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Introduction
Frequently in high-throughput genomic research, we want to 
fit a statistical model using gene expression data in order to 
predict a future outcome. This has become a modern challenge 
for statisticians because there are far more features or vari-
ables (p) than samples (n). This is an obstacle in two regards. 
First, the design matrix will not be full-rank. Thus, there is 
an infinite number of solutions to the system of equations. 
Even small perturbations in the data will lead to large fluc-
tuations in the coefficient estimates. Second, given the vast 
interrelatedness of genes, collinearity is likely to be a problem. 
Collinear predictors further contribute to the instability of the 
parameter estimates. Recently, penalization (also referred to as 
regularization) has stood out as an effective method to combat 
these two issues. There are several popular penalization meth-
ods, but the defining characteristic of them all is that they 

introduce bias into the parameter estimates in exchange for a 
reduction in variance. In many cases, penalization improves the 
model’s predictive accuracy and, relatedly, reduces the mean 
squared error (MSE) of the parameter estimates.1 In cases 
where model parsimony and interpretability are important, 
the least absolute shrinkage and selection operator (LASSO) 
penalization method is effective as it shrinks many parameter 
estimates to be exactly zero.2 The generalized monotone incre-
mental forward stagewise (GMIFS) method is an algorithm 
that can be used in logistic regression to produce a monotone 
LASSO solution.3 The GMIFS method was subsequently 
extended by Archer etal for fitting several different logit link 
ordinal response models to high-throughput genomic data4 
including the cumulative logit, forward continuation ratio 
(CR), backward CR, stereotype logit, and adjacent category 
models. Herein we describe the GMIFS algorithm for ordinal 
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response modeling using a complementary log-log (cloglog) 
link, which is useful for discrete survival Modeling. Therefore, 
in the Discrete Survival Analysis Section, we describe the 
model formulation for modeling a discrete survival outcome. 
In the GMIFS Method for Ordinal Response Modeling 
section, we present the GMIFS method for the forward CR 
model using the cloglog link. Next, in the Application section, 
we discuss the motivating dataset that examined survival in 
glioblastoma (GBM) patients. The Results section examines 
the model performance in terms of parsimony, resubstitution 
error, and cross-validation (CV) error. Finally, in the Conclu-
sion we provide concluding remarks, including limitations of 
the study.

iscrete urvival Analysis
Survival analysis encompasses methods in which the out-
come variable is time to event (eg, time to death, disease 
relapse, etc.). The particular method used in the analysis 
will depend on the scale of the survival times collected. 
Ideally, these will be measured on a continuous scale, but 
sometimes for a variety of reasons, researchers only collect 
times on a discrete scale. For instance, for many diseases, it 
is impossible to record the precise date and time of relapse 
(ie, a continuous measurement) because the needed data 
are often only collected at a physician visit. Thus, we are 
forced to work with discrete times. Furthermore, discrete 
times are used when the latent scale of the response times 
is discrete.

High dimensional discrete survival data. Assume 
there are n independent subjects (i = l, 2, 3,..., n) and p 
features per subject, where p .. n. Because this design 
matrix will be singular, traditional statistical methods (eg, 
OLS) are not applicable. The data are often presented as 
follows:

•	 Let Yi represent the discrete survival time response vari-
able that takes on the values ( j=1, 2..., K), where K is the 
largest value of Y observed.

•	 To facilitate the formation of the likelihood, we define an 
n × K response matrix as follows:
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•	 A p × 1 vector of covariates, xi, is observed for each 
subject.

The forward  model with a complementary log-log 
link function. With discrete survival data, we are generally 
interested in modeling the discrete hazard rate defined as

	 πij=πj(xi)=P(Yi=j|Yi $ j, xi).

This is also the form of a probability modeled by a for-
ward CR model. Furthermore, if it is reasonable to assume 
that the data were generated by a continuous-time propor-
tional hazards model, then we use the complementary log-log 
(cloglog) link function,5

 log[− log(1 − πij)] = αj+xi β

Here αj represents the intercept, or threshold, for the jth 
class. Notice that αj is the only component of the model that 
depends on time. Thus, the functions for the K time points 
are parallel, which implies we are assuming proportional 
hazards.

Likelihood. We define the likelihood as a product of n 
conditionally independent Bernoulli random variables,6 where 
πij is the discrete hazard rate and (1 − πij) is the conditional 
complement of πij given by P(Yi . j|Yi $ j, xi) for the forward 
CR model.
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Now define . When using the cloglog 
link, the derivative of the log-likelihood is then given by

We use the generalized monotone incremental forward stage-
wise algorithm to solve for the penalized solution:



The tuning parameter, λ, controls the amount of shrink-
age. As λ increases, the number of parameter estimates that 
will be shrunk to zero also increases. Using these coefficient 
estimates and the estimates for the α ’s (described later), we 
can recursively estimate the probability that subject i belongs 
to class j where
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Subject i is then classified to the class that corresponds to the 
maximum class-specific probability.
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GMIF Method for rdinal esponse Modeling
The incremental forward stagewise (IFS) method is an itera-
tive algorithm that produces a penalized solution for a lin-
ear regression model.3 The GMIFS method is an extension 
of IFS capable of fitting overparameterized logistic regression 
models.3 The GMIFS algorithm was extended by Archer etal 
(2014) for fitting several different logit link ordinal response 
models to high-throughput genomic data.4 We updated this 
method to allow for the use of a complementary log-log link 
function. The steps of the GMIFS algorithm for ordinal 
response modeling are as follows4:

1. Enlarge the predictor space as � = : −[               ], where  
represents the standardized predictors.

2. Initialize the α ’s to their empirical values. For the for-
ward CR model with a cloglog link, these are initialized 

as α j
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3. For step s=0, initialize the components of ( )
1

ˆ ˆass β =β
2 1 2 0ˆ ˆ ˆ ˆ .P P Pβ β β β+= = = = = =… …

4. Find m L
p

p= argmin- log /δ δβ  at the current estimate ( )ˆ .sβ

5. Update ( )1( )ˆ ˆ .s s
m mβ β ε+ = +

6. Estimate the α ’s by maximum likelihood, treating ( )ˆ sβ  
(from step 5) as fixed.

7. Repeat steps 4 to 6 until the difference between two suc-
cessive log-likelihoods is smaller than a pre-specified tol-
erance, τ.

The rationale for enlarging the predictor space is that it allows 
us to avoid taking the second derivative of the log-likelihood. 
Once the algorithm has converged, we can obtain the 
penalized solution by ˆ ˆ ˆ .p p p Pβ β β += − 4 Furthermore, in 
step 5, ε is a small incremental value; we used 0.001 in our  
analysis.

Application
Glioblastoma. Glioblastomas (GBMs) are highly malig-

nant and aggressive tumors that arise from the supportive tis-
sue of the brain. Among all primary brain and central nervous 
system (CNS) tumors, they are the second most common after 
meningiomas, which are predominantly benign, and the five-
year survival rate for GBM patients is less than 4%.7 Aside from 
the aggressiveness of the tumors, one possible explanation for 
the low survival rate is that GBMs are rare in young people; the  
median age at diagnosis is 64, and the age group with the 
highest incidence rate is 75–84 year olds.7 Treatment involves 
surgical removal of as much of the tumor as is safely possible 
followed by radiotherapy and/or chemotherapy.8 The Cancer 
Genome Atlas (TCGA) Research Network revealed a subtype 
of GBM related to the mRNA expression and methylation of 
a set of genes that affects young adults and has an increased 
survival rate. Researchers also discovered four molecular sub-
types of GBM that have unique responses to treatment and 

gene mutations that could lead GBMs to become resistant to 
therapy after a standard chemotherapy treatment.9,10 These 
findings highlight the importance of genomic research in the 
study and treatment of GBM.

ata. We downloaded the raw CEL files for GSE53733 
from Gene Expression Omnibus.11 The investigators used 
Affymetrix HG-U133 v2.0 GeneChips to measure gene 
expression from patients’ tumor samples taken from their initial 
operation. In the dataset, there were n=70 GBM patients, of 
which 16 had an overall survival (OS) of less than 12months, 
31 patients had an OS between 12 and 36 months, and 23 
patients had an OS greater than 36 months.12 The patients’ 
survival times were reported by the investigator as short-, inter-
mediate-, and long-term OS. There were p = 54,613 features 
per subject in the CEL files after excluding control probe sets. 
However, after processing the data to remove probe sets with 
MAS5 present calls in ,30% of the subjects,13 31,744 features 
remained. Furthermore, a 3′:5′ ratio much different from 1 for 
the housekeeping gene glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) is associated with poor cDNA and cRNA 
quality.14 Thus, we removed one subject with a 3′:5′ GAPDH 
ratio greater than 3, leaving us with 69subjects. We then used 
the RMA method to obtain probe set expression summaries 
for our statistical analysis.15 Afterward, we fit a forward CR 
model using the cloglog link with ε=0.001 and τ=0.00001.

esults
After the GMIFS algorithm converged, we examined two 
models: (a) the model selected my minimizing the AIC crite-
rion and (b) the model resulting from the convergence of the 
GMIFS algorithm (Fig.1). Using the full dataset, the AIC-
selected model misclassified 10 of the 69 patients, while the 
converged model only misclassified one patient (Tables1 and 2).  
However, the AIC-selected model was more parsimonious 
with 25 non-zero coefficients, while the converged model 
contained 46 non-zero coefficients. The 25 probe sets that had 
non-zero coefficient estimates in the AIC-selected model are 
shown in Table3. Furthermore, for each model, we examined 
the sensitivity and specificity for diagnosing short-term sur-
vival as well as the sensitivity and specificity for diagnosing 
short- or intermediate-term survival (Tables4 and 5). Among 
the probe sets with non-zero coefficient estimates, the one 
with the largest absolute coefficient estimate in both models 
(among probe sets with known gene symbols) was designed to 
interrogate HD Domain Containing 2 (HDDC2). Long-term 
survivors had higher HDDC2 expression levels than short- 
and intermediate-term survivors (Fig. 2). This result agrees 
with another GBM study that showed that HDDC2 was sig-
nificantly downregulated in short-term survivors compared 
to long-term survivors.12 There was also a clear positive rela-
tionship between Nucleoside-Triphosphatase, Cancer-Related 
(NTPCR) expression and survival time (Fig.3). Interestingly, 
researchers have shown that NTPCR is overexpressed in 
neuroblastomas,16 but no study has associated NTPCR with 
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GBM. Additionally, one of the probe sets that had a non-zero 
coefficient estimate was designed to interrogate the gene PDZ 
and LIM domain 4 (PDLIM4), which has previously been 
studied in association with gliomas. Researchers examined 
the expression of the gene at the protein level for patients with 
gliomas and discovered that the median OS for patients with 
high levels of the protein (PDLI4) was significantly shorter 
than for patients with low protein levels.17 We compared the 
mean log2 expression levels of PDLIM4 for patients with 
short-, intermediate-, and long-term OS using Welch’s T-test. 
Patients with short-term OS had significantly higher expres-
sion levels than patients with long-term OS at the Bonfer-
roni adjusted α = =0 05

3 0 017. .  significance level (P=0.0019), 
and patients with intermediate-term OS also had significantly 
higher expression levels than patients with long-term OS  
(P , 0.0001). The difference in mean expression levels between 
those with short-term OS and those with intermediate-term 
OS was not significant. Thus, it appears that both the gene 
expression levels and the protein levels of the gene are lower 
for patients who survive longer.

A common critique of a model fitted from high-dimensional 
data is that the final model, even if selected by minimizing 

AIC, is not parsimonious. In this example, critics may say that 
given a sample size of 69 subjects, including 25 coefficients 
in the model is overfitting, and that the model performance 
is likely a result of chance. In response, we fit two additional 
models whose performances will be a result of chance alone. 
First, we fit a model with the same gene-expression data used 
in our example, but we randomly permuted the response vec-
tor. Next, we fit a model using our original response vector, 
but instead of using the gene expression data, we used a design 
matrix filled with 31,744×69=2,190,336 random variables 
generated from a Gaussian distribution with a mean and stan-
dard deviation equal to the corresponding sample statistics of 
the gene expression data. If we exclude regions of underfit-
ting and overfitting, the model fit with the gene expression 
data and the original response vector had better performance 
than the other two models whose performances are a result of 
chance rather than a relationship between the features and the 
response (Fig.4).

We also performed N-fold (or leave-one-out) CV to 
assess the generalizability of our models (where N=69). Both 
the AIC-selected model and the converged model had an 
N-fold CV error rate of about 44.9% (Tables6 and 7). Thus, 
it appears that the AIC-selected model and the model that 
satisfied the GMIFS convergence criterion predict discrete 
survival time equally well. We chose the AIC-selected model 
as our final model as it is more parsimonious and therefore 
more interpretable.

onclusion
GBM is a particularly dangerous tumor with a low survival 
rate. A specific and accurate prognosis would be very useful 
to both the patient and the oncologist. Thus, we were inter-
ested in predicting survival time based on a patient’s genomic 
feature data. We used discrete times because the investiga-
tors of this particular GBM study reported discrete times. 
Another case when discrete survival times would be used is 
when the outcome of interest (eg, disease relapse) can only be 
assessed at physician visits. The GMIFS algorithm is an effec-
tive method for building a classifier for an ordinal response 
outcome given a high-dimensional covariate space. In this 
case, we fit a forward CR model with a complementary log-
log link function to model discrete survival time. The model 
resulting from the convergence of the algorithm had only a 
1.4% resubstitution error. Using N-fold CV, the model had a 

Table1. IC-selected model cross-tabulation of the observed versus 
the predicted class using the full dataset.

bserved

Short Intermediate Long

Short 10 0 0

Predicted Intermediate 6 31 4

Long 0 0 18

Table2. Converged model cross-tabulation of the observed versus 
the predicted class using the full dataset.

bserved

Short Intermediate Long

Short 16 0 0

Predicted Intermediate 0 31 1

Long 0 0 21
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Figure1. Coefficient paths for our forward CR model using a 
complementary log-log link.  
Notes: The first vertical dashed line signifies the step in the algorithm 
when the IC was minimized. he second vertical dashed line marks the 
step when the algorithm converged.
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Table3. Probe sets with non-zero coefficient estimates in the AIC and converged models.

Po S Ez ID G So Chooo β̂ AIC β̂ Converged
C Aoo

203260_at 51020 HDDC2 6 −0.268 −0.309 Glioblastoma12

1557883_a_at ,. ,. ,. −0.203 −0.269

206565_x_at 11039 4 5 −0.186 −0.267

1558723_at 284014 LC284014 17 −0.178 −0.226

202447_at 1666 DC1 8 −0.142 −0.163 Breast cancer18

226813_at 84284 PC 1 −0.142 −0.194 euroblastomas16

209078_s_at 25828 X2 22 −0.081 −0.133 Breast cancer19

230581_at ,. ,. ,. −0.069 −0.069

215962_at ,. ,. ,. −0.063 −0.072

1557100_s_at 25831 HCD1 14 −0.032 −0.032 Breast cancer20

242333_at ,. ,. ,. −0.032 −0.032

206697_s_at 3240 HP 16 −0.029 −0.061 on-small cell lung cancer,21  
Hepatocellular carcinoma22

222992_s_at 4715 DUB9 8 −0.028 −0.028

219221_at 253461 ZBB38 3 −0.014 −0.048 Involved in D replication and stability23

230353_at 284112 LC284112 17 −0.013 −0.039

243957_at 400464 LC400464 15 0.005 0.013 Diffuse large cell B lymphoma24

231773_at 9068 GPL1 1 0.016 0.017 Prostate cancer25

211564_s_at 8572 PDLI4 5 0.017 0.017 Glioma,17 acute myeloid leukemia,26  
Prostate cancer,27 breast cancer28

218669_at 57826 P2C X 0.019 0.036 cute lymphoblastic leukemia29

1561759_at 645513 LC645513 4 0.049 0.062

1559283_a_at 285888 CPY1 7 0.062 0.160

221900_at 1296 CL82 1 0.064 0.109

203184_at 2201 B2 5 9 0.089 0.179 Colorectal cancer30

234547_at ,. ,. ,. 0.221 0.231

229146_at 136895 C7orf31 7 0.242 0.295
 

Table4. AIC-selected model sensitivity and specificity for predicting 
short-term survival and for predicting short- or intermediate-term 
survival.

o Sv S

hort-term survival 63 100

hort- or intermediate-term 
survival

100 82

Table5. Converged model sensitivity and specificity for predicting 
short-term survival and for predicting short- or intermediate-term 
survival.

o Sv S

hort-term survival 100 100

hort- or intermediate-term 
survival

100 95

44.9% misclassification rate, significantly better than chance 
(66% misclassification rate for a three-class outcome), but 
there is room for improvement. For example, although our 
method performs automatic variable selection, improvement 
gains in classification accuracy may be achieved by reducing 
the dimensionality of the feature set in a meaningful way prior 
to model fitting. We plan to explore this topic in a follow-
up paper. Furthermore, a more accurate classifier could be 
built with more information. For instance, the five-year sur-
vival rate for patients diagnosed between the ages of 0 and 19 

is around 19%, while the five-year survival rate for patients 
diagnosed between the ages of 45 and 54 is only about 3.3%.7 
Additionally, age was significantly different across the three 
outcome classes in this study12 but was not made available in 
the data. Thus, including age as an unpenalized predictor in 
our model would likely improve its predictive accuracy (the 
ordinalgmifs R package allows the user to select a subset of 
predictors that will not be penalized in the GMIFS algo-
rithm31). Also, Karnofsky performance status and extent of 
surgical resection are known prognostic factors for GBM,32 so 
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