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The variable sum exdeg index, initially introduced by Vukicevic (2011) [20] for predicting the 
octanol water partition co-efficient of certain chemical compounds, is an invariant for a graph 𝐺
and defined as 𝑆𝐸𝐼𝑎(𝐺) =

∑
𝑣∈𝑉 (𝐺) (𝑑𝑣𝑎

𝑑𝑣 ), where 𝑑𝑣 is the degree of vertex 𝑣 ∈ 𝑉 (𝐺), 𝑎 is a positive 
real number different from 1. In this paper, we defined sub-collections of tricyclic graphs say 
𝑇 3
2𝑚, 𝑇 4

2𝑚, 𝑇 6
2𝑚 and 𝑇 7

2𝑚. The graph with maximum variable sum exdeg index is characterized from 
each collection given above with perfect matching. Consequently, through a comparison among 
these extremal graphs, we indicate the graph which contains maximum 𝑆𝐸𝐼𝑎-value from 𝑇2𝑚.

1. Introduction

Let 𝐺 = (𝑉 , 𝐸) be a graph which is finite, connected and simple such that 𝑉 and 𝐸 denote the set of vertices and set of edges 
respectively. Let 𝑦 ∈ 𝑉 (𝐺), 𝑑𝑦 or 𝑑𝑦(𝐺) is defined as the degree of the vertex 𝑦. Let 𝑀(𝐺) ⊂𝐸(𝐺), if the degree of each vertex in 𝑀(𝐺)
is 1 or 0 then 𝑀(𝐺) is called 𝑚-matching in 𝐺 where |𝑀(𝐺)| = 𝑚. In a graph 𝐺 if each vertex is incident to exactly one edge of 
matching set then such matching is called perfect matching such that 𝑛 = 2𝑚. Let 𝑒 be an edge such that 𝑒 ∈𝑀(𝐺) and 𝑢 ∈ 𝑉 (𝐺), the 
vertex 𝑢 is said to be saturated by 𝑀(𝐺) if 𝑢 is incident with 𝑒. A simple and connected graph with 2𝑚 vertices and 2𝑚 + 2 edges is 
called conjugated tricyclic graph, where 𝑚 is the matching number of the graph.

A vertex which possesses degree one is called pendent vertex. A path 𝑃 = 𝑥0𝑥1...𝑥𝑠 is said to be pendent path if 𝑑𝑥0 ≥ 3, 𝑑𝑥𝑖 = 2(𝑖 =
1, 2, ...(𝑠 − 1)) and 𝑑𝑥𝑠 = 1. A path 𝑃 = 𝑥0𝑥1...𝑥𝑠 is said to be an internal path of a graph if 𝑑𝑥0 ≥ 3, 𝑑𝑥𝑖 = 2(𝑖 = 1, 2, ...(𝑠 − 1)) and 𝑑𝑥𝑠 ≥ 3
whereas 𝑃 is the shortest path from 𝑥0 to 𝑥𝑠. We denote the length of the path 𝑃 by |𝑃 |. In a graph 𝐺, an induced cycle is an induced 
sub-graph which has no chords. Set of neighbouring vertices of a vertex 𝑥 in 𝐺 is denoted by 𝑁𝐺(𝑥) whereas 𝑁𝐺[𝑥] =𝑁𝐺(𝑥) ∪ {𝑥}.

Set of all conjugated tricyclic graphs is denoted by 𝑇2𝑚 where 2𝑚 is order of the graph 𝑇2𝑚 with 𝑚 ≥ 2. Since 𝑇4 = 𝐾4 here 𝐾4
denotes the complete graph with order 4. That is why we consider in the following 𝑚 ≥ 3. From [10] we know that tricyclic graph has 
minimum 3 and maximum 7 cycles; furthermore there does not exist a graph in 𝐺 with five cycles. We define 𝑇2𝑚 = 𝑇 3

2𝑚∪𝑇
4
2𝑚∪𝑇

6
2𝑚∪𝑇

7
2𝑚

where 𝑇 𝑘2𝑚(𝑘 = 3, 4, 6, 7) represents the collection of all tricyclic graphs having 𝑘 cycles in 𝑇2𝑚. We organized the rest of the paper 
as follows. In section 2, we have given some lemmas which help us in proving main result. In section 3, we investigated maximum 
values of 𝑆𝐸𝐼𝑎 in 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) for 𝑎 > 1. At the end of this section, we have investigated the graph which contains maximum 
𝑆𝐸𝐼𝑎-value in 𝑇2𝑚 for 𝑎 > 1. To read about the expressions and definitions related to this paper, the readers can see [2,4].
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Fig. 1. Possible graphs in 𝐺 ∈ 𝑇 3
2𝑚 .

Graphs help us design the chemical graph in which vertices and edges represent atoms and bonds respectively. Topological indices 
are used to investigate the physicochemical properties of a molecular graph. The graph invariants are called topological indices [22]. 
Actually, these topological indices give us the values which are the information about the physicochemical properties of a certain 
related chemical compound. In this way, we can spare ourselves from a heavy expense of chemical experiments.

Topological indices are used in quantitative structure-property relation (QSPR) and quantitative structure-activity relation (QSAR) 
studies to model the physicochemical characteristics of chemical compounds including total surface area, melting points, molar re-

fraction, boiling points, acentric factor, octanol-water partition coefficient, motor octane number, and standard enthalpy of formation 
[5,11,19]. In addition to QSPR and QSAR the topological indices are also used in many fields of knowledge including chemistry, 
physics, biology, and the social sciences see for more detail [7–9,17,18]. There are a large number of topological indices in literature 
which have been used to investigate the above mentioned physicochemical properties for their related molecular structure. To in-

vestigate these properties researchers find extremal graphs from related class of molecular structures. For instance, in [13], extremal 
graphs have been characterized by using different graph parameters such as segments and vertices of degree two. Xiaoling Sun et al. 
[16] investigated extremal values of exdeg index for cuasi-tree graphs and unicyclic graphs by using some graph parameters. In [3], 
the first three maximum and minimum values of 𝑆𝐸𝐼𝑎 have been undersought for 𝑛-vertex trees. Furthermore, 𝑛-vertex trees with 
given diameter 𝑑 have first three largest values of 𝑆𝐸𝐼𝑎. In [12], lower bounds of some topological indices have been found for some 
family of graphs. In the following lines we will discuss the topological index related to our current work.

The variable sum exdeg index of a graph 𝐺 is denoted by Vukicevic as,

𝑆𝐸𝐼𝑎(𝐺)=
∑

𝑢𝑣∈𝐸(𝐺)

(
𝑎𝑑𝑢+𝑎𝑑𝑣

)
=

∑
𝑢∈𝑉 (𝐺)

(𝑑𝑢𝑎𝑑𝑢 ) (1)

where 𝑎 > 0 but 𝑎 ≠ 1. The above mentioned molecular structure descriptor/topological index having a good correlation with octane-

water partition coefficient [19] and octane isomers is studied very well by this index, see [20]. The role of this index in nanoscience 
can be seen in [23]. Rizwan et al. investigated sharp lower and upper bounds on 𝑆𝐸𝐼𝑎 for conjugated uni cyclic graphs with respect 
to the length of its cycle [15]. In [14], the author investigated sharp lower and upper bounds on 𝑆𝐸𝐼𝑎 for conjugated bicyclic graphs. 
The author et al. investigated extremal values of 𝑆𝐸𝐼𝑎 for cactus graphs with fixed number of cycles [6]. We refer the following 
papers to see mathematical properties and chemical application of this index [1,19,21]. In the below sections of this paper we apply 
some graph operations or transformation on a graph 𝐺 and the resulting graph is depicted by 𝐺′. In such case whenever we discuss 
the degree of a vertex 𝑥 say 𝑑𝑥, it means the degree of the vertex 𝑥 in 𝐺 i.e., |𝑉 (𝐺) | = |𝑉 (𝐺′)|.
2. Some lemmas

Here we will put some lemmas for supporting our main goal. Let 𝐺 ∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) (with perfect matching) be a connected 
graph having minimal connected subgraph 𝐻 with 𝑗 cycles (𝑗 = 3, 4, 6, 7) and some trees. Let 𝐺′

𝑗
(𝑗 = 3, 4, 6, 7) contain maximum 𝑆𝐸𝐼𝑎

which means for all 𝐺 ∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) we have 𝑆𝐸𝐼𝑎(𝐺′
𝑗
) ≥ 𝑆𝐸𝐼𝑎(𝐺) where 𝑎 > 1. For a graph 𝐺′

𝑗
(𝑗 = 3, 4, 6, 7), minimal subgraph 

and perfect matching are depicted by 𝐻 ′
𝑗

and 𝑀 ′
𝑗

respectively. By [10], the arrangement of 𝑗 cycles of the graph from 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7)
contains 7, 4, 3 and 1 possible cases respectively, as depicted in Fig. 1, Fig. 2, and Fig. 3, respectively.
2

Lemma 1. For any pendent path 𝑃 from 𝐺′
𝑗
(𝑗 = 3, 4, 6, 7) we have the following results:
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Fig. 2. Possible graphs in 𝐺 ∈ 𝑇 4
2𝑚 .

Fig. 3. Possible graphs in 𝐺 ∈ 𝑇 6
2𝑚 and one graph in 𝐺 ∈ 𝑇 7

2𝑚 .

Fig. 4. 𝐺′
𝑗

and 𝐺′′
𝑗

in (1).

Fig. 5. 𝐺′
𝑗

and 𝐺′′
𝑗

in (2).

1. The length of the pendent path 𝑃 is less or equal to two.

2. In 𝐺′
𝑗

every pendent path of length two (if there exists) is attached to the vertex 𝑢 where the vertex 𝑢 has maximum degree in 𝐻 ′
𝑗
.

Proof. (1) We suppose on the contrary that 𝑃 = 𝑢0𝑢1...𝑢𝑠 where 𝑠 ≥ 3 be a pendent path where 𝑑𝑢0 ≥ 3, 𝑑𝑢𝑠 = 1 and 𝑑𝑢𝑖 = 2(𝑖 =
1, 2, ..., (𝑠 − 1)). We define 𝐺′′

𝑗
=𝐺′

𝑗
− 𝑢𝑠−2𝑢𝑠−1 + 𝑢0𝑢𝑠−1 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7). For instance we show 𝐺′′

𝑗
in Fig. 4. So we have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑢0 + 1)𝑎𝑑𝑢0 +1 − (𝑑𝑢0 )𝑎

𝑑𝑢0
]
−
[(
𝑑𝑢𝑠−2

)
𝑎
𝑑𝑢𝑠−2 − (𝑑𝑢𝑠−2 − 1)𝑎𝑑𝑢𝑠−2−1

]
=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (2)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑢𝑠−2 − 1, 𝑑𝑢𝑠−2 ), 𝜇2 ∈ (𝑑𝑢0 , 𝑑𝑢0 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

(2) We suppose on the contrary there exist 𝑥1 and 𝑥2 vertices in 𝐻 ′
𝑗

such that 𝑑𝑥2 ≥ 𝑑𝑥1 ≥ 2. Let 𝑥1 be the end vertex of some pendent 
paths of length two, say 𝑃1 = 𝑥1𝑡1𝑡′1, 𝑃2 = 𝑥1𝑡2𝑡

′
2, ... 𝑃𝑞 = 𝑥1𝑡𝑞𝑡

′
𝑞
. We define 𝐺′′

𝑗
= 𝐺′

𝑗
−
∑𝑞

𝑙=1(𝑥1𝑡𝑙) +
∑𝑞

𝑙=1(𝑥2𝑡𝑙) clearly 𝐺′′
𝑗
∈ 𝑇 𝑗2𝑚. For 

instance, we show 𝐺′′
𝑗

in Fig. 5. From 𝐺′
𝑗

and 𝐺′′
𝑗

we have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥2 + 𝑞)𝑎

𝑑𝑥2 +𝑞 − (𝑑𝑥2 )𝑎
𝑑𝑥2

]
−
[
(𝑑𝑥1 )𝑎

𝑑𝑥1 − (𝑑𝑥1 − 𝑞)𝑎
𝑑𝑥1 −𝑞

]
=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (3)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥1 − 𝑞, 𝑑𝑥1 ), 𝜇2 ∈ (𝑑𝑥2 , 𝑑𝑥2 + 𝑞) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction. □

Lemma 2. If 𝑃1 ∈𝐺′
𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) is an internal path and 𝑃2 ∈𝐺′

𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) is the shortest path between the vertices 𝑤1 and 

𝑤2 where 𝑤1 and 𝑤2 are the common vertices of any two cycles, then

1. Length of the path 𝑃1 is exactly one and both the vertices of 𝑃1 exist in the same cycle.
3

2. Length of the path 𝑃2 is exactly one.
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Fig. 6. 𝐺′
𝑗

and 𝐺′′
𝑗

in (1).

Fig. 7. 𝐺′
𝑗

and 𝐺′′
𝑗

in Lemma 2, Subcase-2.

Proof. (1) Let 𝑃 = 𝑢0𝑢1...𝑢𝑠 where 𝑠 ≥ 1 be an internal path in 𝐺′
𝑗
(𝑗 = 3, 4, 6, 7) where 𝑑𝑢0 ≥ 3, 𝑑𝑢𝑠 ≥ 3 and 𝑑𝑢𝑖 = 2(𝑖 = 1, 2, ..., (𝑠 − 1)).

Case-1: when 𝑠 ≥ 2
Subcase-1.1: if 𝑢0𝑢1 ∈𝑀 ′

𝑗
(𝑗 = 3, 4, 6, 7).

We define 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑢1𝑢2 + 𝑢0𝑢2 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚, as 𝐺′′

𝑗
is shown in Fig. 6. We calculate,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑢0 + 1)𝑎𝑑𝑢0 +1 − (𝑑𝑢0 )𝑎

𝑑𝑢0
]
−
[
(𝑑𝑢1 )𝑎

𝑑𝑢1 − (𝑑𝑢1 − 1)𝑎𝑑𝑢1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (4)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑢1 − 1, 𝑑𝑢1 ), 𝜇2 ∈ (𝑑𝑢0 , 𝑑𝑢0 + 1) and 𝜇2 > 𝜇1, we conclude 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-1.2: if 𝑢0𝑢1 ∉𝑀 ′
𝑗
(𝑗 = 3, 4, 6, 7).

We define 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑢0𝑢1 + 𝑢0𝑢𝑘 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚.

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑢𝑘 + 1)𝑎𝑑𝑢𝑘+1 − (𝑑𝑢𝑘 )𝑎

𝑑𝑢𝑘

]
−
[
(𝑑𝑢1 )𝑎

𝑑𝑢1 − (𝑑𝑢1 − 1)𝑎𝑑𝑢1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (5)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑢1 − 1, 𝑑𝑢1 ), 𝜇2 ∈ (𝑑𝑢𝑘 , 𝑑𝑢𝑘 + 1) and 𝜇2 > 𝜇1, we conclude 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-2: if 𝑠 = 1 but 𝑢0 and 𝑢1 does not exist on same cycle.

As we know that 𝑠 = 1, 𝑑𝑢1 ≥ 3. Here we let 𝑑𝑢0 ≥ 𝑑𝑢1 then there must exist a vertex 𝑤 ∈𝑁𝐺′
𝑗
(𝑢1) −𝑁𝐺′

𝑗
(𝑢0) such that 𝑢1𝑤 ∉𝑀 ′

𝑗
(𝑗 =

3, 4, 6, 7). We define 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑢1𝑤 + 𝑢0𝑤 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚 as shown in Fig. 7.

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑢0 + 1)𝑎𝑑𝑢0 +1 − (𝑑𝑢0 )𝑎

𝑑𝑢0
]
−
[
(𝑑𝑢1 )𝑎

𝑑𝑢1 − (𝑑𝑢1 − 1)𝑎𝑑𝑢1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (6)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑢1 − 1, 𝑑𝑢1 ), 𝜇2 ∈ (𝑑𝑢0 , 𝑑𝑢0 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

(2) We assume that 𝑃2 = 𝑢0𝑢1...𝑢𝑠 where 𝑠 ≥ 1, 𝑤1 = 𝑢0 and 𝑢𝑠 =𝑤2. Let 𝑃2 be the shortest path between the vertices 𝑤1 and 𝑤2 with 
𝑑𝑤1

≥ 3 and 𝑑𝑤2
≥ 3. We suppose on the contrary |𝑃2| = 𝑠 ≥ 2 then by proof (1) and Lemma 1 we can find a vertex of degree one 

adjacent to 𝑢1 and 𝑢1𝑢2 ∉𝑀 ′
𝑗
(𝑗 = 3, 4, 6, 7), so it becomes clear that 𝑑𝑢1 = 3. We define 𝐺′′

𝑗
=𝐺′

𝑗
− 𝑢1𝑢2 + 𝑢2𝑤1 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚.

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑤1

+ 1)𝑎𝑑𝑤1 +1 − (𝑑𝑤1
)𝑎𝑑𝑤1

]
−
[
(𝑑𝑢1 )𝑎

𝑑𝑢1 − (𝑑𝑢1 − 1)𝑎𝑑𝑢1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (7)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑢1 − 1, 𝑑𝑢1 ), 𝜇2 ∈ (𝑑𝑤1
, 𝑑𝑤1

+ 1) and 𝜇2 > 𝜇1, we derive the relation 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction. □

Lemma 3. For any induced cycle say 𝐶 from 𝐺′
𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) the length of this cycle is 3 such that |𝐶| = 3.

Proof. From Lemma 2 we are sure that all induced cycles which belong to 𝐺′
7 ∈ 𝑇

7
2𝑚 having exactly three vertices in it. That is why 

we discuss the graph 𝐺′
𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6) only. We suppose on the contrary, |𝐶| ≥ 4. Let 𝑥 and 𝑦 be the vertices in 𝐶 where 𝑥 has the 

maximum degree and 𝑦 be at the farthest distance from 𝑥. Let 𝑃 ∶ 𝑥 = 𝑥0𝑥1...𝑥𝑠(= 𝑦), be the shortest path and the vertices 𝑥1, 𝑥2, ...𝑥𝑠−1
are not common between any two cycles. Length of the path 𝑃 can be greater or equal to 2 such that |𝑃 | = 𝑠 ≥ 2.
4

Case-1: when 𝑠 = 2
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Fig. 8. 𝐺′
𝑗

and 𝐺′′
𝑗

in Lemma 4, Case-1.

Subcase-1.1: if 𝑥1𝑥2 ∉𝑀 ′
𝑗
(𝑗 = 3, 4, 6).

We define 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑥1𝑥2 + 𝑥𝑥2 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6).

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑥1 )𝑎

𝑑𝑥1 − (𝑑𝑥1 − 1)𝑎𝑑𝑥1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (8)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥1 − 1, 𝑑𝑥1 ), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1) and 𝜇2 > 𝜇1, we conclude 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-1.2: if 𝑥1𝑥2 ∈𝑀 ′
𝑗
(𝑗 = 3, 4, 6).

As we know that 𝑀 ′
𝑗
(𝑗 = 3, 4, 6) so Lemma 1 and Lemma 2 ensure that 𝑑𝑥1 = 2. Let 𝐺′′

𝑗
=𝐺′

𝑗
− 𝑥𝑥1 + 𝑥𝑥2 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6).

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥2 + 1)𝑎𝑑𝑥2 +1 − (𝑑𝑥2 )𝑎

𝑑𝑥2
]
−
[
(𝑑𝑥1 )𝑎

𝑑𝑥1 − (𝑑𝑥1 − 1)𝑎𝑑𝑥1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (9)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥1 − 1, 𝑑𝑥1 ), 𝜇2 ∈ (𝑑𝑥2 , 𝑑𝑥2 + 1) and 𝜇2 > 𝜇1, we get 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-2: if 𝑠 ≥ 3
Subcase-2.1: if 𝑥2𝑥3 ∈𝑀 ′

𝑗
(𝑗 = 3, 4, 6).

We define 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑥1𝑥2 + 𝑥𝑥2 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚. We have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑥1 )𝑎

𝑑𝑥1 − (𝑑𝑥1 − 1)𝑎𝑑𝑥1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (10)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥1 − 1, 𝑑𝑥1 ), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-2.2: if 𝑥2𝑥3 ∉𝑀 ′
𝑗
(𝑗 = 3, 4, 6).

Let 𝐺′′
𝑗
=𝐺′

𝑗
− 𝑥2𝑥3 + 𝑥𝑥3 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚.

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑥2 )𝑎

𝑑𝑥2 − (𝑑𝑥2 − 1)𝑎𝑑𝑥2 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (11)

since 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥2 − 1, 𝑑𝑥2 ), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1) and 𝜇2 > 𝜇1, and we get 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction. □

Lemma 4. Let 𝑃1, 𝑃2, ..., 𝑃𝑟 be the pendent paths of length two in 𝐺′
𝑗
. All these pendent paths are attached to the vertex 𝑥 ∈ 𝑉 (𝐻 ′

𝑗
) where 𝑥 be 

the vertex of maximum degree. Then the graph 𝐺′
𝑗
∈ 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) contains a unique vertex of degree one adjacent to 𝑥 such that 𝑚 ≥ 4.

Proof. We suppose on the contrary that vertex 𝑥 has no pendent edge adjacent to it. According to Lemma 1, Lemma 2, and Lemma 3

there will be two cases below.

Case-1:

We suppose that 𝑃 = 𝑥𝑥0𝑥1 is one of the pendent paths which are adjacent to the vertex 𝑥. Let 𝑦 ∈𝑁𝐻 ′
𝑗
(𝑥) such that (𝑑𝑦 ≥ 𝑑𝑥0 = 2)

with 𝑥𝑦 ∈𝑀 ′
𝑗
. We define 𝐺′′

𝑗
= 𝐺′

𝑗
− 𝑥0𝑥1 + 𝑦𝑥1 clearly 𝐺′′

𝑗
∈ 𝑇

𝑗

2𝑚(𝑗 = 3, 4, 6, 7) for our convenience we show 𝐺′′
𝑗

in Fig. 8. Since 
𝑀 ′′
𝑗
=𝑀 ′

𝑗
− {𝑥0𝑥1, 𝑥𝑦} + {𝑥𝑥0, 𝑦𝑥1} is a perfect matching of 𝐺′′

𝑗
(𝑗 = 3, 4, 6, 7). We have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑦 + 1)𝑎𝑑𝑦+1 − (𝑑𝑦)𝑎𝑑𝑦

]
−
[
(𝑑𝑥0 )𝑎

𝑑𝑥0 − (𝑑𝑥0 − 1)𝑎𝑑𝑥0 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (12)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥0 − 1, 𝑑𝑥0 ), 𝜇2 ∈ (𝑑𝑦, 𝑑𝑦 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Case-2: if pendent path of length 2 does not exist.

Lemma 2 and Lemma 3 guarantee that the vertex 𝑥 must be common in at least two induced cycles of length 3 in 𝐺′
𝑗
(3, 4, 6, 7). As 

we know that 𝑚 ≥ 4, so we consider 𝑤1 is a pendent vertex adjacent to 𝑤2 ∈ 𝑉 (𝐻 ′
𝑗
) − 𝑥 where 𝑤2 ∈𝑁𝐻 ′

𝑗
(𝑥). We consider the vertex 

𝑤3 ∈𝐻 ′
𝑗

with 𝑥𝑤3 ∈𝑀 ′
𝑗
(𝑑𝑤3

≥ 2). Here we make two sub-cases.
5

Subcase-2.1: if 𝑤3 ∈𝑁𝐻 ′
𝑗
(𝑥) ∩𝑁𝐻 ′

𝑗
(𝑤2)
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Fig. 9. 𝐺′
𝑗

and 𝐺′′
𝑗

in Lemma 4, Case-2.1.

Fig. 10. 𝐺′
𝑗

and 𝐺′′
𝑗

in Lemma 4, Subcase-2.2.

We define 𝐺′′
𝑗
= 𝐺′

𝑗
− 𝑤1𝑤2 + 𝑤1𝑥 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚 for our convenience we show 𝐺′′

𝑗
in Fig. 9. Since 𝑀 ′′

𝑗
=𝑀 ′

𝑗
− {𝑥𝑤3, 𝑤1𝑤2} +

{𝑥𝑤1, 𝑤2𝑤3} is a perfect matching of 𝐺′′
𝑗
(𝑗 = 3, 4, 6, 7). We have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑤2

)𝑎𝑑𝑤2 − (𝑑𝑤2
− 1)𝑎𝑑𝑤2 −1

]
=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (13)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑤2
− 1, 𝑑𝑤2

), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) > 𝑆𝐸𝐼𝑎(𝐺′

𝑗
), a contradiction.

Subcase-2.2: if 𝑤3 ∉𝑁𝐻 ′
𝑗
(𝑥) ∩𝑁𝐻 ′

𝑗
(𝑤2)

Lemma 2 and Lemma 3 guarantee that there exists a vertex 𝑤′
1 adjacent to 𝑤′

2 ∉ 𝑁𝐻 ′
𝑗
(𝑥) ∩ 𝑁𝐻 ′

𝑗
(𝑤2) such that 𝑑𝑤′

1=1
and one of 

{𝑤2, 𝑤′
2} has degree 3. We assume that 𝑑𝑤′

2
= 3. We define 𝐺′′

𝑗
= 𝐺′

𝑗
−𝑤1𝑤2 −𝑤′

2𝑤
′
1 + 𝑥𝑤1 +𝑤3𝑤

′
1 clearly 𝐺′′

𝑗
∈ 𝑇 𝑗2𝑚 because 𝑀 ′′

𝑗
=

𝑀 ′
𝑗
− {𝑤1𝑤2, 𝑤′

2𝑤
′
1, 𝑥𝑤3} + {𝑥𝑤1, 𝑤2𝑤

′
2, 𝑤3𝑤

′
1} is a perfect matching of 𝐺′′

𝑗
(𝑗 = 3, 4, 6, 7). For instance we define 𝐺′′

𝑗
in Fig. 10. We 

have,

𝑆𝐸𝐼𝑎(𝐺′′
𝑗
) − 𝑆𝐸𝐼𝑎(𝐺′

𝑗
) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑤2

)𝑎𝑑𝑤2 − (𝑑𝑤2
− 1)𝑎𝑑𝑤2 −1

]
+
[
(𝑑𝑤3

+ 1)𝑎𝑑𝑤3 +1 − (𝑑𝑤3
)𝑎𝑑𝑤3

]
−
[
(𝑑𝑤′

2
)𝑎
𝑑
𝑤′2 − (𝑑𝑤′

2
− 1)𝑎

𝑑
𝑤′2

−1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
+
[
𝑎𝜇4 (1 + 𝜇4𝑙𝑛𝑎) − 𝑎𝜇3 (1 + 𝜇3𝑙𝑛𝑎)

]
, (14)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑤2
− 1, 𝑑𝑤2

), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1), 𝜇3 ∈ (𝑑𝑤′
2
− 1, 𝑑𝑤′

2
), 𝜇4 ∈ (𝑑𝑤3

, 𝑑𝑤3
+ 1) and 𝜇2 > 𝜇1, 𝜇4 > 𝜇3, we have 𝑆𝐸𝐼𝑎(𝐺′′

𝑗
) >

𝑆𝐸𝐼𝑎(𝐺′
𝑗
), a contradiction. □

3. Main results

In the current section, we have investigated the graph from 𝑇 𝑗2𝑚(𝑗 = 3, 4, 6, 7) which has maximum 𝑆𝐸𝐼𝑎 where 𝑎 > 1. Following 
this, we also described the unique graph in 𝑇2𝑚 having the highest 𝑆𝐸𝐼𝑎-value.

Theorem 1. Let 𝑚 ≥ 4, 𝑎 > 1 and 𝐺 ∈ 𝑇 3
2𝑚 then 𝑆𝐸𝐼𝑎(𝐺) ≤ 𝑆𝐸𝐼𝑎(𝐹3(2𝑚)) and the equality in the bound is attained if and only if 𝐺 ≅ 𝐹3(2𝑚)

where 𝐹3(2𝑚) is depicted in Fig. 11.

Proof. From Lemma 1, Lemma 2 and Lemma 3, it is easy to understand that 𝐻 ′
3 ≅ 𝐹3 or 𝐻 ′

3 ≅ 𝐹
′
3 (depicted in Fig. 11). Let 𝑀 ′

3 be the 
perfect matching in 𝐺′

3. Here we claim that 𝐻 ′
3 ≅ 𝐹3.

We suppose on the contrary that 𝐻 ′
3 ≅ 𝐹

′
3 . Let 𝑥, 𝑦, 𝑥1 and 𝑥2 be the vertices depicted in Fig. 11. In Fig. 11, 𝑥 and 𝑦 are the only 

vertices which have maximum degree. Lemma 4 and Lemma 1 ensure the existence of a pendent vertex which is adjacent to 𝑦 where 
6

all the pendent paths of length two end at the vertex 𝑦. From above discussion we can say 𝑥𝑦 ∉𝑀 ′
3.
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Fig. 11. 𝐹3(2𝑚), 𝐹3 , 𝐹
′
3 and 𝐺𝑖(𝑖 = 1,2,3).

Case-1: if 𝑥𝑥1 ∉𝑀 ′
3 and 𝑥𝑥2 ∉𝑀 ′

3.

We define 𝐺′′
3 =𝐺′

3 − 𝑥𝑥1 − 𝑥𝑥2 + 𝑦𝑥1 + 𝑦𝑥2 clearly 𝐺′′
3 ∈ 𝑇 3

2𝑚. We have,

𝑆𝐸𝐼𝑎(𝐺′′
3 ) − 𝑆𝐸𝐼𝑎(𝐺

′
3) =

[
(𝑑𝑦 + 2)𝑎𝑑𝑦+2 − (𝑑𝑦)𝑎𝑑𝑦

]
−
[
(𝑑𝑥)𝑎𝑑𝑥 − (𝑑𝑥 − 2)𝑎𝑑𝑥−2

]
= 2.

[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (15)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥 − 2, 𝑑𝑥), 𝜇2 ∈ (𝑑𝑦, 𝑑𝑦 + 2) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
3 ) > 𝑆𝐸𝐼𝑎(𝐺

′
3), a contradiction.

Case-2: if 𝑥𝑥1 ∈𝑀 ′
3 or 𝑥𝑥2 ∈𝑀 ′

3.

If 𝑥𝑥1 ∈𝑀 ′
3 then there exists a vertex of degree one say 𝑥3 adjacent to 𝑥2 such that 𝑥2𝑥3 ∈𝑀 ′

3. We define 𝐺′′
3 =𝐺′

3 −𝑥2𝑥3 +𝑥𝑥3 clearly 
𝐺′′
3 ∈ 𝑇 3

2𝑚 because 𝑀 ′′
3 =𝑀 ′

3 − {𝑥𝑥1, 𝑥2𝑥3} + {𝑥𝑥3, 𝑥1𝑥2}, and 𝑀 ′′
3 belongs to the perfect matching in 𝐺′′

3 .

𝑆𝐸𝐼𝑎(𝐺′′
3 ) − 𝑆𝐸𝐼𝑎(𝐺

′
3) =

[
(𝑑𝑥 + 1)𝑎𝑑𝑥+1 − (𝑑𝑥)𝑎𝑑𝑥

]
−
[
(𝑑𝑥2 )𝑎

𝑑𝑥2 − (𝑑𝑥2 − 1)𝑎𝑑𝑥2 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (16)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥2 − 1, 𝑑𝑥2 ), 𝜇2 ∈ (𝑑𝑥, 𝑑𝑥 + 1) and 𝜇2 > 𝜇1, we obtain 𝑆𝐸𝐼𝑎(𝐺′′
3 ) > 𝑆𝐸𝐼𝑎(𝐺

′
3), a contradiction.

For 𝑚 ≥ 4 there exist some graphs (depicted in Fig. 11). These graphs fulfil (characterized by Lemma 1, Lemma 2, Lemma 3, and 
Lemma 4) the properties of the graph for maximum 𝑆𝐸𝐼𝑎. We calculate the difference,

𝑆𝐸𝐼𝑎(𝐹3(2𝑚)) −𝑆𝐸𝐼𝑎(𝐺1) =
[
(𝑚+ 3)𝑎𝑚+3 − (𝑚+ 2)𝑎𝑚+2 − 2.3𝑎3 + 3.2𝑎2 − 𝑎

]
>
[
4𝑎4 − 3𝑎3 − 2.3𝑎3 + 3.2𝑎2 − 𝑎

]
> 0 (17)

In the same way, we can show that 𝑆𝐸𝐼𝑎(𝐺1) > 𝑆𝐸𝐼𝑎(𝐺2) > 𝑆𝐸𝐼𝑎(𝐺3). Hence the graph 𝐹3(2𝑚) contains maximum 𝑆𝐸𝐼𝑎-value in 
𝑇 3
2𝑚. □

Theorem 2. Let 𝑚 ≥ 3, 𝑎 > 1 and 𝐺 ∈ 𝑇 4
2𝑚 then 𝑆𝐸𝐼𝑎(𝐺) ≤ 𝑆𝐸𝐼𝑎(𝐹4(2𝑚)) and the equality in the bound is attained if and only if 𝐺 ≅ 𝐹4(2𝑚). 

Particularly when 𝑚 = 3 then 𝐹4 contains maximum 𝑆𝐸𝐼𝑎 where 𝐹4(2𝑚) and 𝐹4 are depicted in Fig. 12.

Proof. From Lemma 1, Lemma 2, and Lemma 3, it is easy to understand that 𝐻 ′
4 ≅ 𝐹4 or 𝐻 ′

4 ≅ 𝐹
′
4 (depicted in Fig. 12). Let 𝐺′

4 contain 
a perfect matching say 𝑀 ′

4. Here we claim that 𝐻 ′
4 ≅ 𝐹4.

We suppose on the contrary that 𝐻 ′
4 ≅ 𝐹

′
4 . Let 𝑥, 𝑦 be the vertices in 𝐹 ′

4 depicted in Fig. 12. As we know that 𝑑𝑥 = 2 in 𝐹 ′
4 so there will 

exist a vertex 𝑥1 ∈ 𝐹 ′
4(𝑑𝑥1 ≥ 2) such that 𝑦𝑥1 ∉𝑀 ′

4. We define 𝐺′′
4 =𝐺′

4 − 𝑦𝑥1 + 𝑥𝑦 clearly 𝐺′′
4 ∈ 𝑇 4

2𝑚.

𝑆𝐸𝐼𝑎(𝐺′′
4 ) − 𝑆𝐸𝐼𝑎(𝐺

′
4) =

[
(𝑑𝑦 + 1)𝑎𝑑𝑦+1 − (𝑑𝑦)𝑎𝑑𝑦

]
−
[
(𝑑𝑥1 )𝑎

𝑑𝑥1 − (𝑑𝑥1 − 1)𝑎𝑑𝑥1 −1
]

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (18)

from 𝑎 > 1, 𝜇1 ∈ (𝑑𝑥1 − 1, 𝑑𝑥1 ), 𝜇2 ∈ (𝑑𝑦, 𝑑𝑦 + 1) and 𝜇2 > 𝜇1, we have 𝑆𝐸𝐼𝑎(𝐺′′
4 ) > 𝑆𝐸𝐼𝑎(𝐺

′
4), a contradiction.

It is easy to calculate that (𝐹4) contains maximum 𝑆𝐸𝐼𝑎-value for 𝑚 = 3. For 𝑚 ≥ 4 there are only four possible graphs (depicted in 
Fig. 12). These graphs fulfil the properties of the graph for maximum 𝑆𝐸𝐼𝑎. We calculate the difference,

[ ]

7

𝑆𝐸𝐼𝑎(𝐹4(2𝑚)) −𝑆𝐸𝐼𝑎(𝐺1) = (𝑚+ 2)𝑎𝑚+2 − (𝑚+ 1)𝑎𝑚+1 − 4𝑎4 + 2.2𝑎2 − 𝑎
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Fig. 12. 𝐹4(2𝑚), 𝐹4 , 𝐹
′
4 and 𝐺𝑖(𝑖 = 1,2,3).

Fig. 13. 𝐹6(2𝑚), 𝐹 ′
6 and 𝐺𝑖(𝑖 = 1,2,3,4,5).

>
[
5𝑎5 − 2.4𝑎4 + 2.2𝑎2 − 𝑎

]
> 0 (19)

Similarly, we may demonstrate that 𝑆𝐸𝐼𝑎(𝐺1) > 𝑆𝐸𝐼𝑎(𝐺2) > 𝑆𝐸𝐼𝑎(𝐺3). Hence the graph 𝐹4(2𝑚) contains maximum 𝑆𝐸𝐼𝑎-value in 
𝑇 4
2𝑚. □

Theorem 3. Let 𝑚 ≥ 3, 𝑎 > 1 and 𝐺 ∈ 𝑇 6
2𝑚 then 𝑆𝐸𝐼𝑎(𝐺) ≤ 𝑆𝐸𝐼𝑎(𝐹6(2𝑚)) and the equality in the bound is attained if and only if 𝐺 ≅ 𝐹6(2𝑚)

where 𝐹6(2𝑚) is depicted in Fig. 13.

Proof. For 𝑚 = 3 from Lemma 1, Lemma 2, and Lemma 3, it becomes easy to understand that 𝐺′
6 ≅ 𝐹6(6) or 𝐺′

6 ≅ 𝐹
′
6 (depicted in 

Fig. 13).

[ ] [ ]

8

𝑆𝐸𝐼𝑎(𝐹6(6)) −𝑆𝐸𝐼𝑎(𝐹 ′
6) = 5𝑎5 − 4𝑎4 − 4𝑎4 − 3𝑎3



Heliyon 9 (2023) e15706M. Rizwan, A.A. Bhatti, M. Javaid et al.

Fig. 14. 𝐹7(2𝑚) and 𝐹 ′
7 (2𝑚).

=
[
𝑎𝜇2 (1 + 𝜇2𝑙𝑛𝑎) − 𝑎𝜇1 (1 + 𝜇1𝑙𝑛𝑎)

]
, (20)

from 𝑎 > 1, 𝜇1 ∈ (3, 4), 𝜇2 ∈ (4, 5) and 𝜇2 > 𝜇1, we get 𝑆𝐸𝐼𝑎(𝐹6(6)) > 𝑆𝐸𝐼𝑎(𝐹 ′
6), a contradiction.

For 𝑚 ≥ 4 there are only six possible graphs (depicted in Fig. 13). These graphs fulfil (characterized by Lemma 1 to Lemma 4) the 
properties of the graph for maximum 𝑆𝐸𝐼𝑎. We calculate the difference,

𝑆𝐸𝐼𝑎(𝐹6(2𝑚)) −𝑆𝐸𝐼𝑎(𝐺1) =
[
(𝑚+ 2)𝑎𝑚+2 − (𝑚+ 1)𝑎𝑚+1 − 4𝑎4 + 2.2𝑎2 − 𝑎

]
>
[
5𝑎5 − 2.4𝑎4 + 2.2𝑎2 − 𝑎

]
> 0. (21)

Hence, 𝑆𝐸𝐼𝑎(𝐹6(2𝑚)) > 𝑆𝐸𝐼𝑎(𝐺1). In the same way, we can show that 𝑆𝐸𝐼𝑎(𝐺1) > 𝑆𝐸𝐼𝑎(𝐺2) > 𝑆𝐸𝐼𝑎(𝐺3) and 𝑆𝐸𝐼𝑎(𝐺4) > 𝑆𝐸𝐼𝑎(𝐺5). 
We also notice that 𝑆𝐸𝐼𝑎(𝐺1) = 𝑆𝐸𝐼𝑎(𝐺4) because 𝐺1 and 𝐺4 have the same degree sequence. Hence the graph 𝐹6(2𝑚) contains 
maximum 𝑆𝐸𝐼𝑎-value in 𝑇 6

2𝑚. □

Theorem 4. Let 𝑚 ≥ 3, 𝑚 ≠ 4, 𝑎 > 1 and 𝐺 ∈ 𝑇 7
2𝑚 then 𝑆𝐸𝐼𝑎(𝐺) ≤ 𝑆𝐸𝐼𝑎(𝐹7(2𝑚)) and the equality in the bound is attained if and only if 

𝐺 ≅ 𝐹7(2𝑚) where 𝐹7(2𝑚) is depicted in Fig. 14.

Proof. For 𝑚 = 3, Lemma 4 ensures that 𝐹7(6) contains maximum 𝑆𝐸𝐼𝑎-value.

For 𝑚 ≥ 5 there exist some graphs (depicted in Fig. 14). These graphs fulfil the properties (characterized by Lemma 1 to Lemma 4) of 
the graph for maximum 𝑆𝐸𝐼𝑎-value in 𝑇 7

2𝑚. We calculate the difference,

𝑆𝐸𝐼𝑎(𝐹7(2𝑚)) −𝑆𝐸𝐼𝑎(𝐹 ′
7(2𝑚)) =

[
(𝑚+ 1)𝑎𝑚+1 − (𝑚)𝑎𝑚 − 2.4𝑎4 + 2.3𝑎3 + 2𝑎2 − 𝑎

]
≥
[
6𝑎6 − 5𝑎5 − 2.4𝑎4 + 2.3𝑎3 + 2𝑎2 − 𝑎

]
> 0 (22)

Finally, we conclude 𝐹7(2𝑚) has maximum 𝑆𝐸𝐼𝑎-value in 𝑇 7
2𝑚. □

Theorem 5. For 𝑎 > 1, 𝐹6(6) and 𝐹3(2𝑚) maximize 𝑆𝐸𝐼𝑎 in 𝑇2𝑚 when 𝑚 = 3 and 𝑚 ≥ 4 respectively.

Proof. For 𝑚 = 3, we have the graphs 𝐹6(6), 𝐹4 and 𝐹7(6). We calculate the following difference.

𝑆𝐸𝐼𝑎(𝐹6(6)) −𝑆𝐸𝐼𝑎(𝐹4) =
[
3𝑎3 + 𝑎− 2𝑎+ 2𝑎2

]
> 0, (23)

and

𝑆𝐸𝐼𝑎(𝐹6(6)) −𝑆𝐸𝐼𝑎(𝐹7(6)) =
[
5𝑎5 + 2.2𝑎2 − 2.4𝑎4 − 𝑎

]
> 0. (24)

This implies that 𝐹6(6) has the maximum 𝑆𝐸𝐼𝑎-value.

For 𝑚 = 4 we have the graphs 𝐹3(8), 𝐹4(8) and 𝐹6(8), 𝐹7(8) and 𝐹 ′
7(8). We calculate the following difference.

𝑆𝐸𝐼𝑎(𝐹3(8)) −𝑆𝐸𝐼𝑎(𝐹4(8)) =
[
7𝑎7 − 6𝑎6 − 2.3𝑎3 + 3.2𝑎2 − 𝑎

]
> 0, (25)

and

𝑆𝐸𝐼𝑎(𝐹6(8)) −𝑆𝐸𝐼𝑎(𝐹7(8)) =
[
6𝑎6 − 5𝑎5 − 4𝑎4 + 2.2𝑎2 − 𝑎

]
> 0, (26)

and

𝑆𝐸𝐼𝑎(𝐹6(8)) −𝑆𝐸𝐼𝑎(𝐹 ′
7(8)) =

[
6𝑎6 − 4.4𝑎4 + 2.3𝑎3 + 3.2𝑎2 − 2𝑎

]
> 0. (27)

As we know that 𝑆𝐸𝐼𝑎(𝐹4(8)) = 𝑆𝐸𝐼𝑎(𝐹6(8)), 𝐹3(8) contains maximum 𝑆𝐸𝐼𝑎-value.

For 𝑚 ≥ 5
9
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𝑆𝐸𝐼𝑎(𝐹3(2𝑚)) −𝑆𝐸𝐼𝑎(𝐹4(2𝑚)) =
[
(𝑚+ 3)𝑎𝑚+3 − (𝑚+ 2)𝑎𝑚+2 − 2.3𝑎3 + 3.2𝑎2 − 𝑎

]
>
[
4𝑎4 − 3𝑎3 − 2.3𝑎3 + 3.2𝑎2 − 𝑎

]
> 0, (28)

and

𝑆𝐸𝐼𝑎(𝐹6(2𝑚)) −𝑆𝐸𝐼𝑎(𝐹7(2𝑚)) =
[
(𝑚+ 2)𝑎𝑚+2 − (𝑚+ 1)𝑎𝑚+1 − 4𝑎4 + 2.2𝑎2 − 𝑎

]
>
[
5𝑎5 − 2.4𝑎4 + 2.2𝑎2 − 𝑎

]
> 0. (29)

Since 𝑆𝐸𝐼𝑎(𝐹4(2𝑚)) = 𝑆𝐸𝐼𝑎(𝐹6(2𝑚)), we conclude that 𝐹3(2𝑚) contains maximum 𝑆𝐸𝐼𝑎-value in 𝑇2𝑚. □

4. Conclusion

In this paper, the extremal values of variable sum exdeg index 𝑆𝐸𝐼𝑎 have been investigated for the class of tricyclic graphs. 
Therefore, the extremal values of variable sum exdeg index for multicyclic graphs are still an open problem for different values of 𝑎.
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