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Abstract

The immune checkpoint molecules such as PD-L1 and PD-L2 have a substantial contribu-

tion to cancer immunotherapy including breast cancer. Microarray expression profiling iden-

tified several molecular subtypes, namely luminal-type (with a good-prognosis), HER2-type

(with an intermediate-prognosis), and triple-negative breast cancer (TNBC)-type (with a

poor-prognosis). We found that PD-L1 and PD-L2 mRNA expressions were highly

expressed in TNBC-type cell lines (HCC1937, MDA-MB-231), moderately expressed in

HER2-type cell line (SK-BR-3), and poorly expressed in luminal-type cell lines (MDA-MB-

361, MCF7). The PD-L1 and PD-L2 expression in SK-BR-3 cells, but not those in HCC1937

and MDA-MB-231 cells, decreased by nicotine stimulation in a dose-dependent manner. In

addition, nicotine treatment decreased the phosphorylation of Akt in SK-BR-3 cells, but not

in other cell lines. These results show that nicotine regulates the expression of immune

checkpoint molecules, PD-L1 and PD-L2, via inhibition of Akt phosphorylation. This findings

may provide the new therapeutic strategies for the treatment of breast cancer.

Introduction

Immune-checkpoint molecules, such as programmed cell death protein 1 (PD-1), pro-

grammed death ligand 1 (PD-L1) and PD-L2 are outstanding targets for cancer immunother-

apy [1]. PD-1 is particularly expressed on cytotoxic T cells. PD-L1 is ubiquitously expressed in

many tissues and cells including dendritic cells and PD-L2 expression is restricted to macro-

phages and dendritic cells [2]. The binding of PD-1 on T cells to PD-L1 and PD-L2 on anti-

gen-presenting cells negatively regulates T cell effector function [3]. The PD-L1 and PD-L2

expressed on tumor cells cause tumor immune escape [4].

Recently, breast cancer was categorized into several subtypes such as luminal-type (estrogen

receptor (ER) and progesterone receptor (PR) positive, good-prognosis), HER2-type (human

epidermal growth factor receptor 2 positive, intermediate prognosis), and triple-negative

breast cancer-type (TNBC, ER, PR and HER2 negative, poor-prognosis) [5]. The levels of

PD-L1 expression were different in each subtype of breast cancer cell lines [6]. The PD-L1

expression was associated with histological grade, pathological stage, tumor infiltrating
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lymphocytes (TILs), better disease-free survival (DFS), and overall survival (OS) in breast can-

cer patients. Based on the intrinsic subtype, PD-L1 expression associates with the levels of TILs

in HER2- and TNBC-type patients [7]. Another report also showed that the PD-L1 expression

associates with histological grade, TILs, and DFS in HER2-type breast cancer [8]. As with

PD-L1 expression in breast cancer patients, PD-L2 expression is positive in half of the breast

cancer patients. However, the PD-L2 expression is not associated with better OS [9].

Smoking is one of risk factors in breast cancer [10]. Nicotine is a natural compound in

tobacco plants, which is a highly addictive. Nicotine exerts biological effects on excitable and

non-excitable cells via nicotinic acetylcholine receptors (nAChRs) [11]. The expression levels

of nAChR subunits are different on breast cancer cell lines [12]. It is reported that nicotine

acts on breast cancer cells such as luminal- and TNBC-type via some nAChRs [13–21]. How-

ever, the nicotine-mediated biological effects including the regulation of immune-check point

molecules on HER2-type breast cancer cells are largely unknown. In this study, we focused on

the nicotine-mediated expression of immune-check point molecules, PD-L1 and PD-L2, on

breast cancer cells using luminal-, HER2-, and TNBC-type breast cancer cell lines.

Materials and methods

Cell lines

Human breast cancer cell lines; luminal-type (MDA-MB-361 and MCF7), HER2-type (SK-BR-3)

and TNBC-type (HCC1937, MDA-MB-231) were purchased from American Type Culture Col-

lection (ATCC, Rockville, MD, USA). According to manufacturer’s instructions, MDA-MB-361

cells were cultured in in Leibovitz’s L-15 medium (ATCC) containing 20% FBS (without heat

inactivation) without CO2 aeration. MCF7 cells were cultured in Eagle’s Minimum Essential

Medium (ATCC) containing 10% FBS (without heat inactivation) and 0.01 mg/ml of human

recombinant insulin under the 5% CO2 aeration. SK-BR-3 cells were cultured in McCoy’s 5a

Medium (ATCC) containing 10% FBS (without heat inactivation) under the 5% CO2 aeration.

HCC1937 cells were cultured in RPMI-1640 medium (ATCC) containing 10% FBS (without heat

inactivation) under the 5% CO2 aeration. MDA-MB-231 cells were cultured in Leibovitz’s L-15

medium (ATCC) containing 10% FBS (without heat inactivation) without CO2 aeration.

Nicotine treatment

All cell lines (6 x 104 cells/well) were seeded in 24-well plate (Iwaki, Shizuoka, Japan) and cul-

tured with or without nicotine (SIGMA, St. Louis, MO, USA) for 24 h.

Real-time PCR

Total RNA was extracted using RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA) from 1 x

105 cells of breast cancer cell lines in 24-well plate and reverse transcribed using High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). We performed

real-time PCR using TaqMan Gene Expression Master Mix (Applied Biosystems) or THUN-

DERBIRD SYBR qPCR Mix (TOYOBO) and 7300 Real-Time PCR System (Applied Biosys-

tems) with a set of primers which were purchased from Thermo Fisher Scientific (Waltham,

MA, USA, ACTB: Hs01060665_g1, PDL1: Hs00204257-m1, and PDL2: Hs00228839-m1) and

were described in Table 1 [22–24].

Immunohistochemistry

Cytospin slides (2 x 104 cells/slide) were prepared using NewSilane II Micro Slides (Muto Pure

Chemicals, Tokyo, Japan), fixed with 4% PFA at room temperature for 10 min, blocked with
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Blocking One Histo (Nacalai Tesque, Kyoto, Japan) at room temperature for 2 h, and then

stained with primary antibodies to human PD-L1 (1:200 dilution, #ab205921, Abcam, Cam-

bridge, MA, USA), PD-L2 (1:500, #MAB1224, R&D Systems, Minneapolis, MN, USA), Akt

(1:200, #9272, Cell Signaling, Danvers, MA, USA) and phospho-Akt (1:200, #ab105731,

Abcam) at 4˚C for overnight, coupled with secondary antibodies to Alexa Fluor1 594 goat

anti-rabbit IgG (1:300, #A11072, Thermo Fisher Scientific) and anti-mouse IgG (1:300,

#A11005, Thermo Fisher Scientific) at room temperature for 3h. For nucleus staining, we used

DAPI (0.4 μg/ml, #D9564, SIGMA). The immunofluorescence was examined with a confocal

microscope (LSM-800, Zeiss, Oberkochen, Germany) and staining intensity was quantitated

using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

Cell viability assay

SK-BR-3 cells were seeded at a density of 1 x 104 cells/well on 96-well plate. After 24 h culture,

the cells were treated with nicotine (0, 1, 10, and 100 nM) for 24 h. Cell viability was measured

by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay reagent

(Nacalai, Japan) according to manufacturer’s protocol.

Statistical analysis

Two-sided Student’s t-test was performed for all statistical evaluation. P<0.05 was considered

as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).

Results

PD-L1 and PD-L2 mRNA expressed in HER2-type and TNBC-type cell lines

PD-L1 and PD-L2 expressions were found in about half of breast cancer cases [9]. Consistent

with previous report [6], we found that PD-L1 mRNA highly expressed in HER2-type SK-BR-

3 cells, TNBC-type HCC1937 cells, and MDA-MB-231 cells (Fig 1A).

Table 1. The real-time PCR primers sets.

Gene name Forward primer Reverse primer

CHRNA1 GCTCTGTCGTGGCCATCAA CCGGAAAGCGACCAGCCAGA

CHRNA2 GTGGAGGAGGAGGACAGA CTTCTGCATGTGGGGTGATA

CHRNA3 CAGAGTCCAAAGGCTGCAAG AGAGAGGGACAGCACAGCAT

CHRNA4 CTCACCGTCCTTCTGTGTC CTGGCTTTCTCAGCTTCCAG

CHRNA5 CTTCACACGCTTCCCAAACT CTTCAACAACCTCACGGACA

CHRNA6 TCCATCGTGGTGACTGTGT AGGCCACCTCATCAGCAG

CHRNA7 GTACGCTGGTTTCCCTTTGA CCACTAGGTCCCATTCTC

CHRNA9 GAAAGCAGCCAGGAACAAAG GCACTTGGCGATGTACTCAA

CHRNA10 ACACAAGTGCCCTGAGACCT TCCCATCGTAGGTAGGCATC

CHRNB1 CTACGACAGCTCGGAGGTCA GCAGGTTGAGAACCACGACA

CHRNB2 GGCATGTACGAGGTGTCCTT CACCTCACTCTTCAGCACCA

CHRNB3 AACAGTTCCGTTTGATTTCACGAT CCCTGATGACCAAGGTCATC

CHRNB4 TCCCTGGTCCTTTTCTTCCT TGCAGCTTGATGGAGATGAG

CHRNG CGCCTGCTCTATCTCAGTCA GGAGACATTGAGCACAACCA

CHRND CAGATCTCCTACTCCTGCAA CCACTGATGTCTTCTCACCA

CHRNE TCAAGGTCACCCTGACGAAT GTCGATGTCGATCTTGTTGA

KLF4 GAAATTCGCCCGCTCCGATGA CTGTGTGTTTGCGGTAGTGCC

WNT5A CTTCGCCCAGGTTGTAATTGAAGC CTGCCAAAAACAGAGGTGTTATCC

https://doi.org/10.1371/journal.pone.0260838.t001
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It is reported that TNBC-type cell lines expressed PD-L1 and PD-L2 [25]. In addition to

TNBC-type cells (HCC1937 and MDA-MB-231), we found that PD-L2 mRNA was expressed

in SK-BR-3 cells (Fig 1B).

Nicotine treatment decreased PD-L1 and PD-L2 expressions via inhibition

of Akt pathway in a HER2-type cell line

To elucidate the role of nicotine in the expressions of PD-L1 and PD-L2 in breast cancer cells,

the mRNA expressions were evaluated after nicotine treatment in the molecule positive cell

lines. The PD-L1 mRNA expressions in HCC1937 and MDA-MB-231 cells were not affected

by nicotine treatment (Fig 2A and 2B). We found that nicotine treatment decreased PD-L1

mRNA (Fig 2C) and protein (Fig 2D and 2E) expressions in SK-BR3 cells in a dose dependent

manner.

PD-L2 mRNA expressions in HCC1937 and MDA-MB-231 cells were not affected by nico-

tine treatment (Fig 3A and 3B). We found that nicotine treatment decreased PD-L2 mRNA

(Fig 3C) and protein (Fig 3D and 3E) expressions in SK-BR3 cells in a dose dependent

manner.

Cell proliferation, cell migration, and maintenance of cancer stem cell features are impor-

tant for tumorigenesis. We found that nicotine treatment did not affect the cell viability of

SK-BR-3 cells (Fig 4A). Next, we investigated the expression of KLF4, which is important for

the maintenance of breast cancer stem cell features and the promotion of the cell migration

and invasion [22]. Nicotine stimulation did not influence KLF4 mRNA expression in SK-BR-3

cells (Fig 4B). Wnt5a is important for cell migration [26]. Nicotine treatment decreased Wnt5a

mRNA expression in SK-BR-3 cells in a dose-dependent manner (Fig 4C). It suggests that nic-

otine treatment inhibits breast cancer cell migration.

Wnt5a signaling induces cancer cell migration via Akt phosphorylation [27,28]. PD-L1 and

PD-L2 was expressed via Akt pathway in cancer including breast cancer [29–31]. We exam-

ined the role of nicotine treatment for Akt phosphorylation in SK-BR-3 cells. The phosphory-

lation of Akt decreased at 30 min after nicotine treatment in the cell line (Fig 5A). On the

other hand, we found that MCF7, HCC1937 and MDA-MB-231 cells did not express Akt

Fig 1. The mRNA expression of PD-L1 and PD-L2 in breast cancer cell lines. The relative mRNA expressions of

PD-L1 (A) and PD-L2 (B) on breast cancer cell lines were measured by qPCR (n = 4 each). The values were relative to

the mRNA expressions of SK-BR-3. Each mean ± SEM is shown. N.D: Not detected.

https://doi.org/10.1371/journal.pone.0260838.g001
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protein and nicotine treatment did not affect Akt expression and the phosphorylation in these

cells (Fig 5B–5D). As expected, an Akt inhibitor, MK-2206, suppressed PD-L1 and PD-L2

expressions in a dose-dependent manner (Fig 5E and 5F). Thus, these results show that nico-

tine treatment affects PD-L1 and PD-L2 expressions via inhibition of Akt pathway in a HER2--

type cell line.

Nicotine exerts biological effects via various combinations of nAChR subunits [11]. We

examined mRNA expressions of several nAChR subunits in breast cancer cell lines by real-

time PCR (Fig 6). We did not detect nAChRβ3, γ, δ and ε mRNA expressions in breast cancer

cell lines. SK-BR-3 cells expressed substantially several nAChR subunits mRNA compared

with other subtype breast cancer cells except for nAChRα1 and α4 subunits.

Discussion

In this study, we found that immune-check point molecules, PD-L1 and PD-L2, were highly

expressed in TNBC-type HCC1937 and MDA-MB-231 cells and were moderately expressed in

HER2-type SK-BR-3 cells. The PD-L1 and PD-L2 expressions were decreased by nicotine

treatment via inhibition of Akt phosphorylation in SK-BR-3 cells, but not in HCC1937 and

MDA-MB-231 cells. Thus, nicotine and related molecules can be useful therapeutic targets in

HER2-type breast cancer for the cancer immunotherapy.

Nicotine exerts biological effects on excitable and non-excitable cells via various combina-

tions of nAChR subunits [11]. 16 homologous genes encode the subunits of nAChR. Muscle-

Fig 2. The effect of nicotine treatment for PD-L1 expressions on breast cancer cell lines. (A-C) Breast cancer cell lines, HCC1937 cells (A), MDA-MB-231 cells (B),

and SK-BR-3 cells (C) were stimulated with nicotine (0–100 nM) and the relative mRNA expressions of PD-L1 to those without the stimulations (nicotine 0 nM:

Relative expression = 1) were measured by qPCR (n = 4 each). (D, E) SK-BR-3 cells were cultured in the absence and presence of nicotine (1, 10 and 100 mM) and were

stained with anti-PD-L1 antibody. DAPI was used for detecting nuclei. (D) One of the representative figures is shown. (E) The relative expression of PD-L2 was

determined by using ImageJ (n = 5 each). Each mean ± SEM is shown. �p< 0.05 and ���p< 0.001.

https://doi.org/10.1371/journal.pone.0260838.g002
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type nAChRs include nAChR(α1)2β1δε (adult receptor) or nAChR(α1)2β1δγ (fetal receptor).

Neuronal-type nAChRs are homo- or hetero-pentamers composed of some of nine α subunits

(α2-α10) and some of three β subunits (β2–4) [11]. Each combination of nAChR subunits has

distinct and specific roles in the biological processes of muscles and neurons. The expression

profile of nAChR subunits is different in subtypes of breast cancer [12]. The nAChRα5

Fig 3. The effect of nicotine treatment for PD-L2 expressions on breast cancer cell lines. (A-C) Breast cancer cell lines, HCC1937 cells (A), MDA-MB-231 cells (B),

and SK-BR-3 cells (C) were stimulated with nicotine (0–100 nM) and the relative mRNA expressions of PD-L2 to those without the stimulations (nicotine 0 nM:

Relative expression = 1) were measured by qPCR (n = 4 each). (D, E) SK-BR-3 cells were cultured in the absence and presence of nicotine (1, 10 and 100 mM) and were

stained with anti-PD-L2 antibody. DAPI was used for detecting nuclei. (D) One of the representative figures is shown (n = 5 each). (E) The relative expression of

PD-L2 was determined by using ImageJ. Each mean ± SEM is shown. �p< 0.05 and ��p< 0.01.

https://doi.org/10.1371/journal.pone.0260838.g003

Fig 4. Nicotine decreased Wnt5a expressions in SK-BR-3 cells. (A) Cell viability of SK-BR-3 cells with nicotine

treatment (0–100 nM) was measured by MTT assay (n = 4 each). (B, C) KLF4 (B) and Wnt5a (C) mRNA expressions

in SK-BR-3 cells at 24 h after nicotine treatment were measured by qPCR (n = 4 each). Each mean ± SEM is shown.
���p< 0.001.

https://doi.org/10.1371/journal.pone.0260838.g004
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Fig 5. Nicotine decreased Akt phosphorylation in SK-BR-3 cells. (A) Akt expressions and the phosphorylation in nicotine-treated SK-BR-3

cells were assayed by immunostaining. SK-BR-3 cells were stimulated with 100 nM nicotine for indicated time and the cells were stained with

indicated antibodies (red). DAPI (blue) was used for detecting nuclei. Some of representative figures of total-Akt (upper), phosphorylated Akt

(lower) are shown. The relative phosphorylation intensity of Akt was calculated using ImageJ (n = 5–7 each). (B-D) Akt expressions and the

phosphorylation in nicotine-treated MCF8 (B), HCC1937 (C) and MDA-MB-231 (D) cells were assayed by immunostaining. SK-BR-3 cells

were stimulated with 100 nM nicotine for indicated time and the cells were stained with indicated antibodies (red). DAPI (blue) was used for

PLOS ONE Nicotine regulates PD-L1 and PD-L2 expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0260838 January 27, 2022 7 / 11

https://doi.org/10.1371/journal.pone.0260838


detecting nuclei. Some of representative figures of total-Akt (left), phosphorylated Akt (right) are shown (n = 3–4 each). (E, F) The PD-L1 (E)

and PD-L2 (F) expressions in MK-2206, an Akt inhibitor, -treated SK-BR-3 cells are shown. SK-BR-3 cells were stimulated with MK-2206 (0–50

nM) for 24 h and the cells were stained with indicated antibodies (red). DAPI (blue) was used for detecting nuclei. Some of representative

figures of PD-L1 or PD-L2 (left) and the relative expression levels (right) are shown. The relative expression levels of PD-L1 or PD-L2 are

determined by using ImageJ (n = 5–7 each).

https://doi.org/10.1371/journal.pone.0260838.g005

Fig 6. The expression of nAChR subunits in breast cancer cells. The relative mRNA expressions of nAChR subunits in breast

cancer cell lines was measured by qPCR. The values were relative to the mRNA expressions of MCF7 cells. N.D.: Not detected.

https://doi.org/10.1371/journal.pone.0260838.g006
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associates with cell cycle, apoptosis, and DNA damage response of luminal-type breast cancer

cells [13]. The nAChRα7 promotes cell proliferation and apoptosis in a panel of breast cancer

cell lines [14]. The nAChRα9 promotes invasion ability, apoptosis resistance, and growth of

luminal-type breast cancer cells [15–18]. The nAChRα9 promotes growth and transformation

of TNBC-type breast cancer cells [19,20]. The nonselective nAChR antagonist inhibits nico-

tine-induced TNBC-type breast cancer cell growth [21]. Thus, nicotine causes negative effects

for cancer immunotherapy on luminal- and TNBC-type breast cancers via nAChRα5, α7 and

α9 subunits. Furthermore, nAChRα9 mediates nicotine-induced PD-L1 expression in mela-

noma cells [32]. However, nicotine treatment decreased PD-L1 and PD-L2 expression in

HER2-type breast cancer cells in this study. We found that SK-BR-3 cells expressed substan-

tially several nAChR subunits mRNA compared with other subtype breast cancer cells except

for nAChRα1 and α4 subunits. It suggested that these nAChR subunits mediated nicotine-

induced cancer immunotherapy on HER2-type breast cancer cells.

The expression of PD-L1 and PD-L2 is regulated by Akt pathway on cancer cells including

breast cancer [29–31]. Furthermore, interaction of PD-1 and PD-L1 causes resistance to che-

motherapy via activation of Akt pathway [33]. Thus, Akt-targeted therapy is important to

overcome multi-drug resistance in breast cancer [34]. We found that nicotine decreased Akt

phosphorylation on HER2-type cells. In contrast, luminal- and TNBC cells did not express Akt

and nicotine treatment did not affect Akt expressions in these cells. These results suggest that

nicotine may exert positive effects for the cancer immunotherapy of HER2-type cancers

through different mechanisms from the negative effects on the luminal- and TNBC-type breast

cancers. This finding suggests that nicotine treatment could develop useful therapeutic meth-

ods for HER2-type breast cancer.
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