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In the interdisciplinary research field of chemical biology and drug discovery,

diversity-oriented synthesis (DOS) has become indispensable in the construction of

novel small-molecule libraries rich in skeletal and stereochemical diversity. DOS aims

to populate the unexplored chemical space with new potential bioactive molecules via

forward synthetic analysis. Since the introduction of this concept by Schreiber, DOS has

evolved alongwithmany significant breakthroughs. It is therefore important to understand

the key DOS strategies to build molecular diversity with maximized biological relevancy.

Due to the length limitations of this mini review, we briefly discuss the recent DOS plans

using build/couple/pair (B/C/P) and ring-distortion strategies for the synthesis of major

biologically relevant target molecules like natural products and their related compounds,

macrocycles, and privileged structures.

Keywords: diversity-oriented synthesis, build/couple/pair, ring-distortion, natural product, macrocycle, privileged

structure

INTRODUCTION

Small molecules play an indispensable role in the fields of drug discovery and chemical
biology due to their unique features compared to biologics, polymers, and nanoparticles (Samanen,
2013). However, while the knowledge of biological systems has grown in the post-genomic era,
the discovery of novel small molecular therapeutics or bioprobes has become more complicated.
This can be attributed to advances in chemical biology and drug discovery disclosing novel
targets beyond conventional druggable proteins, such as DNA (Hurley, 2002), RNA (Lieberman,
2018; Warner et al., 2018), protein–protein interactions (PPIs) (Scott et al., 2016), and protein–
RNA interactions (PRIs) (Hentze et al., 2018), among others. Furthermore, a lack of information
regarding the structures and modes of action of these novel targets renders rational drug discovery
challenging.

The development of high-throughput screening (HTS) and high-content screening (HCS)
enabled rapid and efficient investigation of biological activities to yield existing drug-like
compound libraries constructed by combinatorial synthesis (Schreiber, 2000; Tan, 2005; Basso,
2012). However, contrary to expectations, extensive screening exercises against huge compound
libraries delivered a relatively small number of new chemical entities, particularly in the case of
bioassays for novel undruggable targets or unbiased phenotypic screenings, where rational ligand
design is challenging (Burke and Schreiber, 2004; Galloway et al., 2010; Garcia-Castro et al., 2016).
This may be due to the limited diversity of conventional drug-like compound libraries, especially
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in terms of skeletal and stereochemical diversity. Indeed, it should
be noted that skeletal diversity is essential for specific binding
events with diverse biopolymers bearing three-dimensional (3D)
unique binding sites and structural diversity (Kim et al., 2014).
In fact, it is not the size of a chemical library that is most
important, but the skeletal and stereochemical diversity of its
core structures. Thus, there is a huge demand for high-quality
compound collections through the efficient construction of drug-
like small molecule libraries enriched with molecular diversity,
and particularly, skeletal and stereochemical diversity (Spring,
2003).

To meet such demands in molecular diversity, Schreiber et al.
introduced the concept of diversity-oriented synthesis (DOS)
(Schreiber, 2000). The aim of DOS as a synthetic strategy is to
occupy the unexplored parts of chemical space via the efficient
synthesis of unique compound collections bearing diversity and
complexity in their scaffolds. DOS involves “forward synthetic
analysis,” where the products of each step become the branching
substrates for subsequent steps (Tan, 2005). Hence, the DOS
approach leads to an exponential increase in the molecular
diversity of chemical libraries through multiple systematic
branching sequences. Indeed, the DOS strategy has attested
its capacity and value through the development of various
novel therapeutic agents and biological modulators and through
advancing biological understandings (Kuruvilla et al., 2002; Kuo
et al., 2015; Schreiber et al., 2015; Hideshima et al., 2016; Kato
et al., 2016; Plouffe et al., 2016; Wellington et al., 2017; Gerry
and Schreiber, 2018). For example, Schreiber et al. discovered
a novel multistage antimalarial inhibitor, BRD7929, through the
extensive screening of their compound library constructed by
DOS strategy (Kato et al., 2016), while Park et al. reported
a novel leucyl-tRNA synthetase/RagD PPI inhibitor discovered
from DOS library (Kim et al., 2016).

Since the DOS concept was introduced, many synthetic
pathways have been developed by various research groups to
construct efficient chemical libraries (Nielsen and Schreiber,
2008). Among them, the build/couple/pair (B/C/P) strategy is
the most widely followed and commonly applicable synthetic
strategy. This strategy involves 3 synthetic phases, namely a
build phase, a couple phase, and a pair phase (Figure 1A;
Burke and Schreiber, 2004). More specifically, the build phase
involves the synthesis of a single or multiple key building
blocks embedded with suitable functional groups for later-
stage coupling reactions. In the couple phase, a variety of
intermolecular coupling reactions can be employed to generate
a dense array of reactive sites and functional groups on the key
building blocks installed during the build phase. Finally, in the
pair phase, the intermediates constructed through the build and
couple phases take part in intramolecular pairing reactions to
yield an array of final products with the desired skeletal and
stereochemical diversity (Nielsen and Schreiber, 2008; Kim et al.,
2016).

Recently, the ring-distortion strategy has also been developed
as a distinctive DOS strategy for the systematic construction of
novel small-molecule collections with high structural diversity
and complexity. In contrast to the B/C/P strategy, the ring-
distortion strategy is distinct in that it pursues molecular

diversity via distortion of the existing ring systems through ring-
cleavage, ring-expansion, ring-contraction, ring-fusion, ring-
rearrangement, ring-aromatization, and combinations of the
above (Figure 2A; Huigens et al., 2013).

However, in any DOS strategy, the common structural
features of existing bioactive molecules have been widely
investigated to grant sufficient biological relevancy to the
resulting compounds (Kim et al., 2014). As such, natural
products are commonly investigated, and their structural
features are considered to be potent sources of information
in drug discovery. In addition, macrocycles have received a
significant amount of attention in the field of drug discovery
due to distinguishable structural features compared to other
small molecules. Furthermore, privileged structures, which are
common structural motifs in a vast number of bioactive natural
products and therapeutic agents, contain novel structural features
that secure a high biological relevancy (Evans et al., 1988).

Thus, in this mini review, we present recent advancements in
the B/C/P and ring-distortion DOS approaches in the context of
natural products, natural product-like compounds, macrocycles,
and privileged structures.

THE BUILD/COUPLE/PAIR (B/C/P)
STRATEGY

Synthesis of Natural Products and Natural
Product-Like Compounds via the B/C/P
Strategy
Natural products play a pivotal role in the search of novel
therapeutics. Bioactive natural products tend to have complex
3D polycyclic structures rich in sp3 carbons and stereogenic
centers, and their inherent bioactivities may provide clues for
the design of novel core skeletons with high biological relevancy
(Wipf, 2012; Shimokawa, 2014; Chen et al., 2015). Therefore,
the efficient construction of natural product libraries and their
unnatural analogs can be considered an important DOS strategy.

A team led by Lei proposed that complex molecules such
as bioactive natural products can be synthesized via the B/C/P
strategy through the pairing of various functional groups present
in their structures (Zhang et al., 2014). Selecting lycopodium
alkaloids as a model system, they reported the total syntheses of
four lycopodium alkaloids and six related unnatural scaffolds. In
contrast to other total synthetic approaches, the reported DOS
approach allowed the parallel synthesis of unnatural scaffolds,
thereby increasing the population of “lycopodium-like” natural
products in the unexplored chemical space (Harayama et al.,
1974; Ma and Gang, 2004; Chandra et al., 2009). As shown in
Figure 1B, chiral intermediate 1 was formed through the build
and couple phases, while intermediate 2 was prepared by means
of the early pairing phase, which was crucial to the overall
synthetic protocol. By encompassing double pairing processes
in a sequential manner, the “later pairing phase” allowed the
efficient construction of unique core skeletons. To illustrate the
power of this B/C/P strategy, stepwise double pairing procedures,
such as B–C pairing and E–F pairing in Figure 1B led to the
total synthesis of (+)-serratezomine A (6/6/6/5 system) and an
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FIGURE 1 | (A) A schematic representation of the B/C/P strategy. (B) Outline of lycopodium alkaloids and their unnatural scaffolds with their respective pairing

patterns. (C) Outline of the B/C/P strategy for the construction of libraries consisting of macrocycles and medium-sized rings. (D) A pDOS library established via the

B/C/P strategy for the inhibition of protein–protein interactions.

unnatural skeletal analog (6/5/6/5 system) of (–)-serratinine.
In addition, the double pairing pattern involving A–B pairing
followed by C–E or E–F pairing led to the formation of
tricyclic compounds (6/5/9 or 5/6/5 systems, respectively). Other
pairing patterns leading to the total syntheses of (–)-serratinine,
(+)-8α-hydroxyfawcettimine, (–)-lycoposerramine-U, and three
tetracyclic unnatural scaffolds were also examined. Overall, this
work demonstrated a unique and efficient route to the synthesis
of complex natural product-like molecules using the B/C/P
strategy.

Synthesis of Macrocycles via the B/C/P
Strategy
Although various macrocycle-based natural products are
known to exhibit therapeutic potential, as a sole structural
unit, macrocycles have not been traditionally considered as
suitable small molecules for drug discovery screening processes

(Schreiber, 2000). However, recent reports have claimed that
macrocyclic structures can pre-organize their conformations,
which allows improved interactions with extended protein
surfaces and subsequent high biological activities (Driggers et al.,
2008; Villar et al., 2014). As such, numerous DOS strategies have
been pursued to construct structurally and functionally diverse
macrocycles (Madsen and Clausen, 2011; Collins et al., 2016).

For the efficient construction of libraries containing a diverse
array of macrocycles, Spring et al. developed advanced B/C/P
approaches (Beckmann et al., 2013; Nie et al., 2016). These
B/C/P approaches not only allowed diversification in the
multi-dimensional pattern, but also resulted in the judicious
modification of the chemical structures following the pairing
phase (Figure 1Ci). Using an advanced B/C/P approach, they
also reported the synthesis of a library containing 73 macrocycles
having 59 different scaffolds (Beckmann et al., 2013). In this case,
the build phase involved the synthesis of fluorous-tagged azido
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FIGURE 2 | (A) Schematic representation of the ring-distortion strategy. (B) The complexity-to-diversity (CtD) strategy for the construction of diverse and complex

compounds starting from readily available natural products. (C) The ring-distortion strategy for the construction of macrocyclic lactone and lactam libraries. (D) The

ring-distortion strategy for the construction of biologically relevant benzannulated small molecules.

compounds, which were converted in situ into the corresponding
pluripotent aza-ylides. These aza-ylides were then coupled with
suitable appendages to facilitate the subsequent pairing reactions.
Similarly, in 2016, they reported the synthesis of 45 diverse
macrocyclic compounds of various sizes, ranging from 15- to
33-membered rings (Nie et al., 2016). In this case, the imine
moieties branching out from the aza-ylides served as second-
line building blocks for diversification of the macrocycle library.
The introduction and subsequent modification of the fluorous
tag and other reactive sites in these macrocycles could therefore
improve the efficiency as well as skeletal diversity of the library
synthesis.

Moreover, Marcaurelle et al. utilized an aldol-based
B/C/P strategy to construct a library containing in excess
of 30,000 compounds, which were based on a variety

of skeletons ranging from 8- to 14-membered rings, of
which 14,400 compounds were macrolactams aimed at the
discovery of novel histone deacetylase inhibitors (Figure 1Cii;
Marcaurelle et al., 2010). Notably, this study presented an
excellent example of the DOS strategy to demonstrate its
power and efficiency for the highly systematic construction
of small-molecule libraries with maximized architectural
complexity.

The B/C/P Strategy in the pDOS Pathway
A clear definition of privileged structures was made in a seminal
article on drug discovery methods reported by Evans et al.
(1988). More specifically, they stated that “privileged structures
are capable of providing useful ligands for more than one
receptor and that judicious modification of such structures could
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be a viable alternative in the search for new receptor agonists
and antagonists.” Based on the concept of modification around
privileged structures, a number of groups have reported various
bio-relevant compounds, with many successfully delivering
clinical candidates as well as FDA-approved drugs (Mason
et al., 1999; Nicolaou et al., 2000a,b,c; Brohm et al., 2002;
Kissau et al., 2003; Newman, 2008). For example, Nicolaou
et al. published a series of articles on the combinatorial library
syntheses of natural product-like compounds in which the
benzopyran skeleton was employed as a privileged structure
(Nicolaou et al., 2000a,b,c). In this context, the construction of a
DOS library derived from privileged structures can be considered
crucial to accessing highly biologically relevant molecular
diversity (Kim et al., 2014).

We envisioned that incorporating these privileged structures
into polyheterocycles enhances the biological relevancy of the
resulting compounds with pre-defined conformations, which
may be beneficial for specific binding with biopolymers due to
the prepaid entropic penalty (Oh and Park, 2011; Kim et al.,
2014; Lenci et al., 2016). Hence, within the theme of DOS, our
group introduced a novel design strategy, namely “privileged
substructure-based diversity-oriented synthesis” (pDOS), which
aims to populate the chemical space with privileged substructure-
embedded polyheterocycles (An et al., 2008; Oh and Park, 2011;
Zhu et al., 2012; Kim et al., 2013, 2014). In particular, the
systematic construction of diverse sp3-rich 3D polyheterocycles
containing privileged substructures has been emphasized since
their rigid and diverse frameworks can selectively bind
with biopolymers to induce conformational changes and
subsequent functional modulation. Thus, a small-molecule
library constructed by the pDOS strategy could be considered
an excellent resource for the discovery of specific modulators of
protein–protein and protein–DNA/RNA interactions.

In addition, we recently reported a pDOS library in
which pyrimidodiazepines were employed as the privileged
substructure (Kim et al., 2016). We found that the 6/7-
bicyclic pyrimidodiazepine system demonstrated a significantly
higher conformational flexibility with more reactive sites
compared to those of pyrimidine-embedded 6/6 or 6/5
systems. In this case, the build and couple phases produced
key pyrimidodiazepine-based intermediates containing five
orthogonal reactive sites. In the pair phase, each reactive
site was paired to produce 16 different polyheterocycles
containing the pyrimidodiazepine substructure and with a
high degree of 3D skeletal complexity in nine distinct
scaffolds. As shown in Figure 1D, A–B pairing and B–
C pairing led to the synthesis of tetracyclic and tricyclic
compounds, respectively (scaffolds I–III). Due to the dual (i.e.,
electrophilic and nucleophilic) nature of the imine moiety,
the C pairing allowed the synthesis of scaffolds IV and
V. Using the C–D and D–E pairing combinations, scaffolds
VI–IX were also constructed. Based on our HTS screening
endeavors against this pDOS library, we identified aziridine-
containing pyrimidodiazepines from scaffold VIII (constructed
through C–D pairing) as a novel small-molecule inhibitor
of the leucine tRNA synthetase (LRS)–RagD protein–protein
interaction.

THE RING-DISTORTION STRATEGY

Synthesis of Natural Product-Like
Compounds via the Ring-Distortion
Strategy
For the construction of natural product-like compound
collections, Hergenrother et al. developed a novel approach
starting from natural products, known as the complexity-to-
diversity (CtD) strategy (Huigens et al., 2013; Rafferty et al.,
2014; Garcia et al., 2016). In this approach, the molecular
frameworks of readily available natural products were converted
into structurally complex and diverse core skeletons through
various chemoselective ring-distortion reactions (Figure 2B).
As natural products exhibit an inherent structural complexity
with defined stereochemistry (Clardy and Walsh, 2004), the
resulting core skeletons derived from natural products tend
to be structurally and stereochemically more complex and
distinct compared to existing compound collections. In their
initial report on the CtD strategy, gibberellic acid, quinine,
and adrenosterone were employed as synthetic starting points,
and were transformed into 19, 12, and 18 different scaffolds,
respectively, through various ring-distortion reactions (3
reaction steps on average; Huigens et al., 2013). The subsequent
application of traditional diversification strategies to final
scaffolds therefore allowed the construction of a 119-membered
highly complex compound library. They also applied the CtD
strategy to other readily available natural products such as
abietic acid and sinomenine, which afforded 84 and 65 complex
compounds, respectively (Rafferty et al., 2014; Garcia et al.,
2016). Chemoinformatic analysis of the resulting compound
collections obtained using the CtD strategy demonstrated a
higher skeletal complexity compared to conventional compound
collections in terms of higher fractions of sp3-hybridized carbon
atoms (Fsp3), lower clogP values, and greater numbers of
stereocenters.

Synthesis of Macrocycles via the
Ring-Distortion Strategy
For the systematic construction of diverse macrocycles,
several DOS approaches utilizing ring-distortion reactions
(and in particular, ring-expansion reactions) have been
pursued (Kopp et al., 2012; Kitsiou et al., 2015; Stephens
et al., 2017, 2018). For example, Tan et al. reported
an efficient oxidative ring-expansion strategy for the
construction of diverse macrocyclic small molecule
collections (Figure 2Ci; Kopp et al., 2012). Interestingly,
easily accessible polycyclic enol ethers or enamines containing
bridging double bonds were found to smoothly undergo
oxidative cleavage to generate various macrolactones and
macrolactams, regardless of substrate effects, such as
ring size, substituents, and stereochemistry. Subsequent
transformations using functional handles in the macrocyclic
scaffolds afforded additional structural diversity. In
addition, the chemoinformatic analysis of 32 unprecedented
macrocyclic compounds using principal component analysis
(PCA) and principal moments of inertia (PMI) analysis
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illustrated the possibilities of the resulting macrocycles
to modulate novel biological targets through occupying
unique chemical space distinct from the current synthetic
drugs.

Moreover, the successive ring-expansion (SuRE) strategy
described by Unsworth et al. led to the generation of
structurally diverse macrocyclic lactams and lactones in a
sequential manner (Kitsiou et al., 2015; Stephens et al., 2017,
2018). As shown in Figure 2Cii, the amide functionality
present in the cyclic starter unit enabled coupling with the
linear fragment via an acylation reaction, and subsequent
deprotection and ring-opening along with chain incorporation
yielded the ring-expanded product. The key strength of the
SuRE method is that the same coupling and ring-expansion
sequence can be repeated as the reactive amide functionality
is regenerated in the product. Using this simple SuRE
strategy, a functionalized macrocycle library was successfully
constructed.

Synthesis of Biologically Relevant
Benzannulated Compounds via the
Ring-Distortion Strategy
Benzannulated medium/macro- or bridged rings are common
structural moieties in a number of bioactive natural products
and pharmacologically significant synthetic compounds
such as penicillide, zeranol, and rifampin (Salituro et al.,
1993; Fürstner et al., 1999; Yu and Sun, 2013; Hussain
et al., 2014). In this context, Tan et al. developed an
efficient biomimetic ring-expansion approach to construct
diverse benzannulated medium-sized rings via an oxidative
dearomatization and ring-expanding rearomatization sequence
(Figure 2Di; Bauer et al., 2013). This strategy involves the
oxidative dearomatization of bicyclic phenol precursors to
provide polycyclic cyclohexadienones and a subsequent ring-
expansion driven by rearomatization of the phenol ring to
afford benzannulated medium-sized rings. The structural and
physicochemical similarities between the resulting 47 scaffolds
and benzannulated medium ring-based natural products were
confirmed by PCA analysis.

Furthermore, Liu et al. reported a radical-based diversity-
oriented synthetic approach for the fabrication of 37 discrete
benzannulated medium/macro- or bridged-rings in a
stereoselective manner (Figure 2Dii; Li et al., 2016). In this
strategy, the radical 1,4- or 1,5-aryl migration of unactivated
alkenes and subsequent intramolecular ring-expansion provided
benzannulated medium or large rings. Additional ring-distortion
reactions of the resulting core skeletons afforded novel
medium-sized and medium-bridged rings with high regio-
and stereoselectivities. PCA analysis and preliminary biological

studies confirmed the significant biological relevance of this
compound collection.

CONCLUSION

In this mini review, we briefly emphasized the important
roles of diversity-oriented synthesis (DOS) in the field of
drug discovery and chemical biology, and introduced the most
common DOS strategies for the construction of novel small
molecule libraries with maximized molecular diversity. We also
discussed two key diversity-oriented synthetic approaches (i.e.,
the build/couple/pair (B/C/P) strategy and the ring-distortion
strategy) and visualized how each strategy allows design of
the resulting scaffolds with high biological relevancy via the
incorporation of key structural elements such as bioactive
natural products, macrocycles, and privileged structures. We
concluded that both the B/C/P strategy and the ring-distortion
strategy are powerful approaches for the creation of a number
of diverse and complex scaffolds in an efficient manner. The
combination of DOS-based molecular diversity and unbiased
phenotypic screening may shed light on the unraveled signaling
pathways and other intricate biological processes by allowing the
sustainable supply of new drug candidates and chemical probes.
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