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Background: Despite an increasing surge of exosome use throughout the aesthetic 
arena, a paucity of published exosome-based literature exists. Exosomes are mem-
brane-bound extracellular vesicles derived from various cell types, exerting effects 
via intercellular communication and regulation of several signaling pathways. The 
purpose of this review was to summarize published articles elucidating mechanisms 
and potential applications, report available products and clinical techniques, and 
prompt further investigation of this emerging treatment within the plastic surgery 
community.
Methods: A literature review was performed using PubMed with keywords exo-
somes, secretomes, extracellular vesicles, plastic surgery, skin rejuvenation, scar 
revision, hair growth, body contouring, and breast augmentation. Publications 
from 2010 to 2021 were analyzed for relevance and level of evidence. A Google 
search identified exosome distributors, where manufacturing/procurement 
details, price, efficacy, and clinical indications for use were obtained by direct con-
tact and summarized in table format.
Results: Exosomes are currently derived from bone marrow, placental, adipose, and 
umbilical cord tissue. Laboratory-based exosome studies demonstrate enhanced 
outcomes in skin rejuvenation, scar revision, hair restoration, and fat graft survival 
on the macro and micro levels. Clinical studies are limited to anecdotal results. 
Prices vary considerably from $60 to nearly $5000 based on company, source tissue, 
and exosome concentration. No exosome-based products are currently Food and 
Drug Administration–approved.
Conclusions: Administered alone or as an adjunct, current reports show prom-
ise in several areas of aesthetic plastic surgery. However, ongoing investiga-
tion is warranted to further delineate concentration, application, safety profile, 
and overall outcome efficacy. (Plast Reconstr Surg Glob Open 2023; 11:e5051;  
doi: 10.1097/GOX.0000000000005051; Published online 12 June 2023.)
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INTRODUCTION
The continued desire for aging intervention has 

driven the demand and rapid popularity of nonsurgical 

aesthetic modalities. Over the last decade, exosomes 
have received particular interest as a topical and inject-
able solution due to their described regenerative prop-
erties and potential influence on wound healing, scar 
modification, and hair growth.1 Although dermatology 
and antiaging medicine have been early adopters of this 
developing technology, incorporation into the field of 
plastic surgery is increasing, yet published studies remain 
limited.

Exosomes were first reported by Johnstone et al2 in 
1983 while studying the maturation process of reticu-
locytes. These nanosized biovesicles, approximately 
40-160 nm in size, were observed to be released from cel-
lular endosomes and carried an array of proteins, nucleic 
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acids, and lipids. Therefore, they were originally known as 
“cellular garbage disposals.”1 However, in the mid-1990s, 
exosomes were found to play a vital role in intercellular 
communication and immunological function.3 Exosomes 
are now considered an important subcategory of extracel-
lular vesicles (ECVs) that contain a core of micro-RNA 
(miRNA), messenger-RNA (mRNA), transcription factors, 
membrane-trafficking proteins, antigen-presenting pro-
teins, and other peptides protected within a bilayer lipid 
membrane.1 They express characteristics of the cell from 
which they are released, functioning as paracrine mol-
ecules that interact with the extracellular matrix (ECM) 
and adjacent cells. To date, exosomes have displayed a 
plethora of prospective clinical applications, including 
stem cell maintenance and plasticity, biomarkers, adjuncts 
in chemotherapy and drug delivery, and wound healing 
supplements that promote angiogenesis.1,3,4 However, 
despite their multifunctional potential, their exact mecha-
nism of action has yet to be fully elucidated.

Given their broad regenerative potential, cell-free char-
acteristics, and increasing use within the cosmetic arena, 
we sought to introduce a narrative review on exosome ther-
apy within the plastic surgery community. Our aim was to 
(1) summarize the recent literature on exosome use in aes-
thetics, (2) describe the mechanisms and potential clinical 
applications, (3) report available products on the current 
market and techniques for procurement and preparation, 
and (4) initiate further discussion and investigation on this 
emerging topic within plastic surgery.

METHODS
A literature search was conducted through PubMed 

using the following key terms and their various combinations 
(and/or): exosomes, secretomes, ECVs, aesthetic medicine, 
cosmetic medicine, dermatology, plastic surgery, skin rejuve-
nation, skin tightening, scar revision, hair growth, body con-
touring, and breast augmentation, identifying a total of 62 
exosome-relevant articles included in this article. Abstracts 
from 2010 to 2021 were analyzed for level of evidence5 and 
relevance to our investigation, including the following sub-
categories: nonsurgical skin rejuvenation, scar revision/
optimization, hair restoration, and breast/body contouring, 
reported in table format. A Google search was conducted to 
identify current market exosome distributors and each con-
tacted by phone/email for information regarding manufac-
turing/procurement, price, efficacy, clinical indications for 
use, and Food and Drug Administration (FDA) approval and 
summarized in table format.

HOW EXOSOMES WORK
The molecular biology behind exosome signaling is 

daunting and not yet fully understood in the literature. 
Although one of the most studied exosome derivatives 
stems from adipose tissue, it is important to note that 
each derivative tissue or cell may exert specific down-
stream effects via its own unique mechanism. A com-
monly reported exosome target exerts manipulation of 
the TGF-β (transforming growth factor beta) superfamily, 

Takeaways
Question: What is the current evidence for exosomes 
in aesthetic plastic surgery, and how are these products 
incorporated in the clinical setting?

Findings: Literature review over 10 years showed prom-
ise in animal and cell models and in early clinical trials 
for skin rejuvenation, scar revision, hair restoration, and 
fat graft survival. Six manufacturers were identified, each 
supplying exosomes from different source cells. All prod-
ucts are advertised for topical skin rejuvenation and hair 
restoration. However, no products are FDA-approved.

Meaning: Exosomes show promise in several areas of non-
surgical rejuvenation; however, further studies are war-
ranted to determine whether this modality is superior to 
PRP and fat grafting.

Fig. 1. TGF-β pathway in exosome signaling. Adipose-derived 
exosomes are shown to work via both ERK/MAPK and TGF-β/
SMAD pathways. TGF-β induces phosphorylation of intracellu-
lar SMAD complexes, which translocate to the nucleus. These 
SMAD complexes regulate gene transcription/expression. TGF-β 
also promotes the MAPK/EPK/JNK pathway, which can selec-
tively augment collagen degradation and ECM remodeling 
downstream. Both pathways promote cell proliferation, differen-
tiation, or apoptosis involved in scar formation. SMAD indicates 
decapentaplegic; MAPKs, mitogen-activated protein kinases; 
ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal 
kinase.



 Ku et al • Exosomes in Aesthetic Plastic Surgery

3

which is essential for cell differentiation, proliferation, 
and apoptosis (Fig. 1).6–12 TGF-β induces phosphorylation 
of intracellular SMAD complexes, which translocate to 
the nucleus and regulate gene transcription/expression. 
TGF-β can also activate other signaling mechanisms, such 
as mitogen-activated protein kinase, extracellular signal-
regulated kinase, and c-Jun N-terminal kinase, and selec-
tively modulate the cutaneous microenvironment through 
a single pathway. The resultant downstream effects pre-
dominantly target collagen degradation and ECM remod-
eling through upregulation or downregulation of matrix 
metalloproteinases (MMPs). Alternatively, dermal papilla-
derived exosomes and keratinocyte-derived exosomes 
reportedly use the Wnt/β-catenin pathway (Fig. 2) poten-
tially inhibited by adipose-derived exosomes.13–15 Known 
specific functions of each exosome type are discussed fur-
ther throughout this review.

APPLICATIONS IN AESTHETIC SURGERY

Nonsurgical Skin Rejuvenation
Cutaneous aging is a complex mechanism involving 

both intrinsic and extrinsic processes that manifest clini-
cally as loss of epidermal and dermal thickness, deepening 

rhytids, pore enlargement, dyspigmentation, and dimin-
ished soft tissue elasticity.16 Skin aging is multifactorial, but 
a key component is senescence of vitally important cells, 
such as keratinocytes, fibroblasts, and melanocytes; a pro-
cess now believed to be mediated impart by miRNA dysreg-
ulation.17 Consequently, structural and functional changes 
within the ECM occur, such as decreased organization 
and production of collagen, elastin, and proteoglycans–
all necessary for youthful tensile strength, elasticity, and 
hydration of skin. Many models have been proposed as 
exacerbating aging, including oxidative stress, DNA dam-
age, telomere shortening, miRNA regulation, advanced 
glycation end-product accumulation, genetic mutation, 
and inflammaging. Exosomes are thought to primarily act 
on oxidative stress and inflammaging pathways, impacting 
both ECM and collagen.17

Exosome therapy raises interest by fibroblast prolif-
eration and migration stimulation. In vitro and in vivo 
studies of UV-B photoaged models have shown that 
exosome treatment protects cells from UV-B damage 
by decreasing inflammatory markers, such as tumor 
necrosis factor alpha (TNF-α), while upregulating 
TGF-β and tissue inhibitor of MMP (TIMP) (Fig. 3).6,18 
These mechanisms led to a reversal of fibroblast senes-
cence with upregulation of collagen I, elastin, and 
fibronectin production and decreased expression of 
collagen III.19

Recent studies evaluating topical exosomes in con-
junction with nonsurgical facial treatments have displayed 
synergistic effects.20–22 Chernoff20 found that combining 
topical exosomes with facial microneedling produced 
greater skin quality, tone, texture, vascularity, clarity, and 
overall higher satisfaction among patients compared with 
microneedling alone. Duncan 21 added topical exosomes 
after facial rejuvenation procedures such as laser resur-
facing, resulting in faster recovery and fewer side effects 
compared with laser resurfacing alone. A clinical trial 
conducted by Cho et al22 for hyperpigmentation treat-
ment using adipose-derived stem cell exosomes showed a 
significant decrease in melanin content in the treatment 
group, though the decreased-melanin activity was short-
lived. (See table, Supplemental Digital Content 1, which 
summarizes studies elucidating the proposed mechanisms 
of action for exosomes in skin rejuvenation and pigment 
regulation as well as potential applications http://links.
lww.com/PRSGO/C604).

Scar Revision
Poor, nonaesthetic scarring can present as atrophic, 

widened, hypertrophic, or keloid.23 Although multiple 
surgical and nonsurgical modalities exist, outcomes are 
highly variable and can be associated with a high rate of 
recurrence.24,25 Studies have investigated exosomes' effec-
tiveness in reducing scar formation and promoting cuta-
neous regeneration through various mechanisms. (See 
table, Supplemental Digital Content 2, which summarizes 
the mechanism of exosomes in scar revision, http://
links.lww.com/PRSGO/C605.) Exosomes impact several 
cells and signaling molecules involved in the four tradi-
tional phases of wound healing, thereby modulating the 

Fig. 2. Wnt/β-catenin pathway in exosome signaling. Dermal 
papilla-derived exosomes and keratinocyte-derived exosomes 
stimulate Wnt to upregulate β-catenin. β-catenin then binds 
TCF/LEF transcription factors in the nucleus, which promotes 
hair growth. TCF/LEF indicates T-cell factor/lymphoid enhancer 
factor; Wnt, wingless-related integration site.

http://links.lww.com/PRSGO/C604
http://links.lww.com/PRSGO/C604
http://links.lww.com/PRSGO/C605
http://links.lww.com/PRSGO/C605
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progression, length, and characteristics of the healing 
process (Fig. 4).9,11,12,26–32

Molecular processes involved in aesthetic scar out-
comes include decreased cross-linking, minimal myofibro-
blasts, higher ratios of collagen III to collagen I, TGF-β3 
to TGF-β1, and MMP to TIMP, which were all found to be 
targets of exosomes therapy.11,33 Exosomes derived from 
various source cell types, including epidermal stem cells, 
induced pluripotent stem cells, and mesenchymal stem 
cells (adipose tissue, bone marrow, and umbilical cord), 
mitigate collagen production, distribution, and the ratio 
of type III to type I collagen.9,26,27,30,31 By increasing the 
ratio of collagen III to collagen I, adipose-derived exo-
somes suppress properties associated with poor scarring 
such as excessive collagen deposition and aberrant cross-
linking.29,30 Exosomes are also reported to inhibit myofi-
broblasts differentiation, keloid fibroblasts/hypertrophic 
scar fibroblasts proliferation, and migration.7,8,34

Current proposed mechanisms include block-
ing various components of the TGF-β/SMAD pathway 
(Fig.  1), resulting in overall decreased collagen produc-
tion.9,11,26 Other proposed exosome-induced features 
include enhanced angiogenesis, reepithelialization, skin 

appendage regeneration, matrix deposition, cellular pro-
liferation, and migration lending to improved scar out-
comes.4,26,27,29,31,35 Exosomes have also been investigated for 
use in combination with scaffolding agents, such as FHE 
hydrogel (Pluronic F127 + oxidative hyaluronic acid + 
poly-ε-L-lysine), FEP dressing (Pluronic F127+ PEI + APu), 
and hyaluronic acid, with published results demonstrat-
ing a synergistic effect.4,35,36 Kwon et al10 published a clini-
cal trial in 2020 assessing exosomes’ potential effects in 
preventing scar formation and showed a combination of 
adipose-derived exosomes with fractional carbon dioxide 
laser for facial acne scars yielded less erythema at treat-
ment sites, shorter posttreatment downtime, fewer side 
effects, and overall better outcome compared with frac-
tional carbon dioxide laser treatment alone. (See table, 
Supplemental Digital Content 2, which summarizes the 
proposed mechanisms of action for exosomes in scar revi-
sion and their potential applications, http://links.lww.
com/PRSGO/C605.)

Hair Restoration
The etiology of hair loss is multifactorial. Normal hair 

growth occurs at the level of the hair follicle as a continuous 

Fig. 3. The effect of exosomes on the extracellular matrix. Exosomes (derived from ASC and iPSC) 
upregulate TGF-β and downregulate TNF-α. TGF-β promotes SMAD pathway, leading to increased 
TIMP3. On the contrary, TNF-α blocks TIMP3. MMP is involved in ECM remodeling via breaking 
down collagen I and stimulating collagen III production. MMP is inhibited as a result of exosome 
treatment, leading to overall increased collagen I and elastin and decreased collagen III. ASC indi-
cates adipose-derived stem cell-derived exosomes; iPSC, human induced pluripotent stem cell-
derived exosomes; SMAD, decapentaplegic.

http://links.lww.com/PRSGO/C605
http://links.lww.com/PRSGO/C605
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three-phase cycle: anagen (active growth), catagen (tran-
sition and involution), and telogen (resting).37 Dermal 
papilla cells (DPCs), a key regulator of hair follicle devel-
opment, are known to release several growth factors and 
communicate with epithelial cells, germ cells, and stem 
cells within the hair follicles.38 Hair follicle stem cells are 
responsible for normal hair growth and rapidly proliferate 
during a new hair cycle.39 Several mechanisms have been 

proposed regarding the exosome’s ability to replenish 
signals for hair growth. (See table, Supplemental Digital 
Content 3, which summarizes the mechanism of exosomes 
in hair restoration, http://links.lww.com/PRSGO/C606.) 
Exosomes were found to significantly induce and prolong 
the anagen phase, resulting in hair growth.13,14,40 Dermal 
papilla-derived exosomes upregulate Wnt/β-catenin sig-
naling, a key cellular pathway involved in the regulation 

Fig. 4. Simplified wound healing process and its main effectors. *Other key components have been 
removed for simplification. Refer to table, Supplementary Digital Content 2 for more details regard-
ing different types of exosomes and their respective effects, http://links.lww.com/PRSGO/C605. A, 
Hemostasis begins immediately following a disruption of epithelial integrity. This phase is characterized 
by the restriction of blood flow and the formation of blood clots to the injury site to control bleeding. 
The clot and surrounding tissue release several cytokines and growth factors that recruit inflammatory 
cells (chemotaxis) to the injury site and progress to the next phase. B, Inflammatory phase is charac-
terized by localized tissue swelling via influx of inflammatory cells (neutrophils and macrophages) and 
transudate. Inflammatory cells are recruited to the area to degrade cellular debris and prevent infec-
tion. Macrophages play an essential role in this phase as they promote the transition to the proliferative 
healing phase by stimulating keratinocytes, fibroblasts, and angiogenesis. Exosomes are thought to be 
able to tone down the inflammatory response and prevent secondary injury in this phase. C, Proliferative 
phase is characterized by reepithelialization. Fibroblasts lay down a scaffold of collagen III and ECM in 
the wound bed and strengthen new granulation tissue. Keratinocytes migrate across the wound surface 
to close the defect. Exosomes increase proliferation and migration of fibroblasts, collagen III deposition, 
and angiogenesis. D, Remodeling phase is the final phase of wound healing and can last for years. This 
stage is characterized by ECM and tissue remodeling. Collagen I begins to replace collagen III and cross-
linking matures, leading to flattening of scars. Myofibroblasts contract and approximate wound edges. 
Exosomes reduce excessive cross-linking and increased ratios of collagen III: collagen I, MMPs:TIMPs, and 
TGF-β3:TGF-β1. Exosomes also inhibit myofibroblast differentiation via several miRNAs’ actions. ASC-exos 
indicates adipose-derived exosomes; MSC-exos, mesenchymal stem cell-derived exosomes; EPSC-exos, 
epidermal stem cell-derived exosomes; PDGF, platelet-derived growth factor; VEGF, vascular endothe-
lial growth factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; KGF, keratinocyte growth 
factor.

http://links.lww.com/PRSGO/C606
http://links.lww.com/PRSGO/C605
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of hair regeneration and morphogenesis (Fig.  2).14,41,42 
Additionally, dermal papilla-derived exosomes increased 
sonic hedgehog expression, an important player in hair 
follicle proliferation, as well as increased outer root sheath 
cell proliferation and migration.43 Interestingly, dermal 
papilla-derived exosomes displayed a superior effect 
when in spheroid form.13,40 Spheroid form of dermal 
papilla-derived exosomes demonstrated better capability 
to induce progression from telogen to anagen compared 
with the two-dimensional DPCs or minoxidil treatment.13 
This specific form of exosomes also led to stimulated 
growth and viability of DPCs and outer root stem cells and 
facilitated elongation of hair shafts.40

Dermal papilla-derived exosomes present multiple 
benefits to overall hair growth. In addition to hair folli-
cle stem cells proliferation and differentiation by way of 
miRNA involvement,44 longer hair shafts and hair bulges 
were also noted.14,40 Other source cells that have been 
studied for use in hair growth include mesenchymal stem 
cells and keratinocytes.45–47 A study conducted by Yang 
et al46 using microneedling, exosomes, and UK5099 (a 
potent inhibitor of the mitochondrial pyruvate carrier) 
showed increased efficiency at a lower dosage compared 
with subcutaneous exosome injection-alone. The effects 
of exosomes in hair restoration are depicted in Figures 5 
and 6. (See table, Supplementary Digital Content 3, 
which summarizes the proposed mechanisms of action for 

exosomes in hair restoration and their potential applica-
tions, http://links.lww.com/PRSGO/C606.)

Current FDA-approved on-market hair restoration 
medications (ie, Minoxidil and Finasteride) can yield vari-
able results.48,49 Minoxidil primarily exerts therapeutic 
function through vasodilatory and proangiogenic effects—
unlikely to stimulate hair growth if DPC dormancy per-
sists.13 In contrast, exosomes have demonstrated an ability 
to stimulate the growth and viability of DPCs, which may 
be more effective in hair loss restoration than minoxidil.40 
In a clinical trial conducted by Huh and Kwon,47 exosome 
treatment for 12 weeks resulted in increased hair density 
and thickness, with no side effects reported. Although 
early published data appear promising, further clinical 
investigation is warranted in this field.

Weight Loss and Body and Breast Contouring
Obesity has been shown to affect the overall miRNA 

profile of an individual.50 Adipose-derived exosomes are 
involved in adipocyte differentiation and lipid produc-
tion through the effects of miR-450a-50, and the activa-
tion of the hedgehog signaling pathway.15,51 Although 
these identified miRNAs have the potential to serve as 
targeted pathways for augmenting weight loss through 
exosome therapy, it is important to note that this idea is 
theoretical, and there is currently no additional literature 
or published data on this specific topic. Therefore, further 

Fig. 5. The effects of exosomes on hair follicles. Exosomes promote proliferation and differentiation of hair follicle stem 
cells, outer root sheath cells, and dermal papilla cells. DPC-exos indicates dermal papilla-derived exosomes; HaCaT-exos, 
keratinocyte-derived exosomes; MSC-exos, mesenchymal stem cell-derived exosomes.

http://links.lww.com/PRSGO/C606
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research is needed to determine the feasibility of this theo-
retical possibility.

Autologous fat grafting (AFG) is a commonly utilized 
technique throughout the body with many applications, 
notably in postradiated breast reconstruction, cos-
metic buttock augmentation, and breast augmentation. 
Although AFG-only breast augmentation avoids conven-
tional prosthetic implant-related complications, a main 
challenge of AFG is the variable survival rate and incon-
sistency of grafted fat.52,53 To overcome this challenge, 
cell-assisted lipotransfer (CAL), the combination of adi-
pose-derived stem cell-rich stromal vascular fraction with 
lipoaspirate, was developed to enhance adipogenesis and 
angiogenesis of the autologous fat.54 Several published 
studies have demonstrated the favorable results of CAL 
in increasing graft survival and enhancing engrafted fat 
volume retention given the regenerative and angiogen-
esis properties of adipose stem cells.54–56 As the functional 
molecule secreted by adipose stem cells, adipose-derived 
exosomes were shown to exhibit comparable effects in 
improving fat graft retention compared to adipose stem 
cells.57 Not only did adipose-derived exosomes promote 
survival, attenuate inflammation, and enhance neovas-
cularization in fat grafts, Han et al. found that hypoxic 
preconditioning could further enhance those effects of 
adipose-derived exosomes.58 Additionally, in the setting 
of prior breast cancer, the rate of oncological recurrence 
was not increased in postmastectomy patients following 

AFG, indicating the potential use of exosomes for both 
cosmetic and reconstructive purposes. Although current 
available data suggest that adipose-derived exosomes 
could be a promising candidate to promote graft survival 
in lipotransfer, the optimal concentrations, source cells, 
treatment duration, and possible complications of exo-
some therapy are yet delineated.59

PROCUREMENT AND PREPARATION
Although various basic science and clinical studies 

have outlined the potential benefits of exosomes, the FDA 
has yet to approve exosome utilization as a topical, inject-
able, or intravenous treatment. Given this controversy, 
several exosome manufacturers have elected to advertise 
their products using umbrella terms such as “secretome” 
or “ECV.” Likewise, clinicians have been apprehensive to 
openly advertise this treatment modality. Despite this, an 
online search performed by our collaborative team found 
six companies that produce and supply exosome products 
for clinical use (Table 1).

Some of the most notable differences among manu-
facturers are the source cells, methods of isolation/pro-
curement, reconstitution requirement, and shelf life. 
Kimera (Miramar, Fla.), Regan Suppliers (Scottsdale, 
Ariz.), and Exocel Bio (San Diego, Calif.) provide aque-
ous exosome solutions that require frozen storage with a 
shelf life between 6 months to a year. Once thawed, the 
products can either be applied directly over the skin or 

Fig. 6. The effects of exosomes on hair growth cycle. Hair follicle growth consists of a continuous three-phase cycle: anagen, catagen, and 
telogen. Exosomes stimulate the conversion from telogen to anagen and delay the progression to catagen, resulting in prolonged ana-
gen. Exosomes also increase levels of β-catenin, leading to augmented hair growth. DPC-exos indicates dermal papilla-derived exosomes; 
HaCaT-exos, keratinocyte-derived exosomes; MSC-exos, mesenchymal stem cell-derived exosomes.
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Table 1. Exosome Products and Manufacturers

Name (City, 
State, Coun-
try) 

Source Cells/
Derivative 

Constituents (Exo-
some Concentra-
tion in Billions) 

per Unit 
Storage 

°C Delivery 

Thawing/
Reconstitu-
tion Process 

Shelf Life 
before/

after 
Reconsti-
tution or 
Thawing 

Advertised Utili-
zation 

Approximate 
Surface Area 

for Treat-
ment 

Cost per 
Treat-
ment 

of Face 
(USD) 

Benev 
(Mission 
Viejo, 
CA, USA)

Adult adi-
pose stem 
cell

20 mL lyophilized 
exosome (2.5 
or 5 billion) 
+5 mL diluent 
(hyaluronic 
acid, growth fac-
tors, coenzymes, 
vitamins)

Room 
tem-
pera-
ture

Shipped 
frozen 
with ice 
pack

Reconstitute 
with the 
provided 
diluent or 
saline

2 wk/20 
min

Topical for facial 
rejuvenation 
and hair resto-
ration

1–2 mL per 
face

$68–116

Direct 
Biologics 
(Austin, 
TX, USA)

Adult bone 
marrow 
stem cell

1 mL exosome + 
9 mL saline

−40 to 
−80, 
not in 
liquid 
nitro-
gen

N/A No addi-
tional 
process 
required

5 y/- Topical for facial 
rejuvenation

1-2 mL per 
face

N/A

Exocel Bio 
(San 
Diego, 
CA, USA)

Placental 
chorion 
stem cell

Exosome (5, 12, 
25, 100, or 400 
billion) mixed 
with 2–5 mL 
saline

-80 Shipped 
on dry 
ice

Use as it is 
after thaw-
ing or can 
reconsti-
tute 1:1 
with saline

6 mo–1 
y/1 h

Topical for facial 
rejuvenation 
and hair resto-
ration

1–2 mL per 
face

$150–
4950

Kimera 
(Mira-
mar, FL, 
USA)

Placental 
chorionic 
and amni-
otic stem 
cell

Exosome (1 or 5 
billion) mixed 
with 1–5 mL 
saline

−20, not 
in 
liquid 
nitro-
gen

Shipped 
on dry 
ice

No addi-
tional 
process 
required

1 y/48 h Topical for facial 
rejuvenation, 
hair restora-
tion (or scalp 
injection),  
and scar  
revision

1 mL per 
face, and 
5 mL for 
face, neck, 
and décol-
leté

$200–
550

Regan 
Suppliers 
(Scotts-
dale, AZ, 
USA)

Wharton’s 
Jelly stem 
cell

Exosome mixed 
with saline (1.5 
billion)

−80 Shipped 
on dry 
ice

After thaw-
ing, recon-
stitute 1:3 
exosome 
to saline

1 y/1 h Topical and 
injection for 
facial rejuvena-
tion and hair 
restoration

1 mL per 
area of 
injection, 
2 mL for 
hair, and 
5 mL IV

$775–
1075

Elevai 
(Newport 
Beach, 
CA, USA)

Wharton’s 
Jelly stem 
cell

Exosome serum 
5 mL

Room 
tem-
pera-
ture

N/A No addi-
tional 
process 
required

1 y/- Topical for facial 
rejuvenation 
and depigmen-
tation

1 mL per face $75–149

Disclose–no 
financial 
interest

 

HA, hyaluronic acid.

mixed with saline. The unused thawed solution can be 
stored in a refrigerator for up to 48 hours. In contrast, 
Benev (Mission Viejo, Calif.) provides a freeze-dry “lyophi-
lized” form, which requires reconstitution before use. 
The freeze-dry form can be stored at room temperature 
for up to 2 weeks before reconstitution; however, the 
reconstituted material must be used within 20 minutes 
of activation. In terms of source cells, companies listed in 
Table 1 derive their products from four different parental 
cell lines. Refer to Table 1 for more detailed information 
regarding source cells, exosome processing, and indicated 
utilization from the manufacturers. Concerning origin 
cell-line derivatives, potential differences in effectiveness 
and/or outcome based on source cells have not yet been 
delineated.

Future Directions
Although both interesting and promising results 

of exosomes are reported herein, additional studies 
are warranted to further investigate this topic. As with 
any biological therapy, one of the main challenges exo-
some products encounter is the stability of active ingre-
dients.16 Therefore, additional basic science research is 
necessary to optimize the purification and procurement 
processes and mitigate the existing heterogeneity across 
current literature due to variable exosome source cells 
and purification methods. Additionally, direct compara-
tive studies between exosomes and other modalities that 
may provide similar effects, such as stem cells and plate-
let-rich-plasma (PRP), are needed. Although the current 
limited evidence suggests that the cell-free characteristics 
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of exosomes may minimize the risk of unpredictable pat-
terns that can be associated with stem cell–based thera-
pies, definitive evidence is currently lacking.60–62 PRP is a 
concentrated, autologous-derived product currently used 
as an adjunct for regenerative potential, and although 
reported PRP-based outcomes are via growth factors, 
the exosome itself stimulates the production of natural 
growth factors via mRNA activation.8,9,12,16,27,34,60 Due to lab-
oratory-based production of exosomes, supply is nearly 
indefinite without human donor-related resource limita-
tion and may contain a higher concentration of active 
ingredients such as growth factors, mRNAs, and cytokines 
when compared with PRP. The potential synergistic ben-
efits of exosomes and PRP have yet to be fully delineated. 
Notably, the FDA currently recommends against more 
than minimally manipulated stem cell-based products, 
and thus, the combination of PRP and exosomes could 
be deemed unauthorized if it results in the alteration of 
the original biological characteristics.63 Additional inves-
tigation on this specific topic is required as a definitive 
statement on PRP and exosomes cannot yet be concluded 
based on the available evidence at this time. Finally, large 
randomized controlled trials are warranted for a better 
understanding of the potential impact and benefit of exo-
somes, overall effectiveness, associated outcomes, long-
term efficacy, and safety profile.

Limitations
There are several pertinent limitations to this review 

that warrant discussion. First, it is important to note that 
this is not a systematic review and, thus, does not use strict 
inclusion or exclusion criteria. The majority of the studies 
included in this review are preclinical, reflecting a paucity of 
published literature on exosome application in the plastic 
surgery community. Published clinical reports are based on 
small patient cohorts and/or provide anecdotal evidence, 
likely due to the absence of FDA approval. Furthermore, 
these clinical studies provide little evidence nor elaborate on 
potential or observed adverse effects. Heterogeneity among 
these clinical studies arises from different exosome source 
cells and various purification processes, precluding head-to-
head comparisons. Finally, there is currently no published 
evidence on the long-term results of exosome use.

CONCLUSIONS
Exosome utilization in medicine is receiving increas-

ing attention and is a growing area of interest in plastic 
surgery. Despite several manufacturers reporting “status 
pending” on FDA approval on topical and intravenous 
infusion-based modalities, no exosome-based products are 
currently approved by the FDA. Further clinical studies are 
warranted to establish the impact, benefits, effectiveness, 
outcomes, and safety profile of exosomes in plastic surgery.
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