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Abstract: Although poly(2-hydroxyethyl methacrylate) (pHEMA) and polyethylene glycol
methacrylate (PEGMA) have been demonstrated to inhibit bacterial adhesion, no study has compared
antibacterial adhesion when salivary pellicle is coated on polymethyl methacrylate (PMMA) grafted
with pHEMA and on PMMA grafted with PEGMA. In this study, PMMA discs were fabricated
from a commercial orthodontic acrylic resin system (Ortho-Jet). Attenuated total reflection-Fourier
transform infrared spectra taken before and after grafting confirmed that pHEMA and PEGMA
were successfully grafted on PMMA. Contact angle measurements revealed PMMA-pHEMA to be
the most hydrophilic, followed by PMMA-PEGMA, and then by PMMA. Zeta potential analysis
revealed the most negative surface charges on PMMA-PEGMA, followed by PMMA-pHEMA, and
then by PMMA. Confocal laser scanning microscopy showed green fluorescence in the background,
indicating images that influenced the accuracy of the quantification of live bacteria. Both the optical
density value measured at 600 nm and single plate-serial dilution spotting showed that pHEMA was
more effective than PEGMA against Escherichia coli and Streptococcus mutans, although the difference
was not significant. Therefore, the grafting of pHEMA and PEGMA separately on PMMA is effective
against bacterial adhesion, even after the grafted PMMA were coated with salivary pellicle. Surface
hydrophilicity, bactericidality, and Coulomb repulsion between the negatively charged bacteria and
the grafted surface contributed to the effectiveness.

Keywords: anti-adhesion; antibacterial adhesion; protein adsorption; pellicle coating; dentistry;
orthodontic; biocompatibility; serial dilution spotting; prostheses

1. Introduction

Persistent biofilm formation on medical devices such as implants, catheters, and ureteral stents
can cause chronic infection and, ultimately, often leads to replacement. Therefore, the development of
a new strategy or materials to combat biofilm formation has been a critical topic of research. Numerous
materials with antibacterial properties have been proposed. For example, silver is a broad-spectrum
antimicrobial metal against Gram-positive and Gram-negative bacteria [1]. Its incorporation as silver
zeolite or silver nanoparticles has been described for use in medical devices [2]. Other inorganic

Int. J. Mol. Sci. 2018, 19, 2764; doi:10.3390/ijms19092764 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/19/9/2764?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19092764
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 2764 2 of 18

chemicals demonstrating antibiotic activity in the form of nanoparticles include ZnO [3], TiO2 [4], Cu
and CuO [5].

In dentistry, biofilm formation on material surfaces or dental hard substances can cause
oral diseases such as peri-implantitis, caries, gingivitis, and periodontitis [6,7]. One of
the widely used materials in the oral cavity is methacrylate polymer. Chlorhexidine has
been added to the polymer matrix for controlled release to prevent bacterial adhesion to
methacrylate material [8]. Other approaches for inhibiting adhesion include the incorporation of
12-methacryloyloxydodecylpyridinium bromide and quaternary ammonium methacryloxy silicate
(QAMS) [9,10] in acrylic-based resin materials, which demonstrates bactericidal activity against oral
bacteria, thus preventing bacteria- and fungus-induced stomatitis. In addition to the antibacterial effect,
results have also shown that QAMS incorporation does not affect the flexural strength or modulus [11].

The factors affecting bacterial adhesion on biomaterial surfaces include surface morphometry,
physico-chemical properties, environmental conditions, and pathogens [12]. The adjustment and
optimization of surface morphometry and physico-chemical properties may be achieved through
surface coating or grafting. A previous study reported that a 2-hydroxyethyl methacrylate (HEMA)
coating on cellulose acetate increased surface hydrophilicity and improved resistance to seawater
microbial biofouling [13]. Similar results were obtained for polyHEMA (pHEMA) grafted on gold,
which inhibited adhesion of Cytophaga lytica in seawater [14]. The other molecule frequently used to
increase surface hydrophilicity is polyethylene glycol (PEG). Grafting PEG methacrylate (PEGMA) on
the surface of polypyrrole can reduce protein adsorption and bacterial adhesion [15]. Studies on the
relationship between surface roughness and bacterial adhesion have shown that increased roughness
causes increased adhesion of Staphylococcus epidermidis and Pseudomonas aeruginosa on the surfaces of
contact lenses [16] and rigid gas permeable lenses [17], respectively.

Among methacrylate polymers, polymethyl methacrylate (PMMA) is generally used in dentistry
for denture base materials, maxillofacial prostheses, temporary restoration, and orthodontic appliances.
However, no comparative studies have been conducted on pHEMA and PEGMA coatings on PMMA
for antibacterial adhesion. This study comparatively investigated the antibacterial effect of PMMA
grafted with pHEMA (termed PMMA-pHEMA hereafter) or PEGMA (termed PMMA-PEGMA
hereafter) against adhesion of two bacteria, Streptococcus mutans and Escherichia coli. These are
common bacteria found in the oral cavity that have been used as model organisms to represent
Gram-positive and Gram-negative bacteria, respectively [18,19]. In particular, the antibacterial activity
of PMMA-pHEMA and PMMA-PEGMA coated with salivary pellicle was studied. The salivary
pellicle is always present on the surfaces of teeth and oral apparatus. However, previous studies
have not mimicked this condition before bacterial contact. The possible effects of the presence of
salivary pellicle on the adherence of bacteria to the pHEMA- or PEGMA-grafted materials are still
unknown. The presence of salivary pellicle on modified titanium surfaces (machined, acid-etched,
and acid-etched and blasted) may result in negatively charged surfaces that attract calcium ions and
facilitate the adhesion of S. mutans and Fusobacterium nucleatum to the surfaces [20]. However, studies
of the adherence of S. mutans to hydroxyapatite precoated with whole saliva, with or without the
presence of the antibacterial agent Lysozyme, showed a significant reduction in the adherence [21,22].
The aim of this study is to compare the antibacterial adhesion of pHEMA- and PEGMA-grafted PMMA
when salivary pellicle is coated on the grafted PMMA.

2. Results

Figure 1 shows the Fourier transform infrared (FTIR) spectra of PMMA, HEMA, PMMA-pHEMA,
PEGMA, and PMMA-PEGMA. The characteristic peaks of PMMA included C=O (1720 cm−1) and ester
OC–O–C (1165 cm−1) stretching vibrations [23]. In addition to the C=O and OC–O–C characteristic
peaks, HEMA contained OH (3450 cm−1) and C=C (1635 cm−1) stretching vibrations [24]. The C=C
stretching vibration was not found in PMMA-pHEMA, indicating that almost all HEMA monomers
on PMMA were polymerized. In addition to the characteristic peaks of OH, C=O, C=C, and OC–O–C
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stretching vibrations, the PEGMA spectrum exhibited a strong CC–O–C (approximately 1100 cm−1)
stretching band [25] caused by the presence of a long glycol chain in the PEGMA molecule. Because
the absorption peak of CC–O–C shifts slightly to higher wavenumbers with increasing glycol units
in the molecular chain [26], the observed broad band indicated that PEGMA had different lengths of
glycol chains. After PEGMA was grafted on PMMA, the characteristic peaks and the CC–O–C band
profile of the PMMA-PEGMA spectrum were similar to those of the PEGMA spectrum.

Figure 1. Fourier transform infrared (FTIR) spectra of polymethyl methacrylate (PMMA),
2-hydroxyethyl methacrylate (HEMA), PMMA-poly(2-hydroxyethyl methacrylate) (pHEMA),
polyethylene glycol methacrylate (PEGMA), and PMMA-PEGMA.

The average contact angles of PMMA, PMMA-pHEMA, and PMMA-PEGMA were 79.56◦ ± 0.71◦,
48.65◦ ± 0.75◦, and 57.41◦ ± 2.14◦, respectively (Figure 2a). PMMA-pHEMA was the most hydrophilic,
followed by PMMA-PEGMA and PMMA. The zeta potentials (mV) of the salivary-pellicle-covered
PMMA, PMMA-pHEMA, and PMMA-PEGMA were −6.31 ± 2.16, −10.23 ± 1.15, and −13.98 ± 1.03,
respectively (Figure 2b). PMMA-PEGMA exhibited the most negative surface charge, followed by
PMMA-pHEMA and PMMA.
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Figure 2. (a) Contact angles expressed in degrees and (b) zeta potentials (mV) of PMMA,
PMMA-pHEMA, and PMMA-PEGMA.

Figure 3 shows the bacterial growth curves of E. coli and S. mutans with the initial concentration
at 0.1 OD600. For E. coli, the timing of the lag, log, and stationary phases was approximately 0–2 h,
2–8.5 h, and 8.5–24 h, respectively. For S. mutans, the timing of the lag, log, stationary, and death phases
was approximately 0–8 h, 8–13 h, 13–18 h, and 18–32 h, respectively. Figure 4 shows confocal laser
scanning microscope (CLSM) images of PMMA, PMMA-pHEMA, and PMMA-PEGMA discs without
bacterial inoculation and after 2 h of E. coli or S. mutans adhesion. Because green fluorescence was
observed in the background of 3 materials (top row), it was difficult to differentiate the live bacteria
from the background in the evaluation of E. coli or S. mutans adhesion. Both E. coli and S. mutan were
scarce in the PMMA-PEGMA group under CLSM observation. By contrast, numerous green and
red spots were found in the PMMA and PMMA-pHEMA groups, respectively. Figure 5a shows the
amount of E. coli obtained from washed phosphate buffered saline (PBS) and cultured on tryptic soy
agar (TSA) using SP-SDS. The PMMA-pHEMA group exhibited significantly higher E. coli than the
PMMA-PEGMA group (p < 0.05). Figure 5b,c show the OD600 and colony-forming units (CFU)/mL
values, respectively, of the culture medium after the washed materials exposed to E. coli were incubated
again for 3 h. The statistical analysis of both results is shown in Table 1. Figure 5 and Table 1 show that
PMMA-pHEMA and PMMA-PEGMA exhibited significantly lower amounts of bacteria than PMMA.
Figure 6a shows the amount of S. mutans obtained from washed PBS and cultured on TSA using
SP-SDS. The PMMA-PEGMA group exhibited a greater amount of S. mutans than the PMMA-pHEMA
and PMMA groups. Figure 6b,c show the OD600 and CFU/mL values, respectively, of the culture
medium after the washed materials exposed to S. mutans were incubated again for 13 h. The statistical
analysis of both results is also shown in Table 1. Figure 6 and Table 1 show that PMMA-pHEMA
and PMMA-PEGMA exhibited significantly lower OD600 values than PMMA (p < 0.05). In addition,
the antibacterial adhesion of PMMA-pHEMA was better than that of PMMA-PEGMA. Figure 7 shows
the MTT results of the tested materials. All 3 materials were considered biocompatible because the
OD570 values were similar to the control group.

Figure 3. Bacterial growth curves of (a) E. coli and (b) S. mutans with an initial concentration of
0.1 OD600.



Int. J. Mol. Sci. 2018, 19, 2764 5 of 18

Figure 4. Confocal laser scanning microscope (CLSM) images of PMMA, PMMA-pHEMA, and
PMMA-PEGMA discs without bacterial inoculation (top row) and after 2 h of E. coli (middle row) or
S. mutans (bottom row) adhesion. Green arrows selectively indicate the presence of live bacteria (in
green), whereas red arrows selectively indicate the presence of dead bacteria (in red).

Figure 5. (a) colony-forming units (CFU)/mL values of E. coli in washed phosphate buffered saline
(PBS) from the first incubation after being cultured on tryptic soy agar (TSA) using SP-SDS. The (b)
OD600 and (c) CFU/mL values of E. coli in culture medium after the second incubation for 3 h. * p < 0.05.
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Table 1. Statistical analysis results of Figures 5 and 6.

Paired Samples of Analysis Test Statistics (P)

E. coli S. mutans

(a)
PMMA vs. PMMA-pHEMA 0.5252 0.1952
PMMA-pHEMA vs. PMMA-PEGMA 0.0174 * 0.4737
PMMA vs. PMMA-PEGMA 0.0118 * 0.2773
(b)
PMMA vs. PMMA-pHEMA 0.0268 * 0.0404 #

PMMA-pHEMA vs. PMMA-PEGMA 0.2481 0.1340
PMMA vs. PMMA-PEGMA 0.0340 * 0.0409 #

(c)
PMMA vs. PMMA-pHEMA 0.0219 * 0.0588
PMMA-pHEMA vs. PMMA-PEGMA 0.3160 0.1311
PMMA vs. PMMA-PEGMA 0.0221 * 0.0691

* Significant difference (p < 0.05). (a) CFU/mL values of E. coli in washed PBS from the first incubation after being
cultured on TSA using SP-SDS. (b) The OD600 values of E. coli in culture medium after the second incubation for 3 h.
(c) The CFU/mL values of E. coli in culture medium after the second incubation for 3 h. # Significant difference
(p < 0.05). (a) CFU/mL values of S. mutans in washed PBS from the first incubation after being cultured on TSA
using SP-SDS. (b) The OD600 values of S. mutans in culture medium after the second incubation for 13 h. (c) The
CFU/mL values of S. mutans in culture medium after the second incubation for 13 h.

Figure 6. (a) CFU/mL values of S. mutans in washed PBS from the first incubation after being cultured
on TSA using SP-SDS. The (b) OD600 and (c) CFU/mL values of S. mutans in culture medium after the
second incubation for 13 h.
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Figure 7. MTT results of the control, PMMA, PMMA-pHEMA, and PMMA-PEGMA. All 3
PMMA-related materials were considered biocompatible because the OD570 values were similar to the
control group.

3. Discussion

Adhesion of oral bacteria to PMMA is a complex process affected by variables including surface
roughness, charge, and hydrophilicity [6]. Increased surface roughness enhances bacterial adhesion
because of the increase in contact area [27]. Because the PMMA discs were smoother than the
PMMA-pHEMA and PMMA-PEGMA discs, all PMMA discs were roughened to similar roughness as
the other 2 materials to exclude the effect of roughness on bacterial adhesion. Materials with Ra values
smaller than 0.2 µm have been reported to be effective in reducing bacterial adhesion on abutment
surfaces [28]. The 3 tested materials had Ra values of approximately 0.5 µm, indicating that bacterial
adhesion was not prevented by higher roughness.

Surface grafting of PMMA with pHEMA was achieved through thermal polymerization of HEMA
monomers in the presence of benzoyl peroxide, which acted as a thermal free radical initiator. The FTIR
spectra of PMMA-pHEMA exhibited a broad absorption band of OH stretching but did not demonstrate
C=C stretching vibration (Figure 1). This supports the notion that pHEMA was successfully grafted
onto PMMA and almost all HEMA monomers on PMMA were thermally polymerized. The resulting
pHEMA-PMMA exhibited smaller contact angles than PMMA (Figure 2a) because of the higher
hydrophilicity of the glycolic hydroxyl groups on pHEMA-PMMA than the methoxy groups on PMMA.

PEGMA was grafted onto PMMA using a different method. In the pilot study, the thermal
polymerization method failed to effectively modify the PMMA surface with PEGMA, despite HEMA
and PEGMA both having a methacrylate skeleton and containing ethylene glycol (EG) side chains,
with HEMA having one EG unit in the chain and PEGMA having several. The failure was possibly
caused by the presence of the long PEG chain in PEGMA, which excluded effective attack of radical
initiators to the carbon–carbon double bond in the methacrylate part of PEGMA or, if radical initiators
incidentally transferred radicals to PEGMA, effective reaction of the formed PEGMA radicals with
PMMA. Therefore, atmospheric pressure plasma was used to fabricate PMMA-PEGMA. However,
HEMA monomers could not be polymerized through plasma treatment to form PMMA-pHEMA.

The FTIR spectra of PMMA-PEGMA exhibited the CC–O–C stretching vibration band with
a bandwidth and band profile similar to that of PEGMA (Figure 1). Because the longer glycol
chains of PEGMA lead to the absorption bands of the CC–O–C stretching vibration with higher
wavenumbers [26], the similarity indicated that the fabrication of PMMA-PEGMA using atmospheric
pressure plasma did not substantially favor PEGMA with shorter glycol chains for grafting. Instead,
as suggested by the similar bandwidths and band profiles, the fabricated PMMA-PEGMA exhibited
glycol chains with a chain length distribution resembling that of PEGMA. The distribution, and thus
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the difference in length of the glycol chains of PEGMA on PMMA, however, caused the alkoxy portion
of the chains to be exposed on the PMMA-PEGMA surface. By contrast, the PMMA-pHEMA surface
was covered with hydroxyl groups, which were situated at the same short height (i.e., equivalent
to one EG unit) above the polymeric C–C backbone of pHEMA. Because alkoxy is less hydrophilic
than hydroxyl, the PMMA-PEGMA surface yielded larger contact angles than the PMMA-pHEMA
surface (Figure 2a), despite the angles still being smaller than that measured on PMMA because of the
hydrophobic property of the methyl ester group of PMMA.

The resistance of the salivary-pellicle-covered surface of the grafted PMMA, created through
incubation in pooled sterile saliva, against bacterial adhesion was studied. The population and survival
of bacteria on the salivary-pellicle-covered surface were firstly analyzed using CLSM, which is a tool
frequently used to examine live/dead bacteria and the depth of a biofilm. CLSM images of PMMA,
PMMA-pHEMA, and PMMA-PEGMA discs, without bacterial inoculation, exhibited a background of
green fluorescence (top row of Figure 4). After a 2-h inoculation with a drop of bacterial suspension on
the sample for adhesion followed by washing with sterile PBS for removal of non-adherent bacteria,
dead bacteria (revealed as red spots) were observed in the CLSM images of PMMA-pHEMA (bottom
two rows in the middle column of Figure 4). Conversely, dead bacteria were almost absent in the
PMMA-PEGMA group under CLSM observation (bottom two images of the right column, Figure 4).
In both cases, the green spot indicating live bacteria, the intensity of which is typically greater than
that of the background, was not distinguishable from the background in this study. The accuracy of the
quantification of live bacteria, and thus the determination of the antibacterial property of the sample,
may have been severely impaired by the use of CLSM images.

Consequently, the PBS collected from washing the salivary-pellicle-covered sample surface after
the 2-h bacterial inoculation for adhesion (termed the first incubation hereafter) was cultured on TSA
using SP-SDS to calculate its CFU/mL values. The amount of the unattached, live bacteria remaining
on the PMMA-pHEMA surface before PBS washing could thus be estimated from the calculated CFU
values. Depending on the bacteria tested, the amount on PMMA-pHEMA may be significantly larger
(for E. coli, Figure 5a) or smaller (for S. mutans, Figure 6a) than that on PMMA-PEGMA.

In addition, to quantify the live bacteria attached to the sample after washing, the washed sample
was incubated again (termed the second incubation hereafter) in a new sterile tryptic soy broth (TSB)
for 3 h for E. coli and 13 h for S. mutans. The incubation time was selected based on the log phase
in which the bacteria demonstrated rapid growth (Figure 3). The OD600 and CFU/mL values of the
culture medium were measured after the second incubation. Higher OD600 and CFU/mL values of the
culture medium after the second incubation were expected if more live bacteria remained attached
to the sample surface after the PBS wash following the first incubation. Both E. coli (Figure 5b,c)
and S. mutans (Figure 6b,c) showed lower OD600 and CFU/mL values on PMMA-pHEMA and
PMMA-PEGMA than on PMMA, indicating that, after PBS washing in the first incubation, far fewer
live bacteria were attached to the surface of the grafted PMMA than to the surface of the ungrafted
PMMA. PMMA-pHEMA and PMMA-PEGMA thus displayed better antibacterial adhesion activity
than PMMA even after their surfaces were covered with salivary pellicle.

The observed smaller amounts of live bacteria attached to the grafted PMMA surfaces may
have been caused partially by the repulsive interaction of the surface with the bacteria. Both E. coli
and S. mutans surfaces are negatively charged in water. A huge percentage of the cell wall of most
Gram-positive bacteria is composed of teichoic acids, which are anionic because of the presence of
phosphate in their structure [29]. For Gram-negative bacteria, the outer leaflet of their membrane
is composed principally of lipopolysaccharide, which imparts a strongly negative charge to the cell
surface [30]. Nevertheless, the nature of the negative charge on the E. coli and S. mutans surfaces is
still being investigated. Zeta potential measurements showed that the pHEMA- and PEGMA-grafted
PMMA surfaces were also negatively charged (Figure 2b). The Coulomb repulsion between the
negatively charged bacteria and the grafted surface thus significantly reduced the interaction between
the bacteria, brought in by fluid hydrodynamics, and the grafted surface. The reduction led to far
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fewer live bacteria with the opportunity to attach directly to the surfaces of the grafted PMMA than
the ungrafted PMMA (Figure 5b,c and Figure 6b,c).

Surface hydrophilicity also affected the number of live bacteria attached to the sample surface.
Both PMMA-pHEMA and PMMA-PEGMA were hydrophilic. As indicated by the larger average
contact angles of PMMA-PEGMA than PMMA-pHEMA (Figure 2a), PMMA-PEGMA was less
hydrophilic than PMMA-pHEMA because of its longer PEG side chains than the side chain of
pHEMA. Bacterial cells with hydrophobic walls were thus less repulsed by PMMA-PEGMA than
PMMA-pHEMA. In addition, E. coli cells use flagella to attach to surfaces [30] and S. mutans cells
produce exopolysaccharides for their colonization on substrates [31]. A denser layer of water was
formed on PMMA-pHEMA than on PMMA-PEGMA, which could have led to greater weakening of
the interaction between bacteria and the material. Higher optical density (OD) and CFU/mL values of
the culture medium from the second incubation for both E. coli (Figure 5b,c) and S. mutans (Figure 6b,c)
were thus obtained for PMMA-PEGMA than for PMMA-pHEMA.

The substantially smaller number of live bacteria on the grafted PMMA than the ungrafted
PMMA and the larger number of live bacteria on PMMA-PEGMA than PMMA-pHEMA, both
observed in the culture medium from the second incubation, were not observed in the PBS wash
from the first incubation. Comparison of the number of live bacteria on PMMA-pHEMA with that
on PMMA-PEGMA measured for E. coli revealed a disparity between the washed PBS in the first
incubation (Figure 5a) and the culture medium of the second incubation (Figure 5b,c). As discussed
in Appendix A, this disparity revealed the grafted PMMA surface to be bactericidal because of the
difference in cell wall structure between Gram-positive and Gram-negative bacteria and the possible
formation of bacteria sandwiched between weakly bound bi-layers of wall fragments, a result of cell
lysis generated by the EG side chains, which acted as biosurfactants.

PMMA is toxic to mammalian cells because of its leaching of unreacted methyl methacrylate
(MMA) [32]. In this study, cell viability was examined using MTT assays and the results showed no
significant difference between PMMA and the control (Figure 7). The reason may have been that
PMMA discs were placed in Aquapres at 1.5 kg/cm2 for 1 h to remove most of the unreacted MMA.
PMMA-pHEMA and PMMA-PEGMA were also biocompatible because their cell viability was similar
to the control, suggesting that leaching of toxic components was negligible. This may be an advantage
of grafting compared with incorporation of antimicrobial agents throughout the bulk polymer network.

4. Materials and Methods

Figure 8 shows a flow diagram which presents the grafting process, applied characterization
techniques, and tested groups for the antibacterial adhesion of the grafted PMMA. The detail is
discussed below.

Figure 8. Flow diagram of this study.
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4.1. Materials

HEMA (99%, MW = 130.14) and PEGMA (MW = 500) of analytical grade were purchased from
Sigma-Aldrich (Milwaukee, WI, USA). PMMA discs were fabricated from a commercially available,
auto-polymerizing, methyl methacrylate/poly(methyl methacrylate) (MMA/PMMA) orthodontic
acrylic resin system (Ortho-Jet; Lang Dental Manufacturing Co. Inc., Wheeling, IL, USA). MMA
monomers (0.1 mL) were mixed with 0.1 g of PMMA powder and the mixture was then placed in
stainless steel molds to produce 5-mm-diameter and 1-mm-thick discs. After gelling, PMMA discs
were placed in Aquapres (Lang Dental Manufacturing Co. Inc., Wheeling, IL, USA) at 1.5 kg/cm2 for
1 h.

4.2. pHEMA and PEGMA Grafting on PMMA

All PMMA discs underwent ultrasonic cleaning in 75% ethanol and deionized water for 5 min.
For pHEMA modification, PMMA discs were immersed in 30 mL of 0.05 M benzoyl peroxide (≥97%
purity, Alfa Aesar, Ward Hill, MA, USA) and 99.5 wt.% ethanol solution at 25 ◦C for 30 min under
nitrogen. Subsequently, 30 mL of 1.5 M HEMA in an aqueous solution was added slowly at 65 ◦C
and the reaction between HEMA and the peroxide-modified PMMA discs occurred for 2 h under
a stream of nitrogen. The pHEMA-modified discs were then washed several times with deionized
water and methanol to remove unreacted monomers before they were placed in a vacuum drying
oven at 50 ◦C for 48 h [33]. For PEGMA modification, 5 µL of PEGMA was dropped onto each disc
at room temperature and the reaction between PEGMA and PMMA occurred for 20 min. After the
reaction, the disc surface was activated for 15 min by an atmospheric pressure plasma jet generated
by nitrogen gas with a flow rate of 40 standard liters per minute and an input power of 500 W (scan
number = 240 times). All PEGMA-modified discs underwent ultrasonic cleaning in isopropanol
for 30 min. Because the surfaces of PMMA-pHEMA and PMMA-PEGMA were rougher than those
of PMMA, the PMMA samples were roughened with 240 grit SiC paper for approximately 2 min
using Buehler Ecomet 3 Polisher/Grinder (Buehler Ltd., Lake Bluff, IL, USA). A surface profilometer
(Surfcorder ET 200, Kosaka, Japan) was used to confirm that the PMMA samples after roughening
had similar surface roughness (Ra, the arithmetic average of the absolute deviations of the profile
heights and valleys from the mean line) to the modified PMMA. The tracing diamond tip was 2 µm
with a tracing speed of 0.2 m/s, force of 200 µN, tracing length of 1 mm, and cutoff value of 0.8 mm.
Three tracings were performed at different locations on the surface of each specimen (n = 5). The Ra
values of PMMA, PMMA-pHEMA, and PMMA-PEGMA were 0.50 ± 0.02 µm, 0.55 ± 0.09 µm, and
0.50 ± 0.15 µm, respectively.

4.3. Attenuated Total Reflection (ATR)-FTIR Analysis

The surfaces of PMMA, PMMA-pHEMA, and PMMA-PEGMA were examined using ATR-FTIR
(FTIR-4200, Jasco International Co., Ltd., Tokyo, Japan). FTIR spectra were recorded by pressing the
samples against the ZnSe ATR crystal at a slow scan rate and normal slit width. The wavelength used
was in the range of 4000–650 cm−1.

4.4. Contact Angle Measurements

Static contact angles were measured with the sessile drop method of water drops at room
temperature using FTA125 (First Ten Ångstroms, Inc., Portsmouth, VA, USA). Each specimen was
mounted at a height sufficiently close to the delivery needle of a syringe, and water droplets
(approximately 3 µL) were delivered to different points of each specimen. An image was then captured,
and the contact angle was calculated using the tangent method.



Int. J. Mol. Sci. 2018, 19, 2764 11 of 18

4.5. Zeta Potential Analysis

PMMA, PMMA-pHEMA, and PMMA-PEGMA samples (44 mm × 25 mm) were prepared and
sterilized in 75% ethanol before being placed under ultraviolet light irradiation overnight. Saliva (1 mL)
was dropped on each sample. The zeta potential was measured using the SurPASS Electro-kinetic
Analyzer (Anton-Paar KG, Graz, Austria) by clipping the sample to a flat-plate measuring cell.
The target ramp pressure was 500 mbar. Samples were placed in a NaCl electrolyte solution, instead
of the bacterial suspension, to avoid contamination from bacteria on the instrument. Through the
addition of NaOH or HCl, the pH of the solution was adjusted to pH 7, which was equivalent to that
of the bacterial suspension, before the streaming potential was measured at a target ramp pressure
of 500 mbar. To measure the effect of the ionic strength of the solution, 0.1, 1, 10, and 100 mM NaCl
solutions were used. Zeta potentials were calculated from the measured streaming potentials using
the Fairbrother–Mastin (F–M) equation [34].

4.6. Bacterial Culture

Gram-positive S. mutans and Gram-negative E. coli stored at −80 ◦C were separately cultured on
TSA; BD Biosciences, Franklin Lakes, NJ, USA) at 37 ◦C overnight. A strain of a single colony on TSA
was then cultured in a 10 mL TSB; BD Biosciences) at 37 ◦C with an orbital shaker incubator at 220 rpm
for 16 h. After 16 h of culture, the S. mutans and E. coli strains were harvested by centrifugation at
3000 rpm for 10 min. The resultant bacterial pellet was washed 3 times with sterile PBS and then
adjusted to a concentration of 107 CFU/mL (OD600 = 0.1) before use.

4.7. Bacterial Growth Curve

The strains of S. mutans and E. coli were cultured separately for 16 h in 3 mL of TSB from a single
colony that grew on TSA. The TSB with bacterial suspension was then diluted 100 times and cultured
in an Erlenmeyer flask at 37 ◦C with an orbital shaker incubator at 220 rpm. The OD600 value was
measured for 32 h to obtain the bacterial growth curve.

4.8. Bacterial Adhesion Study

The samples were sterilized using 75% alcohol for 5 min and ultraviolet irradiation for 16 h.
Pooled sterile human saliva was collected according to the protocol used by Gong et al. [10] and the
samples were incubated in pooled sterile saliva for 1 h at 37 ◦C to create salivary pellicle on the surface.
The bacterial suspension (OD600 = 0.1, 10 µL) was dropped onto the sample surfaces followed by
incubation at 37 ◦C for 2 h (n = 10). The samples were then washed with sterile PBS 3 times to remove
non-adherent bacteria. The washed PBS was collected and cultured on TSA using SP-SDS [35]. TSA
was drawn to 6 sectors with the first and last dilution sectors marked. Aliquots (20 µL) from the 6
selected dilutions were applied as 10–12 micro-drops in each sector. Half samples in each group were
prepared for examination using CLSM. The other half of the samples were transferred aseptically to
new sterile TSB for 3 h (E. coli) and 13 h (S. mutans) at 37 ◦C. At the end of incubation, the samples
with adherent bacteria were removed from the culture medium. The OD600 value for 0.9 mL of culture
medium was measured and 0.1 mL of culture medium was cultured on TSA using SP-SDS. The samples
for examination using confocal laser scanning microscopy were dyed using a LIVE/DEAD BacLight
Bacterial Viability Kit (Molecular Probes, Eugene, OR, USA) consisting of propidium iodide (PI) and
SYTO® 9. Green fluorescing SYTO® 9 can label live bacteria and red fluorescing PI can label dead
bacteria. Zeiss LSM 880 CLSM (Carl Zeiss Microscopy, Jena, Germany) at 40× magnification was used
at excitation wavelengths of 488 nm and 561 nm for SYTO® 9 and PI, respectively.

4.9. Cell Viability Assay

Primary cultures of human gingival fibroblasts (HGFs) were used. The trial was approved by the
Research Ethics Committee of National Taiwan University Hospital (8 June 2011) and was registered
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with Case No. 201105080RC. Written informed consent was obtained from all participants collect
gingival tissues. HGFs were cultured in Minimum Essential Medium alpha with 10% fetal bovine
serum and 100 U/mL of antibiotics (penicillin–streptomycin–amphotericin; Sigma-Aldrich) at 37 ◦C
in 5% CO2. The passage number was 8–12. The specimens in each group (n = 5) were placed on
the bottoms of transwell inserts (Costar Transwell Permeable Supports, Corning, NY, USA; diameter
6.5 mm, pore size 3.0 mm). For comparison of the relative toxicities of the tested materials, the
transwells were transferred into 24-well culture plates, which had been seeded with HGFs at 5 × 104

cells per well and allowed to adhere overnight at 37 ◦C. Empty inserts served as a negative control
group. After incubation for 1, 3, and 5 days, the cells in each well were incubated at 37 ◦C for 3 h with
culture medium containing 100 µL of MTT solution. The medium was then aspirated and dimethyl
sulfoxide (200 µL) was added to dissolve the reduced formazan crystals. The optical density (OD570) of
the formazan solution was measured using a microplate reader (ELx 800, Biotek, Winooski, VT, USA).

4.10. Statistical Analysis

Statistical analysis was performed using the Statistical Package for the Social Sciences (version
22.0, Armonk, NY, USA). Tests were 2-tailed with the level of significance was set at 0.05. Descriptive
statistics for continuous variables were calculated and reported as the mean ± standard deviation.
The data were analyzed using one-way analysis of variance, and a later comparison between the
groups was made using Fisher’s multiple comparison test.

5. Conclusions

Attachment of bacteria to medical devices is a severe problem because it leads to subsequent
colonization, biofilm formation, and infection. Although major efforts have been focused on this
problem, it remains a great challenge because the interaction of bacteria and materials varies from
one kind of bacteria to another. In this study, modification of PMMA with pHEMA and PEGMA
was achieved and FTIR-ATR analysis confirmed the presence of grafting on the PMMA surfaces.
The adhesion of E. coli and S. mutans onto the modified surfaces was significantly inhibited, even after
the surfaces were covered with salivary pellicle. Finally, the modified PMMA did not show cytotoxic
effects in MTT assays using HGFs. Because prostheses or appliances made of PMMA must typically be
worn for a prolonged period, the duration of antibacterial adhesion requires further study in the future.
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Abbreviations

ATR-FTIR attenuated total reflection-Fourier transform infrared
CFU colony-forming units
CLSM confocal laser scanning microscope
EG ethylene glycol
F–M Fairbrother–Mastin
HEMA 2-hydroxyethyl methacrylate
HGFs human gingival fibroblasts
MMA methyl methacrylate
MTT assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay
OD optical density
OD600 OD value at 600 nm
PBS phosphate buffered saline
PEGMA polyethylene glycol methacrylate
pHEMA poly(2-hydroxyethyl methacrylate)
PI propidium iodide
PMMA polymethyl methacrylate
PMMA-PEGMA PMMA grafted with PEGMA
PMMA-pHEMA PMMA grafted with pHEMA
QAMS quaternary ammonium methacryloxy silicate
SP-SDS single plate-serial dilution spotting
TSA tryptic soy agar
TSB tryptic soy broth

Appendix A

Tests conducted by Moghayedi et al. on minimum bactericidal and inhibitory concentrations
using a broth dilution assay have indicated the concentration threshold above which EG may act
as a bactericidal agent against E. coli, with bacterial growth being completely inhibited within 4 h
when the EG concentration is increased to 24% [36]. The dependence of bactericidal activity against E.
coli on PEG concentration has also been reported previously [37]. The bactericidality may be related
to the abnormal shape of bacterial cells placed in contact with concentrated EG and PEG [36,38].
This abnormality makes the cells tend to break and lysis occurs, as evidenced in phase-contrast
microscopic observations of increased lysis in cells with greater changes in appearance [39]. Thus, for
E. coli, the EG side chain of PMMA-pHEMA at the correct pHEMA surface concentrations may have
caused PMMA-pHEMA to act, in addition to inhibiting adhesion through repulsion, as a bactericidal
agent in this study, killing the bacteria (the center image of Figure 4) and causing lysis therein [36].
The lysis occurring in bacterial cultivation on PMMA-pHEMA produced lipopolysaccharides, which
are a part of the outer membrane of Gram-negative bacteria, and released intracellular structures and
compounds, including DNA.

These lysis fragments could act as biosurfactants [40]. For example, lipopolysaccharides are large
molecules consisting of a hydrophobic, non-polar lipid (called Lipid A) at one end and a hydrophilic,
polar polysaccharide (called O-specific polysaccharide) at the other. After cell lysis, their fragments
could thus act as biosurfactants. The polar ends of the biosurfactants tended to be oriented inwards,
because of dipole-dipole interaction, toward the hydrophilic PMMA-pHEMA surface. The non-polar
ends then pointed outwards, changing the local areas from hydrophilic to hydrophobic, thus allowing
more E. coli cell adhesion based on the biosurfactants. Accordingly, the biosurfactants generated by cell
lysis reduced the hydrophilicity of the PMMA-pHEMA surface. The decrease in surface hydrophilicity
caused by the production of biosurfactants such as lipopolysaccharides from the lysis of E. coli could
alter the contact angle [40,41]. For example, coating titanium discs with different concentrations of
Porphyromonas gingivalis lipopolysaccharides showed an increase in the average contact angle with
higher concentrations, indicating the discs becoming less hydrophilic [42].
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The less hydrophilic surface may have further interacted with E. coli cells that had become more
hydrophobic because of the attachment of DNA, further enhancing cell adhesion to PMMA-pHEMA.
Several studies have suggested that DNA in solution makes bacterial cells more hydrophobic [43,44].
DNA released from the lysis of E. coli by PMMA-pHEMA could thus attach to other E. coli cells, making
them more hydrophobic. As the PMMA-pHEMA surface gradually became less hydrophilic with
increasing amounts of biosurfactants being produced in bacterial cultivation, more DNA was released
to the surface from the lysis of more cells. The interaction of the more hydrophobic cells with the
increasingly less hydrophilic surface became more effective as more cell lysis occurred and more DNA
was released. This attracted more E. coli cells to the surface, making them more hydrophobic, and
thus further changing the hydrophilicity of the surface until an appropriate surface hydrophilicity was
reached, at which point a large amount of E. coli cells could stably adhere, along with their fragments,
to PMMA-pHEMA.

The biosurfactants produced from cell lysis could also have screened the repulsive interaction of
PMMA-pHEMA with E. coli cells, allowing more E. coli cells to adhere to PMMA-pHEMA. Disruption
of the enhanced adhesion of E. coli cells produced additional fragments that then acted as biosurfactants
for further enhancement of cell adhesion. Overall, many E. coli cells adhered to PMMA-pHEMA based
on the biosurfactants, with each E. coli layer sandwiched between two bi-layers of biosurfactants.
The bi-layers were formed because once adhering to the PMMA-pHEMA surface, E. coli further
interacted with the non-polar end of the biosurfactant near the surface, leaving the biosurfactant’s
polar end to attract other biosurfactants and turning their non-polar ends outward, thus attracting
additional E. coli cells for adhesion. The process continued locally, further enhancing the adhesion
of E. coli by sandwiching each E. coli cell between two bi-layers of biosurfactant. This adhesion
enhancement is hereafter termed the biosurfactant sandwich theory. The overall enhancement of cell
adhesion thus led to a number of cells on PMMA-pHEMA as high as or higher than the amount on
PMMA (Figure 5a). It should be noted that dental PMMA may be made of base materials containing
negative ion powder, which, when amounting to more than 2 wt.%, demonstrate bactericidal activity
as high as 99.1% against E. coli [45].

The adhesion of E. coli cells, based on the biosurfactants, to PMMA-pHEMA was considerably
weak, however. Other than the dipole–dipole interaction mentioned in the main text, the biosurfactants
generated by the lysis of E. coli cells may accumulate on the material surface through London
dispersion interaction with nonuniform force plateaus [46]. The magnitude of this interaction was not
strong but was of the order of osmotic pressure of the solution containing E. coli cells and their lysis
fragments [47]. Because the accumulation occurred in solution, the space between interacting partners
was not empty, but rather filled with water and possibly other solutes. The filling also weakened the
biosurfactant-based adhesion of cells to PMMA-pHEMA. Thus, the adhered E. coli cells may have
been relatively easily purged by PBS after the first incubation. The purge also removed the dead cells
and their lysis fragments from the surface. Therefore, red spots identified in the corresponding CLSM
image (the center image of Figure 4) were not as many as the biosurfactant sandwich theory suggests,
which also differed largely from the large amount of adhered E. coli estimated from the washed PBS
(Figure 5a). After the purge, only the E. coli cells that adhered to the “native” PMMA-pHEMA surface
(as distinguished from the cells that adhered to PMMA-pHEMA between the biosurfactant bi-layers)
before cell lysis remained for CLSM study and for the second incubation of cells. Thus, the amount
of E. coli cells determined from the culture medium of the second incubation of PMMA-pHEMA
(Figure 5b,c) was smaller than the amount determined from the PBS wash of the first incubation
(Figure 5a). The difference in CFU/mL value obtained between the first and second incubations was
thus an index of the change in surface hydrophilicity or the extent of the accumulation of biosurfactants
and bacterial cells on the grafted PMMA surface during the first incubation.

Many factors determined the amount of E. coli adhered to the grafted PMMA and their interplay
was extremely complex. The amount of adhered E. coli cells is determined by complex factors including
the initial surface hydrophilicity, surface morphology, graft identity and concentration, graft orientation
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and bonding, and bacterial cell identity and concentration, as well as experimental conditions that
affect fluid hydrodynamics, such as the rate at which bacterial cells are delivered to the grafted surface,
the time the cells reside close to the surface, and the transport and residing of cell lysis fragments in
close proximity to the surface. The complexity of the interplay may partially explain the controversial
conclusions in the literature regarding the bactericidal activity of PEG-grafted devices. For example,
antibacterial agents grafted to a material surface with different orientations may exhibit a range
of antibacterial effect from none to large [48]. In fact, for PEGMA grafted on a material surface,
the change in grafting orientation may change the grafted surface from bactericidal to cell-repellent
through control of temperature within a small range around 35 ◦C [49]. A PMMA surface grafted
with molecules such as PEGMA with PEG side chains longer than those of pHEMA may thus behave
completely differently to a PMMA-pHEMA surface. However, knowledge of this interplay remains
highly limited and requires further investigation.

Nevertheless, the much lower CFU/mL value (Figure 5a) for PMMA-PEGMA than for
PMMA-pHEMA, compared with the higher value shown in Figure 5b,c, may be partly explained
as follows. As discussed, more E. coli cells could adhere to PMMA-PEGMA than PMMA-pHEMA
because PMMA-PEGMA was less hydrophilic. However, within a certain size range, the bactericidal
activity of PEG (and, in this case, the PEG side chain) mainly increases with the size of PEG [37].
For example, PEG 400 showed bactericidal activity against E. coli at 100% concentration only, whereas
PEG 1000 showed similar bactericidal activity at a concentration as low as 25%. Thus, at an appropriate
surface concentration, PEGMA, which contains much longer PEG side chains than pHEMA, grafted
on PMMA may kill and disrupt more adhered E. coli cells than pHEMA during the first incubation in
which cell adhesion based on the biosurfactants occurs. Thus, other than the cells that could attach
directly to the surface and adapt their configuration for survival, those sandwiched between surfactant
bi-layers were more prone to be disrupted by the greater bactericidal activity of PMMA-PEGMA
than PMMA-pHEMA. Thus, after the first incubation, fewer live E. coli cells could be washed out
by PBS from PMMA-PEGMA than PMMA-pHEMA (Figure 5a). It should be indicated that lacking
a lipid-like, non-polar end in its structure, the fragmented peptidoglycans generated by the lysis
of S. mutans could not act as biosurfactants. As Gram-positive bacteria, S. mutans have a cell wall
containing a large percentage of polyol phosphate polymers (called teichoic acid) that bear a strong
negative charge. The large number of phosphate groups lining the wall’s surface aid the transport
of peptidoglycan from within the cell to the outside. Consequently, the wall consists of a thick outer
peptidoglycan layer and an inner cytoplasmic membrane, which is made of a lipid bi-layer. Because
peptidoglycan forms approximately 90% of the dry weight of Gram-positive bacteria, the property
of the PMMA-pHEMA and PEGMA surfaces in contact with S. mutans cells was altered mainly by
peptidoglycans fragmented by cell lysis caused by the bactericidal activity of PMMA-pHEMA and
PEGMA. As a polymer, peptidoglycan consists of sugars and amino acids, with a peptide chain of
3 to 5 amino acids attaching to N-acetylmuramic acid of the sugar component. They provide polar
ends to the structure of the peptidoglycans fragmented by the lysis of S. mutans. Without non-polar
ends, these fragments could not act as biosurfactants and could not reduce the hydrophilicity of
the grafted PMMA as much as lipopolysaccharides did when they were produced by the lysis of
E. coli. No biosurfactant-based adhesion to the PMMA-pHEMA and PEGMA surfaces was expected for
S. mutans, even though the property of these surfaces in contact with S. mutans cells may still be altered
by peptidoglycans fragmented by cell lysis caused by the bactericidal activity of PMMA-pHEMA
and PEGMA.
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