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Abstract
Prostate cancer is heterogeneous in both cellular composition and patient outcome, and development of biomarker
signatures to distinguish indolent from aggressive tumours is a high priority. Stroma plays an important role
during prostate cancer progression and undergoes histological and transcriptional changes associated with
disease. However, identification and validation of stromal markers is limited by a lack of datasets with defined
stromal/tumour ratio. We have developed a prostate-selective signature to estimate the stromal content in
cancer samples of mixed cellular composition. We identified stromal-specific markers from transcriptomic
datasets of developmental prostate mesenchyme and prostate cancer stroma. These were experimentally validated
in cell lines, datasets of known stromal content, and by immunohistochemistry in tissue samples to verify
stromal-specific expression. Linear models based upon six transcripts were able to infer the stromal content
and estimate stromal composition in mixed tissues. The best model had a coefficient of determination R2

of 0.67. Application of our stromal content estimation model in various prostate cancer datasets led to
improved performance of stromal predictive signatures for disease progression and metastasis. The stromal
content of prostate tumours varies considerably; consequently, deconvolution of stromal proportion may yield
better results than tumour cell deconvolution. We suggest that adjusting expression data for cell composition
will improve stromal signature performance and lead to better prognosis and stratification of men with
prostate cancer.
© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Biomarker discovery in prostate and other cancers has
flourished following the introduction of high-throughput
technologies such as microarrays, next generation
sequencing and bio-informatics. It is now possible to
conduct studies on large patient cohorts with compre-
hensive tumour information to develop markers that
predict disease progression. These studies have evolved
to identify multi-gene expression signatures instead of
single gene biomarkers.

Until recently, cancer biomarker discovery focussed
upon molecules expressed by transformed cells in vitro
and tumour-cell expressed markers. It is now evident
that tumour stroma plays a major role in cancer devel-
opment and progression, and is a complementary source

of novel biomarkers. Prostate stroma is a complex tis-
sue composed of cells such as fibroblasts, endothe-
lial cells and immune cells. It undergoes histologi-
cal and molecular changes during cancer progression
shown to be associated with poor outcome [1–4]. Reac-
tive stroma expresses growth factors, chemokines, inter-
leukins, fibroblast growth factors, matrix remodelling
factors and other factors involved in growth, survival
and angiogenesis to modulate tumourigenesis [5,6]. Sev-
eral studies from the Mercola group showed that prostate
stroma expressed specific molecules associated with
cancer that distinguished indolent from aggressive types
[7,8]. A classifier based on genes expressed in tumour
adjacent stroma had high accuracy (97%) when tested
in a cohort of 364 cases [9]. The challenge in developing
reliable stromal biomarkers is the ability to de-convolute
stromal-specific gene expression profiles from those of
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tumour cells. Conflicting reports on the contribution
of different cell types within gene expression profiles
have been published. In leukaemic samples, de Ridder
et al [10] showed that to obtain reliable microarray gene
expression profiles, samples must contain at least 90% of
target cells. Microarray analysis of tissues with less than
75% of tumour cellularity led to 25% of erroneously
identified genes. In colon cancer samples, De Bruin
et al [11] showed that a tissue with low epithelial (15%)
content contributed 50% of the gene expression profile
because the RNA yield of epithelial cells was higher
than stroma. In a study across 21 different cancers, Aran
et al showed that tumour purity was a confounder in
genomic analysis. In three bio-informatic analyses rou-
tinely applied to cancer studies (correlation analysis,
clustering and differential expression), the results were
highly obscured by tumour purity because they corre-
lated with tumour purity rather than cancer features [12].

Tissue composition estimated by pathologists on
H&E-stained slides can be inaccurate [13]. Conversely,
micro-dissection and single cell-based techniques are
too cumbersome to be implemented in large cohorts.
The alternative is to develop methods to de-convolute
transcriptomic data using cell specific markers and
estimate their proportions within patient samples.
Numerous computational based methods have been
developed to extract cell-type specific information from
complex tissues or to estimate cell-type proportion; but
they are rarely applied in transcriptional or genomic
studies. Five classes of computational approaches
exist based on the input data required and the type of
feature generated. Some methods combine expression
profiling of heterogeneous tissues and cell proportion
data [14–18], others require either a signature or spe-
cific markers of each cell population [19–26] while
some methods rely little on proportion or expression
profile [27–30]. Most of these methods were developed
using haematopoietic malignancies and studies in solid
tumours have focussed on tumour (epithelial) cell con-
tent estimation. Stroma and other tissue components
have largely been neglected. ESTIMATE was devised
to calculate tumour purity using stromal and immune
signatures [22], while MCP-counter enables quantifi-
cation of eight immune cell types and two stromal
cells (fibroblast and endothelial) in tissues [31]. Among
these methods, two have been created and validated
in prostate cancer datasets. CellPred is a microarray
based de-convolution algorithm that evaluates tumour
and stroma content in mixed samples [32]. ISOpure is a
statistical method which uses expression profiles from
healthy tissues to predict the likely proportion of tumour
and normal cells in samples [27,33]. However, a method
to quantify stromal content in prostate transcriptomic
datasets such as RNAseq data is currently lacking.

We have identified transcripts with stromal expression
in the prostate and developed a model to infer stromal
contribution within tumour samples. We defined 17 tran-
scripts able to distinguish stromal from epithelial cells
that were specific to prostate cancer. We experimentally
validated the stromal specificity of these transcripts and

used a subset to derive a linear model for estimating stro-
mal content. We used our model to calculate the stromal
content of two independent datasets (TCGA and Uni-
versity of Calgary) and demonstrated reliable stromal
quantitation of equal or better performance than current
models. Finally, we showed that stromal based classi-
fiers performed better when tested in datasets adjusted
for stromal content.

Materials and methods

Ethical approval and consent to participate
The expression profiles retrospective patients
were extracted from the Decipher GRID registry
(NCT02609269). Tissue samples were collected from
archival samples processed at the Department of
Pathology-Calgary Laboratory Services. All Clinical
and pathological data were obtained with approval of
the institutional review board at University of Cal-
gary, Cumming School of Medicine. Calgary, Alberta,
Canada.

Selection of stromal control transcripts
To derive a prostate stromal quantitation signature, we
first selected stromal-specific transcripts from published
gene expression datasets and compared this to prostate
mesenchyme transcriptional profiling data followed by
a series of filtering criteria detailed in Figure 1.

Gene expression profile datasets
Datasets were retrieved from Gene Expression Omnibus
(GEO). Datasets with micro-dissected prostate tissues:
GSE26910 [34] contains 24 micro-dissected normal
and reactive stroma samples from prostate and breast
analysed with Affymetrix Human Genome U133 plus
2.0 array. GSE20758 [35] includes paired stroma
and epithelial micro-dissected prostate tissues anal-
ysed using Affymetrix U133 2A array. GSE6099 [36]
includes micro-dissected stroma and epithelial prostate
tissues from various origin (normal, BPH, HGPIN,
localised cancer and metastasis). Epithelial samples
were further subcategorised into normal epithelium
adjacent to prostate cancer (PCa), atrophic epithelium,
normal epithelium and BPH epithelium. Stromal sam-
ples were subcategorised to stroma adjacent to PCa,
normal stroma and BPH stroma. Expression profiling
was conducted using the Chinnaiyan Human 20 K Hs6
array. We used datasets with pathologist’s estimation of
tissue composition: GSE8218 [32] which is composed
of 136 samples; 65 samples with high tumour cellular-
ity and 71 tumour samples micro-dissected to obtain
tumour-adjacent stroma processed on the Affymetrix
Human Genome U133 plus 2.0 array. This dataset has
pathologist estimation of four different tissue com-
ponents (tumour, stroma, BPH and atrophic glands).
GSE1431 [15] containing 88 prostate tissue samples
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Figure 1. Selection of stromal markers. (A) Schematic of the criteria used to select transcripts for stromal content estimation. These were
subsequently examined in micro-dissected tissue datasets, to compare expression in stromal versus epithelial cells. (B) Normalised expression
of each of the 17 transcripts was centred and scaled and then used to create a signature score (average) in GSE20758 [35]. Bar plot showing
signature score for each micro-dissected sample. (C) Box plot showing the range of signature score in stromal samples versus epithelial
samples; the score was higher in stromal samples (P value= 3.42e−3). (D) Normalised expression of each of 13 transcripts present on the
array was centred and scaled and then used to create a signature score (average) in GSE6099 [36]. Bar plot showing signature score for
12 stroma micro-dissected samples and 59 micro-dissected epithelial samples. (E) Signature scores range in different cell population as
identified in Tomlins et al [36]. The signature score of stromal samples was significantly higher than epithelial samples (P value= 8.71e−10).
Black circle represents the signature score mean.

scored for tumour, stroma and BPH content; profiling
was conducted using the Affymetrix U95Av2 array.
Other prostate datasets used in this analysis included:
GSE11682 [1], Richardson et al [37], GSE21031 [38]
and GSE46691 [39]. Additionally, we used ovarian
dataset GSE38666 [40] composed of eight normal
stroma and adjacent epithelia plus seven tumour stroma

and adjacent tumour tissues. Gene expression analysis
was conducted using the Affymetrix Human Genome
U133 plus 2.0 array. University of Calgary stromal
dilution cohort contained 39 samples obtained from
six unique patients. Expression profiles were extracted
from the Decipher GRID registry (NCT02609269).
Institutional Review Board approval was obtained
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from the participating institution prior to initiating
the current study. RNA extraction and microarray
hybridisation to Affymetrix Human Exon 1.0ST arrays
(Affymetrix, Santa Clara, CA, USA) for the University
of Calgary cohort were performed in a Clinical Labo-
ratory Improvement Amendments-certified laboratory
(GenomeDx Biosciences, Vancouver, Canada) and has
been described previously [39,41,42].

Microarray data processing
Expression levels from Affymetrix array based stud-
ies were normalised using SCAN [43], batch corrected
using ComBat (SVA package) [44], probes were mapped
to unique transcripts with biomaRt [45]. Multiple probes
for the same gene were collapsed by using collapseRows
function of WGCNA [46–48]. Relative gene expres-
sion was calculated by subtracting from the gene esti-
mate the mean expression value across all patients in
the dataset, and then dividing it by its standard deviation
across all patients (z-score). Signature score was calcu-
lated by averaging the relative expression of the genes in
the signature.

Tissue cell-type composition analysis
Three different methods were used to assess tissue com-
position. ESTIMATE stroma scores and ESTIMATE
tumour purity were calculated using the ESTIMATE
R package [4]. Tumour purity was calculated using
the IsoPure R package [33] and tumour and stromal
percentage were estimated with CellPred (http://www
.webarraydb.org) [32].

TCGA dataset
TCGA expression data and patient clinicopathological
data were downloaded with TCGAbiolinks R package
(Bioconductor; http://www.bioconductor.org) [49] and
H&E slides were downloaded from the NCI GDC
legacy Archive. Estimation of stromal area was per-
formed using ImageScope viewer and analysis software
(Aperio Technology Inc., Vista, CA, USA). The Aperio
Positive Pixel count algorithm was used to calculate tis-
sue area (Atotal). A new algorithm (stroma Algorithm)
was created to calculate the stromal area: the Aperio
Positive Pixel count algorithm input parameters were set
to obtain the identification of pixels related to the stroma
as weak positive (Nwp in yellow) and tuned to make
non-specific pixels (in blue) define epithelia. Stroma
was then defined by Atotal×Nwp/Ntotal. Stromal per-
centage was calculated as stromal area/tissue area× 100
(see supplementary material, Figure S1). To validate
the accuracy of software estimation, stromal percentage
was reviewed by a pathologist (blinded to the predicted
stromal content). Only validated cases were retained
for analysis [50] and we excluded slides with tissue
not properly spread (n = 111). The stromal percentage
was averaged for samples with two slides (n = 84).
TCGA RNAseq data (HTSeq-count) for prostate cancer
were downloaded using TCGAbiolinks R package [49].

Genes with low read counts were removed. Read counts
were normalised by library size with the ‘DESeq2’
package [51] and voom transformed using the limma R
package [52].

Cell culture
Normal prostate fibroblast cells, PrSC (Lonza),
cancer-associated fibroblasts (CAF) [53], WPMY-1
[54], BHPrS [55] normal prostate epithelial cells,
RWPE-1 (ATCC), BPH cells, BPH-1 [56] and prostate
cancer epithelial cell lines, PC-3, LNCaP, DU-145
(ATCC) were maintained in DMEM (Wisent, Quebec,
Canada) supplemented with 10% FBS. Six different cell
mixtures of CAF or BHPrS and PC-3 were prepared
(100, 70, 50, 30 and 0% fibroblasts). The concentration
of each cell line was measured by haemocytometer and
cell lines were mixed at the desired ratio.

RNA extraction and quantitative PCR
RNA from cell lines and cell mixtures was extracted
using Trizol (Invitrogen, Carlsbad, CA, USA). One
microgram of RNA was reverse transcribed using
iScript™ (Bio-Rad, Hercules, CA, USA) and qPCR
was performed using SYBR Green Real time Master
Mix (Bio-Rad, Hercules, CA, USA). Cq-values were
determined using the iQ5 software (Bio-Rad, Hercules,
CA, USA), gene expression was normalised with the
geometric mean of three reference transcripts (GAPDH,
TPB and RNA18S).

Immunohistochemistry
Antibodies were chosen using ProteinAtlas (www
.proteinatlas.org) and selected for those with stromal-
specific staining. Formalin-fixed prostate cancer tis-
sues were stained with C1S (NBP1-86439) diluted
1:50, RABGAP1L (H00009910-M05) diluted 1:600,
RPBMS (NBP2-33810) (Novus Biologicals, Littleton,
CO, USA) diluted 1:40 and VIM (Sigma-Aldrich, St.
Louis, MO, USA; HPA001762) diluted 1:1000. After
deparaffinising and rehydration, tissue sections were
antigen-retrieved with citrate buffer pH 9 in a pressure
cooker for 5 min. Slides were then treated with 0.5%
H2O2 for 30 min to quench peroxidase activity and
blocked for 4 h with IHC select (Millipore, Billerica,
MA, USA). Antibodies were hybridised overnight
at 4 ∘C. Primary antibodies were omitted to serve as
negative controls, and staining patterns were consistent
with those observed in ProteinAtlas.

Stromal model
We used linear regression (LM) to predict stromal con-
tent of a tissue from its transcriptome profile. GSE8218
[32], where the stromal content was defined, was ran-
domly divided into a training (n = 88) and a testing
dataset (n = 44) and used for training and validating the
algorithm. The algorithm performance was also mea-
sured in two independent datasets: TCGA and Cal-
gary stroma dilution cohort. Twenty-three features were

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 249: 411–424
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com

http://www.webarraydb.org
http://www.webarraydb.org
http://www.proteinatlas.org
http://www.proteinatlas.org


Stromal deconvolution and signature performance in prostate cancer 415

Table 1. Description of the new features created using expression
levels of the 17 transcripts
Features Summary

PIMS Mean C1S, CALD1, FHL1, MYLK , RBPMS
PIMS2 Mean CALD1, FHL1, METTL7A, RBPMS
CSC Sum C1S, CALD1, SVIL
RP Sum PTPRD, RABGAP1L
BC Sum BTG3, COL4A2
CM Sum C1S, METTL7A

included as putative predicators for stromal content
model. In addition to the 17 transcript expression level,
we created six new features based on expression levels
as described in Table 1.

We built the LM model using the mlr package in R
[57] with the 23 predicators, and then a chi-squared
feature selection method was applied with generate-
FilterValuesData function of the FSelector package in R
[58]. The model was evaluated by computing the coeffi-
cient of determination (R2), the root mean squared error
(RMSE) of prediction and Spearman correlation. The
stromal percentage generated by the model was used to
adjust gene expression in stroma portion of a given tissue
as follows; gene expression× stroma percentage/100.

Statistical analysis
All statistical analysis was performed using R and
the Bioconductor suite (http://www.r-project.org). A
two-tailed Student’s t-test was used to evaluate differ-
ences between two groups. For experiments involving
multiple comparisons, we performed one-way ANOVA
with the Tukey post hoc test to evaluate differences. The
Spearman and Pearson pairwise correlation method was
used for all correlations analysis (car R package) [59].
The cor.test function from the R Stats package was used
to calculate P values for each correlation. Hierarchical
clustering was performed on either row-normalised gene
expression or on the stromal normalised data using Clus-
ter [60] and factoextra [61]. Tumours were assigned
to different clusters based on the stromal classifier
described previously [9] or stroma derived metasta-
sis signature (SDMS) [62]. Heatmaps of the stroma
classifier genes were produced using gene expression
and stromal normalised gene expression using the R
package ComplexHeatmap [63]. Kaplan–Meier sur-
vival analysis and log-rank tests were used to analyse
recurrence-free survival using R package survival [64]
and receiver operating characteristic (ROC) curves
were used to compare the sensitivity and specificity of
the risk prediction for recurrence-free survival using R
package plotROC [65].

Results

Identification of transcripts with stromal specificity
We selected a list of 174 stromal-specific transcripts
by combining stromal-associated transcripts identified

in two previous studies [15,35]. We then identified the
best candidates among this list using several criteria
(Figure 1A). Transcripts with low Tag count (TPM)
in our prostate fibroblast Tag profiling study [66]
were removed to ensure transcripts could be easily
detected and reliably quantitated. In order to define
stromal-specific expression and expression across cell
subsets, we used transcriptome data of prostate mes-
enchymal subsets (VMP and SU) [67,68] to select
transcripts ubiquitously expressed in mesenchyme.
Transcripts shown to be dysregulated in prostate cancer,
or differentially expressed between reactive and normal
stroma were removed [1,34,37]. Transcripts encoding
proteins with epithelial localisation by immuno-
histochemistry in the Human Protein Atlas (www
.proteinatlas.org) [69] were removed. We included
transcripts previously identified as expressed in prostate
fibroblasts by our group [53,66]. These criteria yielded
17 stromal-specific transcripts derived from prostate
stroma that were used for further analysis (Figure 1A).

To determine whether the 17 transcripts could dis-
tinguish stromal versus epithelial tissue, we generated
a signature score by averaging their expression in
micro-dissected prostate samples that separated stroma
from epithelia (GSE20758). The stromal score in the
micro-dissected stroma enriched fraction was high,
but was low in the epithelial fraction suggesting that
these 17 transcripts could distinguish stromal versus
epithelial tissues (Figure 1B,D). To confirm the utility
of the signature score to distinguish the two tissue com-
partments, we used an independent dataset (GSE6099)
that was not used to identify the stroma transcripts
initially (Figure 1C,E). This gene expression dataset
was generated using an in-house microarray platform;
four of our stromal transcripts were absent from the
microarray. The signature score was calculated by
averaging the remaining 13 transcripts. Overall, there
was a significant difference between the signature score
in micro-dissected stromal samples compared to tumour
cells. All micro-dissected samples (n = 12) showed
a positive signature score while signature scores for
epithelial samples had a wide range of values (negative
and positive values). Normal epithelium and epithe-
lium from BPH (EPI_NOR, EPI-BPH) had the lowest
signature scores whereas epithelium from atrophic
lesions had the highest signature score (EPI_ATR,
EPI_ATR_PIA).

Prostate specificity of the stromal signature
Previous studies have shown that prostate stromal
tissue differs from stroma of other organs, and it
is documented that reactive stroma has a distinct gene
expression profile compared to normal stroma [1,34,70].
We selected transcripts that were expressed ubiquitously
in the stroma, and not differentially expressed between
normal and reactive stroma. To verify whether our tran-
scripts met these criteria, we compared the signature
score of micro-dissected normal prostate stroma to reac-
tive prostate stroma (GSE26910) [34] (Figure 2A,B).
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Figure 2. Comparison of stromal signature score between normal and reactive stroma in prostate, breast and ovarian tissue. Signature score
was calculated for micro-dissected normal and reactive stroma for prostate and breast tissues using GSE26910 [34] and for ovarian tissue
using GSE38666 [40]. (A) Prostate stroma samples had a positive signature score; breast stroma samples had a negative signature score
and ovarian stroma had a mixed signature. (B) Signature score for normal and reactive stroma are similar in prostate and breast tissues but
significantly different in ovarian tissue (P value= 1.41e−02). (C) Signature score for prostate stroma is significantly different from breast
signature score (P value= 6.40e−05) and ovarian signature score (P value= 8.98e−04). NS, not significant.

The signature score for normal stroma micro-dissected
samples was similar to the signature score obtained for
reactive micro-dissected stroma. We observed similar
results in breast tissue samples, however, the signature
score generated in ovarian micro-dissected normal
stroma samples was significantly higher than signature
score of reactive stroma samples in GSE38666 [40]
(Figure 2B). When comparing the prostate signature
score, we observed a significant difference between
prostate signature score and breast or ovarian signa-
ture score suggesting that these transcripts showed
specificity for prostate stroma (Figure 2C).

Experimental validation of stromal transcript
expression
To assess the ability of these stromal genes to infer the
stromal content, we created a mixture of tumour cells
(PC-3) and normal fibroblasts (BHPrS) and a mixture
of tumour cells (PC-3) and cancer fibroblasts (CAF) in
varying proportions ranging from 0 to 100% and mea-
sured the expression of a subset of our stromal tran-
scripts by RT-qPCR. C1S, FHL1, MYLK, RBPMS and
VIM showed a decrease in gene expression correlating
with reduced fibroblast proportion (see supplementary
material, Figure S1A,B). To verify stromal expression
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Figure 3. Expression of selected stromal markers in prostate tissue. Immunohistochemistry of RABGAP1L (A), C1S (B), RBPMS (C) and VIM
(D) in prostate cancer tissue. RABGAP1L and RBPMS showed nuclear expression in prostate stroma while C1S and VIM showed cytoplasmic
expression in prostate stroma. Main image ×40 magnification; scale bars, 200 μm; inset ×10 magnification; scale bars, 60 μm.

of selected transcripts via protein localisation, we per-
formed immunohistochemistry for four of the 17 tran-
scripts on prostate cancer tissues. As shown in Figure 3,
RABGAP1L and RBPMS were expressed in the nuclei
of stromal cells while C1S and VIM were localised to
stromal cytoplasm.

Model construction for stromal quantitation
To build a model for stromal content estimation, a
gene expression dataset with stromal percentage defined
by a pathologist was divided into testing and train-
ing datasets [9]. We used each of the stromal-specific
17 transcripts individually and created new features by
combining subset of transcripts. This included summing
or averaging the relative expression of the transcripts as
described in the section ‘Material and methods’ to give
a total of six features. To reduce the number predicator
and select the most useful for predicting stromal content
using the testing dataset, we performed a chi-squared
test and selected four most predictive according to their
chi-squared values (Figure 4A). Then, we constructed a
linear model (see supplementary material, Figure S2).
Graphical representation of model coefficients is pre-
sented in Figure 4B. Predicted and observed stromal
content relationship in testing and training dataset is pre-
sented in Figure 4C,D. The stromal estimation model
had an R2 of 0.46 and Spearman correlation of 0.71 in the
training dataset, while in the testing dataset an R2 of 0.67
and a Spearman correlation of 0.79 were observed. In the
testing dataset, the expression level of the four predictive
transcripts showed high correlation (Pearson’s R2

> 0.5)
with stromal composition (see supplementary material,
Figure S3). We have successfully combined a minimal
number of stromal transcripts and created a linear model

to estimate tissue stromal content. This model performed
as well as the CellPred 250-gene model [32] (see supple-
mentary material, Figure S4).

Model evaluation and validation in TCGA
and GenomeDx datasets
In order to evaluate the performance of the stromal
quantitation model using independent datasets, we
estimated the stromal proportion within TCGA sam-
ples by image analysis. Prostate cancer histologic H&E
stained sections from the TCGA Network were analysed
using an Aperio stromal algorithm (see supplementary
material, Figure S5). The stromal content of 308 sam-
ples included in the analysis ranged between 5 and
97%. The dataset showed a higher inclusion of normal
tissues compared with cancer tissues but showed no
statistically significant difference in Gleason scores
(see supplementary material, Figure S5D). The stromal
content predicted by the stromal quantitation model
showed poor correlation with the image-based estima-
tion of stromal area (Spearman’s R2 = 0.42; Figure 5A).
However, a better correlation was observed between
the stromal quantitation model and the stromal score
of the ESTIMATE algorithm (Spearman’s R2 = 0.668;
Figure 5B). We also calculated the correlation between
tumour content (tumour purity) estimates by ISOp-
ure and our stromal quantitation and observed a highly
inverse correlation (R2 − 0.778; Figure 5C), as expected.
This suggested that transcriptomic-based deconvolution
methods show greater concordance among different
algorithms versus histopathology-based estimates.
To investigate the divergence in model performance in
TCGA testing and training dataset, we examined the cor-
relation between histological-based tissue composition
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Figure 4. Development of a model to predict stromal content. (A) Importance of predicator variables. Graph showing the chi-squared value
calculated for the 23 features selected to use for modelling. The four predicators with the highest chi-squared were retained. (B) Graphical
representation of our stromal model. The graph shows the coefficients of the four predicators included in the model: SVIL, C1S and PIMS
(mean of FHL1, MYLK , RBPMS, C1S and CALD1) and CSC (sum of C1S, SVIL and CALD1). (C,D). Stromal model with four predicators. Panels
C and D show the predicted stromal content versus the observed one in both training dataset (R2 = 0.4614 and Spearman= 0.7125) and
testing dataset (R2 = 0.676 and Spearman= 0.7936).

and transcriptomic-based method (CellPred, ESTI-
MATE and ISOpure) in TCGA and GSE8218. As
previously, shown, the two types of methods had low
correlation in TCGA [12]. Interestingly, in GSE8218,
the correlation coefficients between all methods were
higher than in TCGA (see supplementary material,
Figure S6). Taken together, our organ-selective stromal
signature performed better than existing models in
predicting stromal content.

To test the performance of our stromal quantitation
model, we applied it to a Calgary cohort containing
samples from six patients with known stromal content
ranging from 5 to 60%; each sample was diluted to
produce standard curves of stromal percentage for each
patient. The correlation between the stromal signature
score and stromal histological-based method was low
(Spearman’s R2 = 0.31, Pearson’s R2 with adjustment
for patient= 0.48) while the correlation with ESTI-
MATE was considerably higher (Spearman’s R2 = 0.76)
(Figure 5D,E). Next, we examined correlation between
our stromal signature score and stromal dilution in each
patient of the cohort individually and found a high
association between them (see supplementary material,

Figure S7). This showed that our signature could detect
a wide range of stromal content.

Effect of ‘stromalisation’ on prognostic
performance of a stromal classifier
To measure the effect of stromal normalisation on the
performance of a stroma-based prognostic classifier,
we assessed the performance of a 15 gene classifier
developed by Jia et al [9], using the Taylor dataset
(GSE21032) [38] with or without stromal quantitation
(stromalisation). We used our stromal quantitation
model to define the stromal content of 160 samples
in GSE21032. The stromal percentage ranged from 2
to 100% (see supplementary material, Figure S8A).
Then, we used the predicted stromal content to adjust
gene expression values. Hierarchical clustering using
the 15 genes included in the classifier divided the
tumour samples into three groups (see supplementary
material, Figure S8B–E). Heatmaps of the markers
in non-stromalised data showed modest differences
between the three patient clusters (Figure 6A), but
differences were clear after stromalisation of the data
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Figure 5. Stromal model validation in TCGA (A–C) and Calgary cohorts (D,E). (A) Scatterplot of predicted stromal content in TCGA samples
versus stromal content measured by digital image analysis (histological stromal %) (r = 0.420, P value= 1.352e−14). Only validated TCGA
samples (308) were used in the analysis. (B) Correlation of stromal predicted values with ESTIMATE stromal score (r = 0.668, P value
<2.2e−15). (C) Correlation of stromal predicted values with tumour purity calculated with IsoPure (r =−0.778, P value= 2.2e−16). (D)
Scatter plot of stromal signature score in Calgary cohort versus stromal dilution (r = 0.48, P value <0.001 following correction for patient
effects). (E) Correlation between stromal signature score and ESTIMATE stromal score (r = 0.78, P value= 1.1e−07).

(Figure 6B). Survival analysis did not show a prognos-
tic value for the signature (p = 0.25) when using raw
tumour data (Figure 6C). However, when hierarchical
clustering was applied to data that was stromalised, three
groups were observed, with a clear association with bio-
chemical recurrence (BCR) (p = 0.0047) (Figure 6D).
Individuals in group 2 and 3 showed a very high hazard
ratio of 3.03 and 4.15 (95% CI= 1.241–7.397; 95%
CI= 1.543–11.189) (Table 2) for the stromal signature
[7]. The association remained significant in multivariate
analysis (Table 3); hazards ratio (HR) 2.66 and 4.152
(95% CI= 1.066–6.641; 95% CI= 1.505–11.45). This
highlights the importance of quantitating the stromal
contribution within samples to maximise the perfor-
mance of stromal prognostic signatures. Using the same
strategy, we assessed the performance of the 93-gene

stromal derived metastasis signature SDMS [62], in
GSE21034 [38] and in GSE 46691 [39]. Stromalisation
showed a modest (approximately 10%) improvement
of signature performance (see supplementary material,
Figures S9 and S10).

Discussion

It has been shown that the stromal microenvironment
plays an active role during prostate cancer devel-
opment and progression. The dynamic interactions
between stromal and epithelial compartments are
involved in tumour growth, metastasis and patient
outcome. To better predict prostate cancer progres-
sion, stromal-based prognostic signatures have been
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Figure 6. The effect of adjustment for stromal content upon the performance of a 15 gene stromal classifier in the Taylor dataset.
Hierarchical clustering heatmap based on expression values of genes in the Jia et al [9] stromal classifier using the transcriptional profiles
from GSE21034 [38] prior to ‘stromalisation’ (A) and post ‘stromalisation’ (B). Three groups of patients were identified, blue and purple
indicate high and low expression levels, respectively. (C,D) Kaplan–Meier survival analysis of relapse-free survival according to the Jia
stromal classifier of patients in the different groups. Groups were defined using expression data prior to ‘stromalisation’ showed no difference
in progression (C). (D) Groups defined using expression data post ‘stromalisation’ show differential progression rates with a P value= 0.0047.
The differences between the curves were assessed by the two-sided log-rank test. Overall P values are shown. * denotes P value < 0.05;
** denotes P value <0.01. (E) ROC curve analysis comparing the sensitivity and specificity of the predictive group defined prior and post
stromalisation. Areas under ROC curve (AUCs) were 0.432 prior to stromalisation and 0.668 after stromalisation.

developed. A significant limitation is the variable con-
tribution of stroma within tumour samples, which is
a confounding factor reducing stromal-specific signa-
ture performance. In this study, we identified prostate
stromal-specific transcripts that we used to infer stro-
mal composition. We constructed a model to predict
the stromal composition of prostate tissue based on
mRNA expression of six stromal-specific transcripts
and validated its performance in TCGA and University
of Calgary patient cohorts.

We have previously showed that subsets within
prostate mesenchyme can be a useful source of

stromal molecules involved in both development
and prostate cancer progression [66,67]. We identified
17 stromal-specific transcripts by combining data from
micro-dissected prostate tissue and from our studies of
mesenchyme during prostate development. These 17
transcripts distinguished prostate stroma from epithelia,
and many showed stromal specificity at both RNA
and protein level. Although prostate cancer stroma and
fibroblasts are heterogeneous, our signature score in
the stromal compartment was less variable than in the
epithelial compartment. It was not significantly different
between normal and reactive prostate stroma indicating
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Table 2. Univariate analysis for recurrence-free survival (BCR) in the Taylor dataset (GSE21032) (left), and with ‘stromalisation’ (right)
using the Jia stromal signature

Stromalised

HR 95% CI P value Adj. P value HR 95% CI P value Adj. P value

Group 2 0.640 0.579–4.208 0.379 0.4336 3.03 1.241–7.397 0.0149 0.0148
Group 3 1.422 0.291–1.698 0.434 0.433 4.154 1.543–11.18 0.00482 0.00964

Taylor dataset (GSE21032) [38].

Table 3. Multivariate analysis for recurrence-free survival (BCR) in the Taylor dataset (GSE21032) (left), and with ‘stromalisation’ (right)
using the Jia stromal signature

Stromalised

HR 95% CI P value Adj. P value HR 95% CI P value Adj. P value

Group 2 1.441 0.529–3.921 0.474 0.697 2.66 1.066–6.641 0.0361 0.051
Group 3 1.054 0.43–2.579 0.908 0.908 4.152 1.505–11.45 0.006 0.015
PSA 1.342 0.501–3.594 0.558 0.697 1.287 0.476–3.478 0.618 0.618
Gleason 4.993 1.146–21.75 0.032 0.08 4.537 1.064–19.36 0.041 0.051
Stage 0.275 0.123–0.613 0.0016 0.008 0.261 0.117–0.585 0.0011 0.0055

PSA, prostate specific antigen.
Taylor dataset (GSE21032) [38].

that we identified stromal transcripts with stable expres-
sion independent of disease or pathology. Our stromal
signature distinguished prostate from breast and ovarian
stroma, two other hormone-regulated cancers, support-
ing the concept that prostate stroma is distinct from
stroma of other organs. These results also suggest that
organ-specific stromal deconvolution signatures may
perform better than generic stromal signatures designed
for tissue deconvolution in multiple tumour types.

We focussed on identifying the optimal prostate
stromal-specific transcripts to build a reliable model
for stromal quantitation and were able to improve the
correlation coefficient between the predicted stromal
composition and pathologist estimation in two datasets.
In the testing and validation dataset, compared to
the Wang 5-gene model (R2 = 0.38) we observed an
improved correlation coefficient of 0.7. Even though the
model performed modestly in TCGA data (R2 = 0.42),
it was almost double that of ESTIMATE (R2 = 0.23).
Additionally, we observed better concordance between
visual stromal quantitation and our transcript-based
model in the Calgary stromal dilution cohort, albeit
with a small sample size. In general, we have observed
better correlation of our signature with computationally
estimated cell proportions than visual estimation. The
discrepancy between these two methods is common and
has been attributed to error in pathologist estimation and
use of different tissue for histology and RNA extraction.
The tissue surface might not accurately represent the
full tissue composition of a core, especially when the
core extends far from the histological section, which
leads to better correlations among transcript based
methods versus poor correlation between transcript
based methods and visual estimation.

We suggest that there is considerable need for tran-
script expression data derived from samples of known
stromal composition. GSE8218 and Calgary cohorts
were developed specifically to study tissue composition
and when we closely examined the correlation between
computational and pathologist estimation methods, we

observed a higher correlation than in our stromally
defined subset of TCGA data.

In most existing datasets, samples are included
for gene expression profiling only if they contain at
least 60% tumour cells; this is sub-optimal for stro-
mal biomarker studies. Jia et al [9] developed a 19
probe-based classifier (17 genes expressed preferen-
tially in the microenvironment), that predicted risk
with high accuracy (87%). However, the classifier
only worked in a dataset enriched in stroma and the
performance decreased when applied to datasets with
epithelial content greater than 10%. Using our stromal
quantitation model, we observed that the signature
derived by Jia et al could work very well in samples
with low stromal content, after adjustment of expression
values.

Our model is very simple, and only requires gene
expression data of six transcripts; thus it could be used to
estimate stroma content of old microarray datasets with
limited number of probes as well as in RNAseq datasets
that cover the whole genome. It is also easily imple-
mented in Nanostring based measurement of transcript
expression where limited number of transcripts can be
assessed. The implementation of stromal deconvolution
will lead to changes in biomarker discovery, and will
support the identification of markers that change as a
result of gene regulation rather than changes in cell
proportions.

Conclusions

Biomarkers are keys for distinguishing indolent from
aggressive prostate cancer, and to stratify patients
among different treatment options. Patient samples used
for transcript-based biomarker tests are comprised of
several cell types including tumour, stroma and immune
subtypes. To improve biomarker signature performance,
we have developed a prostate-selective stromal quanti-
tation model which outperforms pan-organ models in
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prediction of stromal content. Importantly, our model
led to considerable improvement of stromal signature
performance in data adjusted for stromal proportion.
The application of optimised stromal signatures will
improve patient stratification and can be combined with
tumour and immune signatures.

Acknowledgements

We would like to thank Prof David Berman for com-
ments on the manuscript and the Pronto Team for advice
and encouragement. This work was funded by Prostate
Cancer Canada and the Movember foundation, grant
#T2014-01 (NB and AAT), and by the Canadian Can-
cer Society INNOV14-1 #702423 (CN and AAT). TAB
was supported by a PCF, USA Young Investigator award.
The funders had no role in the design of the study and
collection, analysis and interpretation of the data, or in
writing the manuscript.

Author contributions statement

NB performed bio-informatic data analysis and
experimental work. MT performed bio-informatic
analysis of stromal dilution cohort. CN contributed
to bio-informatic analysis and experimental work.
TAB developed the stromal dilution cohort. NE and
ED provided access to cohorts used in analysis. AAT
conceived the study and supervised the work. NB and
AAT wrote the paper. All authors read and approved the
final manuscript.

Availability of data and material

Most data used in this study are publically available, via
TCGA and GEO. Some data that support the findings
of this study in regard to data of defined stromal content
are available from GenomeDX Inc. but restrictions apply
to the availability of these data, which were used under
license for the current study, and so are not publicly
available. Data are however available from GenomeDX
upon reasonable request.

References
1. Dakhova O, Ozen M, Creighton CJ, et al. Global gene expression

analysis of reactive stroma in prostate cancer. Clin Cancer Res 2009;
15: 3979–3989.

2. Dakhova O, Rowley D, Ittmann M. Genes upregulated in prostate
cancer reactive stroma promote prostate cancer progression in vivo.
Clin Cancer Res 2014; 20: 100–109.

3. Ayala G, Tuxhorn JA, Wheeler TM, et al. Reactive stroma as a
predictor of biochemical-free recurrence in prostate cancer. Clin
Cancer Res 2003; 9: 4792–4801.

4. Yanagisawa N, Li R, Rowley D, et al. Stromogenic prostatic car-
cinoma pattern (carcinomas with reactive stromal grade 3) in nee-
dle biopsies predicts biochemical recurrence-free survival in patients
after radical prostatectomy. Hum Pathol 2007; 38: 1611–1620.

5. Barron DA, Rowley DR. The reactive stroma microenvironment
and prostate cancer progression. Endocr Relat Cancer 2012; 19:
R187–R204.

6. Hagglof C, Bergh A. The stroma-a key regulator in prostate function
and malignancy. Cancers (Basel) 2012; 4: 531–548.

7. Jia Z, Wang Y, Sawyers A, et al. Diagnosis of prostate cancer
using differentially expressed genes in stroma. Cancer Res 2011; 71:
2476–2487.

8. Chen X, Xu S, McClelland M, et al. An accurate prostate cancer
prognosticator using a seven-gene signature plus Gleason score and
taking cell type heterogeneity into account. PLoS One 2012; 7:
e45178.

9. Jia Z, Rahmatpanah FB, Chen X, et al. Expression changes in the
stroma of prostate cancer predict subsequent relapse. PLoS One 2012;
7: e41371.

10. de Ridder D, van der Linden CE, Schonewille T, et al. Purity for
clarity: the need for purification of tumour cells in DNA microarray
studies. Leukemia 2005; 19: 618–627.

11. de Bruin EC, van de Pas S, Lips EH, et al. Macrodissection ver-
sus microdissection of rectal carcinoma: minor influence of stroma
cells to tumour cell gene expression profiles. BMC Genomics 2005;
6: 142.

12. Aran D, Sirota M, Butte AJ. Corrigendum: systematic pan-cancer
analysis of tumour purity. Nat Commun 2016; 7: 10707.

13. Smits AJ, Kummer JA, de Bruin PC, et al. The estimation of tumour
cell percentage for molecular testing by pathologists is not accurate.
Mod Pathol 2014; 27: 168–174.

14. Ghosh D. Mixture models for assessing differential expression in
complex tissues using microarray data. Bioinformatics 2004; 20:
1663–1669.

15. Stuart RO, Wachsman W, Berry CC, et al. In silico dissection of
cell-type-associated patterns of gene expression in prostate cancer.
Proc Natl Acad Sci U S A 2004; 101: 615–620.

16. Erkkila T, Lehmusvaara S, Ruusuvuori P, et al. Probabilistic anal-
ysis of gene expression measurements from heterogeneous tissues.
Bioinformatics 2010; 26: 2571–2577.

17. Shen-Orr SS, Tibshirani R, Khatri P, et al. Cell type-specific gene
expression differences in complex tissues. Nat Methods 2010; 7:
287–289.

18. Smyth GK. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet

Mol Biol 2004; 3: Article 3.
19. Abbas AR, Wolslegel K, Seshasayee D, et al. Deconvolution of blood

microarray data identifies cellular activation patterns in systemic
lupus erythematosus. PLoS One 2009; 4: e6098.

20. Gaujoux R, Seoighe C. Semi-supervised nonnegative matrix factor-
ization for gene expression deconvolution: a case study. Infect Genet

Evol 2012; 12: 913–921.
21. Qiao W, Quon G, Csaszar E, et al. PERT: a method for expression

deconvolution of human blood samples from varied microenviron-
mental and developmental conditions. PLoS Comput Biol 2012; 8:
e1002838.

22. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour
purity and stromal and immune cell admixture from expression data.
Nat Commun 2013; 4: 2612.

23. Kuhn A, Thu D, Waldvogel HJ, et al. Population-specific expression
analysis (PSEA) reveals molecular changes in diseased brain. Nat

Methods 2011; 8: 945–947.
24. Shoemaker JE, Fukuyama S, Eisfeld AJ, et al. Integrated network

analysis reveals a novel role for the cell cycle in 2009 pandemic
influenza virus-induced inflammation in macaque lungs. BMC Syst

Biol 2012; 6: 117.
25. Gong T, Szustakowski JD. DeconRNASeq: a statistical frame-

work for deconvolution of heterogeneous tissue samples based on
mRNA-Seq data. Bioinformatics 2013; 29: 1083–1085.

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 249: 411–424
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com



Stromal deconvolution and signature performance in prostate cancer 423

26. Zhong Y, Wan YW, Pang K, et al. Digital sorting of complex tissues

for cell type-specific gene expression profiles. BMC Bioinformatics

2013; 14: 89.

27. Quon G, Haider S, Deshwar AG, et al. Computational purifica-

tion of individual tumour gene expression profiles leads to signif-

icant improvements in prognostic prediction. Genome Med 2013;

5: 29.

28. Ahn J, Yuan Y, Parmigiani G, et al. DeMix: deconvolution for

mixed cancer transcriptomes using raw measured data. Bioinformat-

ics 2013; 29: 1865–1871.

29. Clarke J, Seo P, Clarke B. Statistical expression deconvolution from

mixed tissue samples. Bioinformatics 2010; 26: 1043–1049.

30. Gosink MM, Petrie HT, Tsinoremas NF. Electronically subtracting

expression patterns from a mixed cell population. Bioinformatics

2007; 23: 3328–3334.

31. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population

abundance of tissue-infiltrating immune and stromal cell populations

using gene expression. Genome Biol 2016; 17: 218.

32. Wang Y, Xia XQ, Jia Z, et al. In silico estimates of tissue components

in surgical samples based on expression profiling data. Cancer Res

2010; 70: 6448–6455.

33. Anghel CV, Quon G, Haider S, et al. ISOpureR: an R implementation

of a computational purification algorithm of mixed tumour profiles.

BMC Bioinformatics 2015; 16: 156.

34. Planche A, Bacac M, Provero P, et al. Identification of prognostic

molecular features in the reactive stroma of human breast and prostate

cancer. PLoS One 2011; 6: e18640.

35. Gregg JL, Brown KE, Mintz EM, et al. Analysis of gene expression

in prostate cancer epithelial and interstitial stromal cells using laser

capture microdissection. BMC Cancer 2010; 10: 165.

36. Tomlins SA, Mehra R, Rhodes DR, et al. Integrative molecular

concept modeling of prostate cancer progression. Nat Genet 2007;

39: 41–51.

37. Richardson AM, Woodson K, Wang Y, et al. Global expression

analysis of prostate cancer-associated stroma and epithelia. Diagn

Mol Pathol 2007; 16: 189–197.

38. Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic

profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

39. Erho N, Crisan A, Vergara IA, et al. Discovery and valida-

tion of a prostate cancer genomic classifier that predicts early

metastasis following radical prostatectomy. PLoS One 2013; 8:
e66855.

40. Lili LN, Matyunina LV, Walker LD, et al. Molecular profiling pre-

dicts the existence of two functionally distinct classes of ovarian

cancer stroma. Biomed Res Int 2013; 2013: 846387.

41. Karnes RJ, Bergstralh EJ, Davicioni E, et al. Validation of a genomic

classifier that predicts metastasis following radical prostatectomy in

an at risk patient population. J Urol 2013; 190: 2047–2053.

42. Ross AE, Johnson MH, Yousefi K, et al. Tissue-based genomics

augments post-prostatectomy risk stratification in a natural history

cohort of intermediate- and high-risk men. Eur Urol 2016; 69:
157–165.

43. Piccolo SR, Sun Y, Campbell JD, et al. A single-sample microarray

normalization method to facilitate personalized-medicine workflows.

Genomics 2012; 100: 337–344.

44. Leek JT, Johnson WE, Parker HS, et al. The SVA package for remov-

ing batch effects and other unwanted variation in high-throughput

experiments. Bioinformatics 2012; 28: 882–883.

45. Durinck S, Spellman PT, Birney E, et al. Mapping identifiers for

the integration of genomic datasets with the R/Bioconductor package

biomaRt. Nat Protoc 2009; 4: 1184–1191.

46. Altschul SF, Gish W, Miller W, et al. Basic local alignment search

tool. J Mol Biol 1990; 215: 403–410.

47. Langfelder P, Horvath S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 2008; 9: 559.

48. Miller JA, Cai C, Langfelder P, et al. Strategies for aggregating gene
expression data: the collapseRows R function. BMC Bioinformatics

2011; 12: 322.
49. Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an

R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res 2016; 44: e71.

50. Cancer Genome Atlas Research Network. The molecular taxonomy
of primary prostate cancer. Cell 2015; 163: 1011–1025.

51. Love MI, Huber W, Anders S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;
15: 550.

52. Ritchie ME, Phipson B, Wu D, et al. limma powers differential
expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 2015; 43: e47.

53. Orr B, Riddick AC, Stewart GD, et al. Identification of stro-
mally expressed molecules in the prostate by tag-profiling of
cancer-associated fibroblasts, normal fibroblasts and fetal prostate.
Oncogene 2012; 31: 1130–1142.

54. Webber MM, Trakul N, Thraves PS, et al. A human prostatic stromal
myofibroblast cell line WPMY-1: a model for stromal-epithelial
interactions in prostatic neoplasia. Carcinogenesis 1999; 20:
1185–1192.

55. Franco OE, Jiang M, Strand DW, et al. Altered TGF-beta signaling in
a subpopulation of human stromal cells promotes prostatic carcino-
genesis. Cancer Res 2011; 71: 1272–1281.

56. Hayward SW, Dahiya R, Cunha GR, et al. Establishment and char-
acterization of an immortalized but non-transformed human prostate
epithelial cell line: BPH-1. In Vitro Cell Dev Biol Anim 1995; 31:
14–24.

57. Bischl B, Lang M, Kotthoff L, et al. mlr: Machine Learning in R.
J Mach Learn Res 2016; 17: 1–5.

58. Cheng T, Wang Y, Bryant SH. FSelector: a Ruby gem for feature
selection. Bioinformatics 2012; 28: 2851–2852.

59. Fox J, Weisberg S. An {R} Companion to Applied Regression (3rd
edn). Sage: Thousand Oaks, CA, 2019. [Last accessed 11 Octo-
ber 2019]. Available from: https://socialsciences.mcmaster.ca/jfox/
Books/Companion/.

60. Maechler M, Rousseeuw P, Struyf A, et al. cluster: Cluster Anal-

ysis Basics and Extensions. R package version 2.1.0, 2019. [Last
accessed 11 October 2019]. Available from: https://cran.r-project
.org/package=cluster.

61. Kassambara A, Mundt F. Factoextra: Extract and Visualize the

Results of Multivariate Data Analyses. R package version 1.0.5,
2017. [Last accessed 11 October 2019]. Available from: https://
CRAN.R-project.org/package=factoextra.

62. Mo F, Lin D, Takhar M, et al. Stromal gene expression is pre-
dictive for metastatic primary prostate cancer. Eur Urol 2018; 73:
524–532.

63. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and
correlations in multidimensional genomic data. Bioinformatics 2016;
32: 2847–2849.

64. Therneau T. A Package for Survival Analysis in S. version 2.38, 2015.
Available from: https://CRAN.R-project.org/package=survival.

65. Sachs MC. plotROC: a tool for plotting ROC curves. J Stat Softw

2017; 79: 1–19.
66. Orr B, Grace OC, Brown P, et al. Reduction of pro-tumourigenic

activity of human prostate cancer-associated fibroblasts using Dlk1
or SCUBE1. Dis Model Mech 2013; 6: 530–536.

67. Vanpoucke G, Orr B, Grace OC, et al. Transcriptional profiling of
inductive mesenchyme to identify molecules involved in prostate
development and disease. Genome Biol 2007; 8: R213.

68. Boufaied N, Nash C, Rochette A, et al. Identification of genes
expressed in a mesenchymal subset regulating prostate organogenesis

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 249: 411–424
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=cluster
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=survival


424 N Boufaied et al

using tissue and single cell transcriptomics. Sci Rep 2017; 7:
16385.

69. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics: tissue-based
map of the human proteome. Science 2015; 347: 1260419.

70. Ayala GE, Muezzinoglu B, Hammerich KH, et al. Determining
prostate cancer-specific death through quantification of stromogenic
carcinoma area in prostatectomy specimens. Am J Pathol 2011; 178:
79–87.

SUPPLEMENTARY MATERIAL ONLINE
Figure S1. Expression of stromal transcripts in mixtures of prostate epithelial and fibroblast cells with varying proportions (0–100%)

Figure S2. Diagnostic plots for stromal model performance

Figure S3. Relationship between stromal transcript level and stromal proportion defined visually

Figure S4. ROC curve for our stroma prediction model and CellPred in the GSE17951 dataset (Wang et al [32])

Figure S5. Image analysis to define stromal content of samples in the TCGA dataset

Figure S6. Relationship between histological based tissue quantification and computational based tissue estimation methods

Figure S7. Stromal model performance in GenomeDX stromal dilution cohort and comparison with ESTIMATE

Figure S8. The performance of a 15-transcript stromal classifier [9] in GSE21034 [38] with or without stromalisation

Figure S9. The performance of a 93-gene SDMS [62] in GSE21034 [38] with or without stromalisation

Figure S10. The performance of a 93-gene SDMS [62] in GSE46691 [39] with or without stromalisation

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 249: 411–424
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com


