. L, left hemisphere; R,

right hemisphere.

adults (Rawle et al., 2018), and cognitive decline (as opposed
to baseline cognition) may be more sensitive to differences in
the APOE ε4 status (Li et al., 2019). In contrast, one of the few
studies of APOE ε4 on Hispanics/Latinos found that ε4 carriers
of 90 year olds had higher scores on visuospatial, attention, and
naming tasks, as well as nominally higher memory performance
than non-carriers (Carrión-Baralt et al., 2009). As noted earlier,
this may reflect a survivor effect, which outweighs the negative
impacts of APOE ε4, or may reflect a change from a harmful
to a beneficial role of the APOE ε4 status among the oldest.
Alternatively, genetic ancestry may influence the impact of the
APOE ε4 status on Hispanic/Latino cognitive aging (Blue et al.,
2019; Granot-Hershkovitz et al., 2020).

Recent data suggest that, first, greater Amerindian genetic
ancestry is associated with protection against APOE ε4-related
cognitive declines (Granot-Hershkovitz et al., 2020). Second,
education may be interacting with APOE ε4 to impact episodic
memory (Christensen et al., 2008) as well as to diminish the
association of APOE ε4 and global cognition when it is taken into
account (Winnock et al., 2002). Along with age and education,
there may be other factors contributing to the extent to which the
APOE ε4 status impacts episodic memory, such as the presence of
amyloid beta (Lim et al., 2013, 2015). High cerebral amyloid beta
loadmay be a sensitive indicator of risk for cognitive impairment,
but only for certain groups. For example, higher rates of amyloid
beta were correlated with lower performance on verbal memory,
visual memory, and working memory to a significantly stronger
extent among cognitively healthy older ε4 carriers compared
to non-carriers (Lim et al., 2013). Similarly, existing evidence
suggests that APOE ε4 carriers may be more vulnerable to poor
cognition in the presence of white matter hyperintensities, an
indicator of small vessel damage, than non-carriers (Mirza et al.,
2019). Even less is known about the interactions between the
APOE ε4 status and amyloid beta or cerebrovascular damage on
cognition among Hispanics/Latinos.

In the present study, Hispanics/Latinos and non-
Hispanic/Latino Whites differed on multiple cognitive measures
as was expected, given the previous cognitive comparisons of the
same sample (Stickel et al., 2019). We found lower performance
on the measures of working memory and one of the two
processing speed measures among Hispanics/Latinos compared

to non-Hispanic/Latino Whites. Notably, these associations
persist even when taking into account the APOE ε4 status, age,
and education. In contrast to O’Bryant et al. (2013), the impact
of ethnicity on cognition did not vary by the ε4 status. Given that
the APOE ε4 status alone largely produced null findings in the
current study, it is difficult to determine whether the role of the
APOE ε4 status on cognition is uniform across the ethnic groups.

Total Brain Volumes
The present study detected APOE ε4-related differences for
total brain white matter volumes, but not gray matter volumes.
Specifically, ε4 carriers had smaller total brain white matter
volumes than non-carriers. Ready et al. (2011) found a similar
pattern of smaller total brain white matter volumes among
ε4 carriers compared to non-carriers, and smaller volumes
were associated with lower cognitive performance (i.e., slower
processing speed and lower inhibition). Given that larger white
matter volumes are not always reflective of greater white matter
health, we cannot say whether the current findings support a
ε4 disadvantage. For example, one study (Walther et al., 2010)
found that higher body mass index was associated with larger
white matter volumes. However, in a second study investigating
white matter integrity within the same regions that were larger
in volume, the authors found lower white matter integrity
among those with higher body mass index (Ryan and Walther,
2014). Further, lower white matter integrity was associated with
lower memory, lower executive functioning, and processing
speed. Given that the present study also detected marginally
larger total brain white matter volumes amongHispanics/Latinos
relative to non-Hispanic/Latino Whites, future investigations
into white matter integrity among Hispanics/Latinos may help
clarify whether this is a structural advantage or disadvantage.

Heise et al. (2011) also found the evidence of ε4-related
differences in the white matter and not in the gray matter
in cognition using diffusion imaging metrics reflecting the
integrity of the white matter. Specifically, the authors found
that ε4 carriers had similar white matter volumes but lower
white matter integrity compared to non-carriers across both
young and older adults. Ryan et al. (2011) also found that
APOE ε4 carriers had greater age-related poorer white matter
integrity compared to non-carriers across all white matter
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regions (including the temporal stem, the frontal, lateral, and
parietal centrum semiovale and genu, and splenium white matter
regions). In the same cohort, the APOE ε4 status was associated
with memory indirectly via the temporal stem (McKinnon et al.,
2021). That is, ε4 carriers had poorer white matter integrity in the
temporal stem relative to non-carriers, which was then associated
with poorer memory.

With respect to ethnicity, we found marginally larger total
white matter volumes among Hispanics/Latinos compared to
non-Hispanic/Latino Whites. This is consistent with larger total
brain volumes among Hispanics/Latinos compared to African
Americans and non-Hispanic/Latino Whites observed in the
study of DeCarli et al. (2008). DeCarli et al. (2008) noted
that larger brain volumes among Hispanics/Latinos were only
apparent after taking into account the ICV and suggested that
Hispanics/Latinos may actually have smaller heads premorbidly.
In the present study, ICV was taken into account, so it is unlikely
to be a confound.

Future studies need to investigate whether APOE ε4 status
would have the same associations among more diverse samples
of Hispanics/Latinos. Remarkably, Hispanics/Latinos with AD
tend to live longer after diagnosis than their non-Hispanic/Latino
White counterparts (Helzner et al., 2008). Such findings are
consistent with the Hispanic/Latino mortality paradox, which
is the robust finding to confirm that Hispanics/Latinos tend
to outlive non-Hispanic/Latino Whites (Abraido-Lanza et al.,
1999; Ruiz et al., 2013) despite having, on average, higher
rates of poverty, less education, and less access to medical
care. Hispanic/Latino cultural factors, such as valuing strong
family ties and collectivism, have been posited to have protective
effects on the lifespan of Hispanic/Latinos (Gallo et al., 2009).
Given that the present Hispanic/Latino sample identified their
race as White, they may be more genetically similar to non-
Hispanic/Latino Whites than other groups of Hispanics/Latinos
and may also be more acculturated than other Hispanic/Latino
samples. Acculturation is a multifaceted concept, and the ADNI
and NACC databases do not collect information to adequately
measure acculturation, but some information on language
preference, one of the many components of acculturation, is
collected. The post-hoc analysis on the Hispanic/Latino sample
found that ε4 carriers who primarily spoke Spanish had larger
total brain white matter volumes than those who primarily spoke
English. Among non-carriers, the primary language did not
differentiate the white matter volumes. Taken together, this may
point to a difference based on acculturation. However, larger
sample sizes and more thorough measures of acculturation and
language would be required to differentiate the possibility of
an effect related to acculturation vs. bilingualism, which is also
hypothesized to be protective of brain integrity and function
(Grant et al., 2014). Additionally, as noted earlier, diffusion
imaging would also be helpful in providing more information
about the quality of the white matter.

Hippocampal Volumes
Also contrary to expectations, the APOE ε4 status was not
linked to hippocampal gray matter volumes although it was
associated with volumes elsewhere in the temporal lobes. The

APOE ε4 status has been associated with smaller hippocampi
among cognitively healthy middle-aged and older adults in cross-
sectional studies (den Heijer et al., 2002; Taylor et al., 2014).
However, Jak et al. (2007) found that the APOE ε4 status was
predictive of declines in hippocampal volumes over an average
of 17 months but was not associated with cross-sectional volume
differences. Perhaps the present sample would detect an impact
of the APOE ε4 status on hippocampal volumes over time.
Another possible contributor to null findings in the present
study was the inclusion of cognitively healthy individuals. Khan
et al. (2017) observed significantly smaller hippocampi among
ε4 carriers compared to non-carriers with AD and MCI, but
this association was only marginal among cognitively healthy
older adults, suggesting that the APOE ε4 status has limited
sensitivity and its impact increases with fewer cognitive resources
(i.e., with increasing impairment). Additionally, the impact
of several genetic variants, including the APOE ε4 allele, on
the brain and cognition may increase with age (Lindenberger
et al., 2008), suggesting that there may be null effects among
middle-aged adults but not older adults. Nevertheless, studies
on cognitively healthy individuals ranging from late middle age
to older adulthood have found smaller hippocampal volumes
among ε4 carriers compared to non-carriers (den Heijer et al.,
2002; Taylor et al., 2014) as have other studies with sample sizes
comparable to the present study (e.g., Mueller et al., 2008).

The two ethnic groups included in the present study
did differ neither in the hippocampal volumes nor in the
gray matter volumes. Previous studies comparing hippocampal
volumes between Hispanics/Latinos to non-Hispanic/Latino
Whites have been mixed. DeCarli et al. (2008) and Mungas et al.
(2009) consistently found similar hippocampal volumes among
Hispanics/Latinos and non-Hispanic/Latino Whites, across their
overlapping cohorts. In contrast, Zahodne et al. (2015) found
smaller hippocampal volumes among Hispanics/Latinos relative
to non-Hispanic/Latino Whites. Differences may be related to
Hispanic/Latino country of origin differences. Hispanics/Latinos
in DeCarli et al. (2008) andMungas et al. (2009) studies tended to
be of Mexican descent whereas the samples from Zahodne et al.
(2015) tended to have greater proportions of Hispanics/Latinos
of Caribbean descent. Although we do not have country of origin
information on a significant proportion of the Hispanic/Latino
participants, the data we have suggest that at least half of the
sample was of Mexican descent.

Regional Brain Volumes From Whole Brain
Voxel-Wise Analysis
The whole brain voxel-based analysis determined that ε4 carriers
had smaller volumes in the left superior temporal and the
right middle temporal white matter but not the hippocampus.
In particular, the left superior temporal white matter region
appeared to be near the temporal parietal junction. The
VBM findings may be reflective of damage to connections to-
and-from the hippocampus prior to hippocampal structural
damage. Temporal parietal areas have been shown to have
reduced hypometabolism in AD (Alexander et al., 2002) and, in
groups of both Hispanic/Latino and non-Hispanic/LatinoWhite,
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cognitively healthy ε4 carriers compared to non-carriers (Reiman
et al., 2005; Langbaum et al., 2010).

Consistent with the present findings, other voxel-based
analyses did not find APOE ε4 status-related differences in the
hippocampal regions (Wishart et al., 2006; ten Kate et al., 2016).
Wishart et al. (2006) also found smaller volumes in the temporal
regions (e.g., anterior regions of medial temporal lobe) but not
in the hippocampus itself among a relatively younger sample
(average age mid-50s) of ε4 carriers relative to non-carriers.

Regarding ethnicity, the comparison using VBM determined
that non-Hispanic/Latino Whites had greater gray matter
volumes in the left middle frontal gyrus. Longitudinal analysis
is necessary to determine whether ethnic group differences in
brain volumes translate to differential preservation of cognitive
and functional resources later in life. Further, future studies
should examine the APOE ε4 status in combination with
other risk factors for AD that are more prevalent among
Hispanics/Latinos (Haan et al., 2003), such as cardiovascular risk
factors (Irie et al., 2008; Bangen et al., 2013; Willey et al., 2014).
Hispanics/Latinos were no more or less likely to be impacted
by APOE ε4 status than non-Hispanic/Latino Whites across
cognitive or brain measures. The present sample is too small to
compare various allelic presentations (ε3/ ε4 vs. ε2/ ε4), which
may be important to consider when comparing ethnic groups.
Maestre et al. (1995) found that the ε2 status was associated
with an increased risk for AD after 70 years of age among
Hispanics/Latinos and African Americans but not among non-
Hispanic/Latino Whites. Haan et al. (2003) found that APOE
ε4 homozygotes, but not ε4 heterozygotes, had increased the
risk for dementia among a largely Mexican American group of
Hispanics/Latinos, suggesting that these two groupsmay bemore
distinguished in Hispanics/Latinos than in non-Hispanic/Latino
Whites. However, more recent data from the cohort suggest that
over time and with older age, the impact of having one copy of
the ε4 allele on incidence of MCI and dementia becomes stronger
(Qian et al., 2017).

CONCLUSION

Taken together, the present results highlight the need to identify
group and individual differences in cognitive aging among
Hispanics/Latinos in order to ameliorate health disparities
in dementia.
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