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The colonization of the human gut microbiome begins at birth, and over time, these
microbial communities become increasingly complex. Most of what we currently know
about the human microbiome, especially in early stages of development, was described
using culture-independent sequencing methods that allow us to identify the taxonomic
composition of microbial communities using genomic techniques, such as amplicon or
shotgun metagenomic sequencing. Each method has distinct tradeoffs, but there has
not been a direct comparison of the utility of these methods in stool samples from
very young children, which have different features than those of adults. We compared
the effects of profiling the human infant gut microbiome with 16S rRNA amplicon vs.
shotgun metagenomic sequencing techniques in 338 fecal samples; younger than 15,
15–30, and older than 30 months of age. We demonstrate that observed changes in
alpha-diversity and beta-diversity with age occur to similar extents using both profiling
methods. We also show that 16S rRNA profiling identified a larger number of genera and
we find several genera that are missed or underrepresented by each profiling method.
We present the link between alpha diversity and shotgun metagenomic sequencing
depth for children of different ages. These findings provide a guide for selecting an
appropriate method and sequencing depth for the three studied age groups.

Keywords: 16S rRNA gene, metagenome, pediatric cohort, gut microbiome, sequencing depth, amplicon
sequencing

INTRODUCTION

There is increasing evidence that changes in activity and diversity of the gut microorganisms are
associated with the development of diseases and conditions such as type II diabetes (Hartstra et al.,
2015; Lambeth et al., 2015), cancer (Marchesi et al., 2011; Bultman, 2014), and even depression
(Foster and McVey Neufeld, 2013). Assessing the taxonomic diversity of gut microbes is a key first
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step toward understanding how those microbes may affect
host health. Most of what is currently known about the
gut microbiome has been derived using culture-independent
profiling methods such as next-generation sequencing (Lozupone
et al., 2012; Ji and Nielsen, 2015; Malla et al., 2019). The two
most widely used culture-independent methods are amplicon
sequencing, a method that amplifies variable regions of a highly
conserved bacterial gene such as the 16S rRNA gene, and shotgun
metagenomic sequencing, an approach that sequences all of the
DNA present in a sample. While each of these methods have
unique advantages, the tradeoffs of these methods in young
children in the context of sequencing depth and coverage remain
largely unexplored.

Profiling microbial communities using 16S rRNA genes
is a straightforward and cost-effective method to profile the
taxonomic composition of a microbial community, but it has
limited taxonomic resolution due to the conservation of the
target gene and length of amplicon product. The reliance on
the 16S rRNA gene also means that we have limited ability to
profile non-bacterial members of the gut microbial community
such as Archaea and Eukarya. Furthermore, the 16S rRNA
gene does not provide us with the functional capacity of the
microbe, despite there being tools that attempt to estimate it
(Douglas et al., 2020; Wemheuer et al., 2020). In addition,
the amplification step used to enrich for the rRNA gene can
introduce sequence artifacts (PCR errors) and subsequently,
bias in quantifying taxa in the resulting taxonomic profiles
(Acinas et al., 2005; Tremblay et al., 2015). For instance, the
choice of primers that bind to the 16S rRNA gene during
amplification or the presence of introns have been shown to
have a great effect on microbiome community characterization
(Salman et al., 2012; Tremblay et al., 2015; Chen et al., 2019).
However, despite the need for a PCR amplification step, this
type of profiling requires a relatively low number (∼50,000)
of sequenced reads per sample to maximize identification of
rare taxa and is generally cheaper than shotgun metagenomic
sequencing. Amplified sequences are computationally binned
and identified typically using either operational taxonomic unit
(OTU) clustering, a method which clusters sequences based on
percent sequence similarity, and more recently, methods such
as amplicon sequence variant (ASV) identification (Callahan
et al., 2016), or sub-operational taxonomic unit (sOTU) (Amir
et al., 2017), methods which identify unique sequences and
remove low quality reads and sequence artifacts, by using
a probabilistic model to assess the probability that a rare
sequence is a true biological variant. In general, OTU-based
approaches overestimate alpha diversity (Nearing et al., 2018). In
addition, the identification of OTUs, ASVs, or sOTUs is database-
independent and can therefore be used to identify novel microbes
in previously unsampled environments (Callahan et al., 2017). In
our study, we use the DADA2 pipeline (Callahan et al., 2017),
which aims to resolve OTUs to the genus, and sometimes species
level. However, many taxa often cannot be resolved because
the V4–V5 doesn’t provide enough nucleotide variability to
resolve different taxa.

Shotgun metagenomics indiscriminately sequences all the
DNA material in a sample, and therefore typically requires

more sequenced reads per sample to find unique taxonomic
identifiers (Zaheer et al., 2018). This need for increased
sequencing depth carries a higher cost (Comeau et al., 2017), but
yields information on many genes rather than only one. This
substantially increases resolution in taxonomic assignments–
metagenomic profiling often provides species-level assignment
where amplicon sequencing is restricted to identifying genera
(Ranjan et al., 2016) and has the additional benefit of providing
direct evidence of gene functional variation in strains present.
Moreover, because shotgun metagenomics does not rely on
the characterization of a gene that is uniquely present in
microbes to assign taxonomy, it can be used to investigate
non-microbial parts of the microbiome (e.g., fungi, viruses,
and micro-eukaryotes) that do not have the 16S rRNA gene.
These reads can be used to assign taxonomy using different
methods: comparison of marker genes (Segata et al., 2012;
Tovo et al., 2020), species-specific k-mer comparison (Wood
et al., 2019), and assembly followed by whole genome alignment
(Couronne et al., 2003). Metagenomic reads may also be used to
generate assemblies from multiple metagenomic studies, yielding
higher resolution assemblies that provide further insight into
microbial diversity (Wilkins et al., 2019). However, despite these
advantages, metagenome taxonomic profiling typically relies
heavily on reference databases, which can make it challenging
to identify novel microbes without computationally expensive
assembly, and can make it more susceptible to false positives
(Peabody et al., 2015; Gonzalez et al., 2016; McIntyre et al., 2017).

The ability to draw conclusions about taxonomy from
microbiome sequencing data depends not only on the sequencing
method, but also on sequencing depth: how many times on
average a given piece of DNA is likely to be sequenced given
a fixed read length and the assumption that all regions of a
genome are equally likely to be sequenced (Sims et al., 2014). If it
were possible to achieve the resolution of shotgun metagenomics
at a lower cost, we could sequence more deeply, identify
less abundant taxa, obtain information about the functional
potential of the microbiota, and learn more about the microbial
diversity within and between samples (Pereira-Marques et al.,
2019). However, deeper sequencing is more expensive. A few
studies have investigated the potential for reduced metagenomic
sequencing (Hillmann et al., 2018; Zaheer et al., 2018), but
there has not been substantial research analyzing the reduced
sequencing depth for investigation of the gut microbiomes in
young infants and children. The gut microbial communities of
children are potentially good candidates for experimentation
with shallower sequencing depths because their communities
have lower gut microbial diversity until their microbiomes
stabilize and become more adult-like around 2–3 years of age
(Palmer et al., 2007; Yatsunenko et al., 2012; Stewart et al., 2018;
Radjabzadeh et al., 2020).

Both profiling methods have been utilized in children
(Vatanen et al., 2016; Ravi et al., 2018), and the known tradeoffs
between amplicon and metagenomic sequencing have been
previously explored in soil (Brumfield et al., 2020) and plant
environments (Regalado et al., 2020), as well as in human adult
microbiomes (Eloe-Fadrosh et al., 2016; Ranjan et al., 2016;
Laudadio et al., 2018). To date, no one has directly investigated
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the relative tradeoffs between 16S rRNA amplicon sequencing
and metagenomic sequencing at different sequencing depths
in the gut microbiomes of infants and young children (Sinha
et al., 2017; Laudadio et al., 2018; Jayasinghe et al., 2020). In
this study, we compared paired 16S rRNA vs. metagenomic
sequencing gut microbiome datasets from a cohort of young
children broken into 3 age brackets: less than 15, 15–30, and
over 30 months. Specifically, we investigated taxa that were
only identified by one method or the other and the effect of
sequencing depth on diversity measurements of children in
different ages. Ultimately, we show that decreasing shotgun-
metagenomic sequencing depth in children less than 30 months
can adequately characterize the infant gut microbiome.

MATERIALS AND METHODS

Cohort Description
Samples for this study came from a subset of 338 children
(Supplementary Figure 1) in the RESONANCE Cohort
(Providence, RI), an accelerated-longitudinal study of healthy
children ages 0–12 years. The RESONANCE cohort is part
of the Environmental influences on Child Health Outcomes
(ECHO) Program (Forrest et al., 2018; Gillman and Blaisdell,
2018), which aims to investigate the effects of environmental
factors on childhood health and development. Children with
known major risk factors for developmental abnormalities at
enrollment were excluded from the study. Approval for the
study was granted by the local Institutional Review Board at
Rhode Island Hospital and IRB Authorization Agreement was
established between Rhode Island Hospital, Brandeis University
and Wellesley College. All experiments adhered to the regulation
of the review board. Written informed consent was obtained
from all parents or legal guardians of enrolled participants.

Stool Sample Collection and Handling
One stool sample per child (n = 338) was collected by parents in
OMR-200 tubes (OMNIgene GUT, DNA Genotek, Ottawa, ON,
Canada), stored on ice, and brought within 24 h to the lab in
RI where they were immediately frozen at −80◦C. Stool samples
were not collected if the infant had taken antibiotics within
the last 2 weeks. Samples were transported to Wellesley College
(Wellesley, MA, United States) on dry ice for further processing.

DNA Extraction and Sequencing of
Metagenomes and 16S rRNA Gene
Amplicons
Nucleic acids were extracted from a 200 µL aliquot of fecal
slurry using the RNeasy PowerMicrobiome kit automated on the
QIAcube (Qiagen, Germantown, MD, United States), according
to the manufacturer’s protocol, excluding the DNA degradation
steps. The samples were subjected to bead beating using the
Qiagen PowerLyzer 24 Homogenizer (Qiagen, Germantown,
MD, United States) at 2500 speed for 45 s. The samples were
transferred to the QIAcube to complete the protocol, and

extracted DNA was eluted in a final volume of 100 µL. DNA
extracts were stored at−80◦C until sequenced.

Samples were sequenced at the Integrated Microbiome
Resource (IMR) (Dalhousie University, Halifax, NS, Canada;
Comeau et al., 2017). To sequence metagenomes, a pooled library
was prepared using the Illumina Nextera Flex Kit for MiSeq
and NextSeq (a PCR-based library preparation procedure) from
1 ng of each sample where samples were enzymatically sheared
and tagged with adaptors, PCR amplified while adding barcodes,
purified using columns or beads, and normalized using Illumina
beads or manually. Samples were then pooled onto a plate
and sequenced on the Illumina NextSeq 550 platform using
150 + 150 bp paired-end “high output” chemistry, generating
∼400 million raw reads and ∼120 Gb of sequence (NCBI
BioProject PRJNA695570).

For sequencing 16S rRNA gene amplicons, the V4–V5 region
of the 16S ribosomal RNA gene was sequenced according
to the protocol described by Comeau et al. (2017). Briefly,
the V4–V5 region was amplified once using the Phusion
High-Fidelity DNA polymerase (Thermo Fisher Scientific,
Waltham, MA, United States) and universal bacterial primers
515FB: 5′-GTGYCAGCMGCCGCGGTAA-3′ and 926R: 5′-
CCGYCAATTYMTTTRAGTTT-3′ (Parada et al., 2016; Walters
et al., 2016). These primers had appropriate Illumina adapters
and error-correcting barcodes unique to each sample to allow up
to 380 samples to be simultaneously run per single flow cell. After
being pooled into a single library and quantified fluorometrically,
samples were cleaned up and normalized using the high-
throughput Charm Biotech Just-a-Plate 96-well Normalization
Kit (Charm Biotech, Cape Girardeau, MO, United States).
The normalized samples were sequenced on the Illumina
MiSeq platform (Illumina, San Diego, CA, United States) using
300 + 300 bp paired-end V3 chemistry, producing on average
55,000 raw reads per sample (Comeau et al., 2017).

16S rRNA Gene Amplicon Processing
and Analysis
Reads profiled using the 16S rRNA gene were analyzed using
the Quantitative Insights in Microbial Ecology 2 (QIIME2), v
2021.2.0 (Bolyen et al., 2019) and we used a modified protocol
developed by Comeau et al. (2017). Briefly, primers flanking V4–
V5 for the RESONANCE cohort or V4 for the DIABIMMUNE
cohort were removed from Fastq reads using the cutadapt v 3.2
QIIME2 plugin (Martin, 2011). Fastq reads were then filtered,
trimmed and merged in DADA2 (Callahan et al., 2016) to
generate a table of ASVs. A multiple-sequence alignment was
created using MAFFT, and FastTree was used to create an
unrooted phylogenetic tree, both with default values (Price et al.,
2010). A root was added to the tree at the midpoint of the
largest tip-to-tip distance in the tree. Taxonomy was assigned
to the ASVs using a Naïve-Bayes classifier compared against
a SILVA v 138.99 reference database trained on the 515–926
region of the 16S rRNA gene (Bokulich et al., 2018). Rarefaction
curves showed that the majority of samples reached asymptote,
indicating sequencing depth was appropriate for analyses (mean
reads per sample∼39k).
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Metagenome Data Processing and
Analysis
Metagenomic data were analyzed using bioBakery workflows
with all necessary dependencies and default parameters (McIver
et al., 2018). Briefly, KneadData v 0.7.10 was used to trim
and filter raw sequence reads, and to separate human and
16S ribosomal gene reads from bacterial sequences. Samples
that passed quality control were taxonomically profiled to the
species level using MetaPhlAn v 3.0.7, which uses alignment to
a reference database of “marker genes” to identify taxonomic
composition (Beghini et al., 2020).

Statistical Analysis
Statistical analyses were carried out in R (4.0.3). vegan (v
2.5-6) was used for all alpha-diversity calculations: Shannon
diversity index (Shannon, 1948) (alpha diversity measurement of
evenness and richness); evenness (homogeneous the distribution
of taxa counts) and richness (number of taxa in a community).
Pairwise Bray-Curtis dissimilarity was used to assess beta-
diversity, or the overall variation between each sample (Bray
and Curtis, 1957). The Bray-Curtis dissimilarity metric compares
two communities based on the number or relative abundance of
each taxon present in at least one of the communities. When we
calculated these values, we assumed that the set of dissimilarities
calculated across a group was independent, even when the
same child was paired to other children multiple times. These
distance matrices were used for principal coordinates analysis
(PCoA) to create ordinations. The two principal components
that explained the most variation were used to create biplots
(Supplementary Figure 2).

Univariate comparisons were performed in two-sample two-
tailed t-tests when we could assume normality, and Wilcoxon
Signed Rank tests when we could not. P-values of less than 0.05
[or the equivalent after Benjamini-Hochberg false discovery rate
correction (Benjamini and Hochberg, 1995)] were considered
statistically significant. Mixed-effects linear models in lme4 were
used to analyze data from subsampling results, to account
for the fact that multiple subsamples were generated from
each sample. Shannon ∼1.58 + 5.21 × 10−4

× read depth–
3.79 × 10−1

× less than 15 months–4.38 × 10−2
× older than

30 months–1.50 × 10−4
× read depth: less than 15 months–

1.56× 10−4
× read depth: older than 30 months.

Comparing Missing and
Underrepresented Genera in 16S rRNA to
Shotgun Metagenomics Datasets
A genus was classified as being unique to a particular
profiling method if reads were only assigned to it through
one method. For any reference-based approach, one will always
be limited by the quality of the reference database used.
Taxa that could not be resolved down to the genus level
(taxonomic assignments containing the phrases “unclassified,”
“unidentified,” “group,” or “uncultured”) were removed prior
to calculating relative abundance diversity, and all downstream
metrics. Genera that only occurred in one but not the other
method were classified as uniquely identified by 16S rRNA

profiling or shotgun metagenomics. We found the intersection
of genera by identifying microbes that were found at least once
by both methods.

We used Wilcoxon Signed Rank tests to compare the
abundances of microbes that were found by both methods.
This analysis was limited by the direct comparison of relative
abundances instead of direct counts. Because 16S rRNA profiling
was able to identify more taxa at the genus level, this
meant that the relative abundances of its organisms were
systematically lower.

Analyzing Primer Coverage
TestPrime 1.0 (Ludwig et al., 2004; Klindworth et al., 2013)
was used to perform in silico PCR to investigate how well
certain primer pairs align to microbes in the SILVA database.
We entered our forward and reverse primers (515FB and 926R)
into the TestPrime web tool provided by SILVA (Quast et al.,
2013) to analyze the percent primer coverage of microbes
found only with metagenomic sequencing, but not by amplicon
sequencing. Coverage is defined as the percentage of matches
for a particular taxonomic group [# of matches/(total # of
mismatches + matches)]. The primers described in section
“16S rRNA Gene Amplicon Processing and Analysis” were
compared to sequences found within the SSU r138.1 SILVA
database. A single nucleotide mismatch between each primer
and 16S rRNA gene sequence was considered a mismatch for
that organism. Once the percent coverage was calculated, we
compared the average coverage of microbes uniquely found by
shotgun metagenomics, 16S rRNA profiling, or both methods.
Some genera identified uniquely by shotgun metagenomics were
not as identified as hits to the primer, despite being in the SILVA
database. Their alignment was manually entered to be 0% for
downstream analysis.

Generating Phylogenetic Trees
The union of all genera that were identified by either 16S rRNA
gene or shotgun metagenomic sequencing was used to generate a
phylogenetic common tree using TimeTree (Kumar et al., 2017),
a software that visualizes taxa and produces Newick files. In
addition to these genera, Thermus aquaticus was added as an
outgroup, as it is a deeply branching bacterium not commonly
found in the human gut microbiome. This tree was visualized
using the Interactive Tree of Life (iTOL) v 5.5.1 (Letunic and
Bork, 2019), along with metadata that described which profiling
method (either 16S, shotgun metagenomics, or both) was able
to identify the genus (Letunic and Bork, 2007, 2019). For
taxa that were unidentified by a particular profiling method,
we investigated whether or not that taxon was present in the
missing database. The phylogenetic tree notes taxa that would
be impossible to be identified by that method, as they were not
present in the relevant database.

Exploring the Effect of Read Depth on
Diversity Using Metagenome Samples
We investigated the results of decreasing read depth on alpha and
beta-diversity by resampling shotgun metagenomic reads from
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a subset of children within the RESONANCE cohort that had
deeply sequenced metagenomes (average 7,209,871 ± 2,562,647
reads). Metagenomic reads from 30 children were selected and
10k, 100k, 250k, 500k, 750k, and 1M reads were randomly
sampled (with replacement) from each child’s reads. Each child
was resampled at each depth four times for the analysis involving
RESONANCE subjects.

To investigate whether these observations were generally
applicable to other childhood cohorts, we performed the same
subsampling analysis on the DIABIMMUNE cohort (Simre et al.,
2016). Only a single sample for each depth was obtained for
DIABIMMUNE subjects due to the substantially higher number
of original samples. DIABIMMUNE subjects were subsampled at
depths of 100k, 250k, 500k, 750k, 1M, and 10M reads. All children
were separated by developmental stage (less than 15 months:
n = 389; between 15 and 30 months, n = 340; over 30 months,
n = 46). Reads were reassigned taxonomy using MetaPhlAn (see
section “Comparing Missing and Underrepresented Genera in
16S rRNA to Shotgun Metagenomics Datasets”) and diversity
was recalculated. The majority of these samples subsampled at
10,000 reads had no identifiable taxa and were excluded from
downstream analysis.

RESULTS

Alpha Diversity Increases With Age in
Both 16S rRNA Gene- and
Metagenomic-Profiled Samples
First, we directly compared taxonomic profiles generated by
shotgun metagenomic or amplicon sequencing to assess their
ability to detect poorly characterized or low abundance taxa. On
average, the proportion of microbes resolved to the genus level
in a sample was 95.84% (SD = 4.71%) when profiled by shotgun
metagenomic sequencing and 88.78% (SD = 11.53%) when
profiled by 16S rRNA sequencing. As expected, regardless of the
profiling method, the observed alpha (within-sample) diversity of
the gut microbiome of children increased in the first 30 months of
life (Welch’s t-test, p-value < 0.001). Given that we observed that
children’s microbiomes grow increasingly complex and diverse,
we hypothesized that any differences in the ability of the profiling
methods to identify less-abundant taxa would only be magnified
with age. Consistent with this hypothesis, we found that profiles
created from shotgun metagenomics data had systematically
lower alpha diversity than profiles from 16S rRNA sequencing at
the genus level across all developmental stages (Figure 1A). The
mean of these differences between paired profiles increased as
the children age, with the largest differences observed in children
less than 15 months (mean of the differences = 0.14, paired
t-test, p-value < 0.001). This suggests that the paired differences
between 16S rRNA and shotgun metagenomics profiling in
capturing alpha diversity are greatest in the youngest children;
because of the lower taxon richness (fewer microbial taxa), any
differences in taxonomic identification will be amplified.

We next examined between-sample, or beta, diversity within
each of the three age groups to determine if age or profiling

method were associated with large between-sample differences.
Overall, we found that profiling method could account for 5.64%
of the Bray-Curtis dissimilarities in the data (PERMANOVA,
R2
= 0.05643, p-value < 0.001). Comparisons of beta diversity

within children of the three groups indicated the similarity
between gut microbiome communities increased with age in
both profiling methods. Regardless of which method was used,
Bray-Curtis dissimilarity, a pairwise measure of beta diversity
between two communities, was the smallest between children
over the age of 30 months (Figure 1B).

After observing differences in the two profiling methods
among young children, we next compared profiles generated
from the different methods for the same fecal sample. If data
from shotgun metagenomics and 16S rRNA gene profiling both
produced exactly the same gut microbial profiles, we would
expect that profiles from the same child’s fecal sample would have
a Bray-Curtis dissimilarity of ∼0. This perfect correspondence
between methods is not likely, but at a minimum, we would
expect to see that the Bray-Curtis dissimilarity among profiles
constructed from the same stool sample would be smaller
than the dissimilarity between two profiles from two random
children. As hypothesized, the average Bray-Curtis dissimilarity
among paired samples was much lower than that of unpaired
samples (Figure 1C; mean difference = 0.531, Welch’s t-test,
p-value < 0.001). The largest differences in the paired profiles
were found in children less than 15 months (Figures 1C,D).

Discrepancies Between 16S rRNA and
Shotgun Metagenomics Profiles
To further investigate the cause of the largest discrepancies
in diversity between the two profiling methods, we looked
at biases in taxonomic representation at different taxonomic
levels. At all taxonomic levels, except the species level, 16S
rRNA amplicon profiling identifies more taxa (Figure 2A). We
found that 66 families were found by both methods, while
223 and 4 were uniquely identified by 16S rRNA and shotgun
metagenomic profiling, respectively. At the genus level, of 560
genera identified across all samples, only 145 genera (25.9%)
were identified with both amplicon and shotgun metagenomic
sequencing. Amplicon sequencing of 16S rRNA gene identified
375 genera not found by metagenomic profiling including
Erythrobacter, Fusibacter, Flavobacterium, Pseudomonas, and
Sulfitobacter, while only 40 genera were uniquely found
using shotgun metagenomic sequencing, such as Enterobacter,
Escherichia, Klebsiella, Pediococcus, and Salmonella (Figure 2B
and Supplementary Figure 3). At the species level, 16S
rRNA amplicon profiling was able to resolve 146 taxa to the
species level, though on average only 22.01% of the relative
abundance of samples could be classified to a species, while
shotgun metagenomics was able to identify 317 unique species,
representing 95.18% of samples on average (Table 1). We decided
to focus on comparing taxonomic differences at the genus level,
as that is the most specific taxonomic level in which we are able
to meaningfully compare the two methods.

After identifying genera that were found by only one of
the two methods, we next investigated whether there were
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FIGURE 1 | Diversity of the child gut microbiome differs by age, regardless of profiling method. Microbiome communities from 338 children were sequenced using
16S rRNA (abbreviated “amp”) and shotgun metagenomic (abbreviated “mgx”) profiling. (A) Alpha diversity was calculated using the Shannon diversity index for each
child. Boxplots are grouped by age and colored by profiling method. (B) Beta-diversity was quantified using pair-wise Bray-Curtis dissimilarities between all children
within the same profiling method and developmental stage. (C) Bray-Curtis dissimilarities between 16S and metagenomic profiles for matched samples (from same
fecal sample), 16S and metagenomic profiles among unmatched samples (from different fecal samples). (D) Beta-diversity was visualized using Principal Coordinate
analysis (PCoA). The first two principal coordinate axes, which together explain 46.62% of variation, are shown. Each dot represents one taxonomic profile, with lines
connecting profiles from the same sample. Colors represent developmental stages and shape represent profiling methods.

any taxa that were systematically found at higher levels in
one method vs. the other. We found that Butyricicoccus was
observed to have a significantly higher relative abundance in
16S rRNA profiles compared to samples profiled with shotgun
metagenomics (Wilcoxon signed rank test for this and all
microbes, p-value < 0.001) (Supplementary Table 1). Similarly,
Romboutsia (p-value < 0.001) and Sutterella (p-value < 0.001)
were found to have a higher relative abundance when detected
by 16S rRNA amplicon sequencing. In contrast, genera such as
Bifidobacterium (p-value < 0.001), Eggerthella (p-value < 0.001),
and Klebsiella (p-value < 0.001) systematically had higher relative
abundance when detected by shotgun metagenomic techniques.
These differences may be due to multiple factors, including
reduced primer efficiency amplification step during 16S rRNA
sequencing. To investigate whether these discrepancies are

generally true of other pediatric cohorts, we re-analyzed the
metagenomes and amplicon sequencing from DIABIMMUNE,
a longitudinal study of children from 3 Scandanavian countries
that are at risk for type-I diabetes (Simre et al., 2016). Though
this study used different primers for amplicon sequencing, we
observed similar trends–taxonomic profiles from metagenomic
sequencing identified fewer unique families (68 vs. 9) and genera
(151 vs. 47), but more unique species (111 vs. 384).

Reduced Sequencing Depth Decreases
Has Smaller Effect on Observed Diversity
in Young Children
After comparing two different profiling methods, we investigated
the effect of reducing metagenomic sequencing depth on
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FIGURE 2 | Some phylogenetic clustering of taxa by profiling method. (A) Venn diagrams indicating the number of taxa that were found by 16S (peach), shotgun
metagenomics (cyan), or both (gray) methods. Number of overlapping and unique taxa were calculated on the family, genus, and species level. (B) A common
phylogenetic tree was generated from all taxa identified by both 16S rRNA gene (amp) and shotgun metagenomic sequencing (mgx). Colors indicate which method
was able to identify taxa (peach = identified by 16S, cyan = identified by shotgun metagenomics).

observed alpha diversity among the three developmental groups.
We selected samples from a sub-group of 30 children (10 from
each developmental stage) that were initially sequenced at the
highest depth (mean 7.2 million reads; SD = 2.6 million reads)
and performed random resampling of shotgun metagenomic
reads at varying depths (100k, 250k, 500k, 750k, and 1M reads).
We then recalculated alpha diversity metrics (evenness, richness,
and Shannon) for each community of re-sampled reads after
assigning taxonomy using MetaPhlAn. Figure 3A shows the
relationship between the evenness, richness, and sequencing
depth across all the resamplings we performed. Regardless
of the starting community’s diversity, as sequencing depth
increased, observed sample richness and evenness also increased
(Supplementary Figure 3). For example, samples that were only
profiled with 100k reads had a mean Shannon Index of 1.35,
whereas those sampled at 1M reads had mean Shannon Index of
1.89 (Figure 3B).

In addition, we observed that increasing sequencing depth
affected children of different ages differently. Not only did

children younger than 15 months have a lower median Shannon
Index when we ignore sampling depth (<15 months median:
1.42, >15 months median: 1.99), the Shannon Index increases
more slowly with sampling depth in kids under 15 months. In
particular, a mixed effects linear model showed that the slope of
the Shannon Index on sampling depth is significantly lower for
children under 15 months, compared to those between 15 and
30 months (p < 0.001), and the slope is significantly lower for
children between 15 and 30 months compared to those greater
than 30 months (Figure 3B; p < 0.001).

While the stepwise increase in alpha diversity with sampling
depth is statistically significant for children less than 15 months
(p < 0.001), the increase in observed alpha diversity is
substantially smaller than typical effect sizes in childhood
microbiome studies. For instance, a recent meta-analyses of other
studies that investigated alpha diversity of children that were
and were not breastfed observed average differences in Shannon
Index to be 0.34 (95% Confidence Interval: [0.20, 0.48]) (Ho
et al., 2018), but increasing sequencing depth from 500k reads
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TABLE 1 | 16S rRNA profiling resolves more taxa down to the family level, but
fewer to the species level.

Method Taxonomic
level

Median Mean Standard
deviation

mgx Family 99.73% 99.32% 1.10%

Amplicon Family 99.75% 98.92% 2.44%

mgx Genus 97.36% 95.84% 4.71%

Amplicon Genus 91.66% 88.78% 11.53%

mgx Species 97.50% 95.18% 6.60%

Amplicon Species 22.01% 23.91% 14.66%

Taxa were considered “unclassified” if they were not able to be assigned to a
taxonomic category by the SILVA or Metaphlan3 databases. The median, mean,
and standard deviation of the relative abundance (%) of each sample considered
classified was calculated for each profiling method (mgx = shotgun metagenomics
and amplicon = 16S rRNA amplicon sequencing) and three taxonomic levels
(family, genus, and species).

to 1M reads only increased this metric by 0.06 (Table 2 and
Supplementary Table 2).

To investigate whether these observations were generally
applicable to other childhood cohorts, we performed the same
subsampling analysis on the DIABIMMUNE cohort (Simre
et al., 2016) (Supplementary Figure 4). Consistent with the
findings from the RESONANCE cohort, lower sequencing depth
decreases the Shannon Index for all age groups (Mixed effects
linear model, p < 0.001), and the benefits of deeper sequencing
are most pronounced in older kids, as observed alpha diversity
increases more quickly as additional reads are added for older
children (Supplementary Table 3, p < 0.001). In addition, for
both cohorts, the benefits of additional sequencing on observed
diversity in children under 15 months substantially decrease
over 500 000 reads.

DISCUSSION

Increasing interest in the human microbiome, especially during
early child development, raises the urgency of selecting
appropriate methods for interrogating taxonomic and functional
composition of human-associated communities. Given that
shotgun metagenomic sequencing is capable of providing
higher taxonomic resolution as well as information about
gene functional potential, it is clearly preferable to amplicon
sequencing when working with high biomass samples such as
stool and when cost is not an issue. However, the higher cost of
sequencing to provide sufficient sequencing depth for shotgun
metagenomics is relevant when resources are constrained.
Because infant microbiomes are substantially less diverse than
adult microbiomes, we reasoned that lower sequencing depth
(and therefore lower cost) may enable comparable taxonomic
resolution to amplicon sequencing at a similar cost.

We, therefore, set out to analyze a group of child stool samples
sequenced with both methods and profiled with commonly used
taxonomic-assignment tools so that direct comparisons could
be made. As expected, microbial communities from younger
children (less than 15 months old) were substantially less diverse
than communities from older children, and both amplicon and

shotgun metagenomic sequencing with ∼1.2 Gb per sample
were able to capture comparable taxonomic diversity at the
genus level across all age groups. It is important to note that
metagenomic sequencing generally captures more diversity due
to its species-level resolution (Ranjan et al., 2016), but we
restricted our analysis to the genus level in order to make
the most direct comparison to amplicon sequencing. While
restricting our analysis to the genus level allowed us to most
appropriately compare the two profiling methods, shotgun
metagenomic profiling has many strengths not highlighted by
this comparison, including characterization at the species, strain,
or functional level.

Interestingly, though the observed diversity overall was
comparable between methods, the actual taxonomic profiles
generated by each method had substantial differences,
particularly in the youngest children. For example, some
particularly important genera in young children such as
Bifidobacterium and Enterobacter were under-represented in
amplicon sequencing profiles. Because shotgun metagenomic
sequencing does not include an amplification step and therefore
avoids issues of amplification bias, it is likely to be more
accurate, though further investigation with synthetic or
in silico communities may be necessary to determine which
method provides the most accurate profiles in this population.
In contexts where we may be interested in taxa such as
Bifidobacterium longum infantis, which is critical for breaking
down human milk oligosaccharides and often identified by
the presence of these milk-digesting genes (LoCascio et al.,
2010; Zabel et al., 2019), shotgun metagenomics may be the
best method. Not only does 16S rRNA amplicon sequencing
under-represent the prevalence of this microbe, but shotgun
metagenomics can also provide more comprehensive functional
information (Franzosa et al., 2015).

While shallower sequencing may enable investigators to
observe comparable diversity, there are substantial differences in
the identities of taxa profiled. Like other groups (Rausch et al.,
2019), we showed that 16S rRNA gene amplicon and shotgun
metagenomic sequencing each missed some taxa, but more
genera were identified overall by 16S rRNA gene profiling, at
least in the RESONANCE cohort. This finding was also supported
in the DIABIMMUNE cohort, where 197 genera were identified
with 16S rRNA profiling, while only 40 were uniquely found
with shotgun metagenomics. Interestingly, we also show that the
largest discrepancies between the two profiling methods were
found in the youngest kids. This is likely due in part to the low
diversity of these samples, since the loss of one genus in a profile
with few genera may have a larger impact on dissimilarity metrics.
Another possible explanation is the large fraction of many
samples in young children (as much as 40% relative abundance)
that could not be resolved to the genus level (see section “Alpha
Diversity Increases With Age in Both 16S rRNA Gene- and
Metagenomic-Profiled Samples”) with amplicon sequencing. As
unresolved taxa were excluded from our alpha diversity analysis,
the true diversity could be much higher or lower than we observe
in those samples.

Some of the discrepancies we observed were due to technical
differences in sequencing methods. For example, some taxa
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FIGURE 3 | Alpha diversity increases with sequencing depth. (A) Shotgun metagenomic reads from 30 deeply sequenced samples were resampled four times at
each different sequencing depths (100k; 250k; 500k; 750k; 1M reads). Reads were reassigned taxonomy using MetaPhlAn and diversity was recalculated. Each dot
represents a single resampled community. (B) Boxplots of Shannon diversity among all samples at each re-sampling depth, colored by developmental stage. Scatter
plot indicates Shannon diversity of original samples.

found exclusively through 16S rRNA gene profiling were not
found in the MetaPhlAn database, including 16 genera that
did not have reference genomes available. All of the genera
found uniquely by shotgun metagenomics were present in the
SILVA database, but their 16S rRNA gene sequences may not
have perfectly complemented the primers we used. Though
16S rRNA PCR primers are often referred to as “universal,”
there is considerable sequence diversity in the 16S rRNA gene,
even in the most conserved regions and among bacteria of the
same species (Větrovský and Baldrian, 2013). Using TestPrime
1.0, we identified several genera that had very low alignment
with our primers, such as Solobacterium (2.2% alignment) and
Pediococcus (1.3%) and 10 genera that were present in the SILVA
database and identified using shotgun metagenomics, but were
not found to be hits with our primers. We also explored if
certain clusters of taxa were more systematically unidentified
by a particular profiling method. For example, several genera
identified uniquely by shotgun metagenomic profiling had lower
primer coverage compared to the genera identified by 16S
rRNA amplicon profiling (Supplementary Figure 5). Other taxa

TABLE 2 | Average Shannon index values among children less than 15 months at
different subsampling depths in the RESONANCE data-set.

Read_depth Mean SD abs_diff

100 1.35 0.39

250 1.67 0.42 0.32

500 1.8 0.44 0.13

750 1.86 0.44 0.06

1000 1.89 0.44 0.03

Original 2.04 0.42 0.15

“Read_depth”: indicates subsampling depth, “mean”: mean Shannon
Index at subsampling depth, SD: standard deviation of Shannon Index at
subsampling depth, “abs_diff”: absolute difference in Shannon Index from
previoussubsampling depth.

were only identified using 16S amplicon profiling (Figure 2B;
ex. clade containing Ruegeria, Planktotalea, Planktomarina, and
Sulfitobacter).

Given that both profiling methods exhibited some biases
against certain taxa, future study designs should carefully
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consider which method is most appropriate to their research
question, and further investigation using communities where the
ground truth of composition is known should be pursued to
interrogate whether these differences are systematic. For instance,
studies investigating taxa that are not easily identified with 16S
rRNA analysis or functional capacity of microbes should utilize
shotgun metagenomics. However, studies collecting samples
from many children and that do not require as granular
taxonomic resolution may save money by using 16S rRNA
profiling. In addition to uncertainty about the true composition
of these samples’ communities, our study was also limited in
scope to a single 16S rRNA gene primer pair for amplification,
a single sequencing read length for shotgun sequencing, and
a single computational pipeline for taxonomic profiling each
sequencing method. There are several different approaches for
both the sequencing (Martínez et al., 2014; Driscoll et al., 2017;
Rausch et al., 2019) and profiling step (Almeida et al., 2018;
Ye et al., 2019), each of which is likely to have its own biases.
We chose to compare widely used and accessible methods to
compare for investigation of child microbiomes, but further
investigation to select the best combination of methods may be
warranted. Finally, advances in sequencing technology [e.g., long-
read sequencing of 16S rRNA genes (Karst et al., 2020)], changes
to reference databases and improved taxonomic assignment
methods may affect the performance and relative tradeoffs in
the future.

CONCLUSION

Understanding the advantages associated with different methods
of investigating the human microbiome will allow others in
the field to use the most cost-effective methods to explore the
relationship between the gut microbiome and human health.
Most research is limited by financial resources, which impacts
the number of controls, replicates, samples we can analyze,
and the depth to which we can characterize each sample.
Better insight into how we can sequence more efficiently
will allow us to use these finite resources more effectively.
Hopefully, this will allow us to devote resources where they
will be best utilized (e.g., deep sequencing for older children
with higher alpha diversity) and reduce them where they are
not necessary.

Given the importance of the first 30 months of one’s life
in shaping future health outcomes (Bokulich et al., 2016;
Tamburini et al., 2016; Yang et al., 2016), it is crucial
that we understand how to efficiently characterize developing
microbiomes. By identifying the most effective methods for
investigating the microbiomes of children at different stages
of development, we can reduce sequencing costs and reduce
bias in results. This will ultimately increase the quality of the
research by ensuring that resources are appropriately expended.
Altogether, understanding the links between the infant gut
microbiome and child development will allow us to better predict
how early life environmental exposures or health decisions
can mediate the gut microbiome’s effects on health later
in life.
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Supplementary Figure 1 | RESONANCE: a cohort of healthy children between
ages 2 months and 4 years. Histogram showing distribution of ages across
developmental stages. Both 16S rRNA gene data and metagenome profiles were
obtained for 338 stool samples (one sample per child and timepoint). n = 104 for
children <15 months, n = 41 for children 15–30 months, and n = 193 for children
>30 months. Color indicates developmental stage.

Supplementary Figure 2 | Cumulative percent of variation explained by first 100
principal components. Barplot of the cumulative sum of the percentage explained

by the first 100 principal components used to create Figure 1D. The first 10
principal components explained 88.55% of the total variation in Bray-Curtis
dissimilarity within the dataset.

Supplementary Figure 3 | A common phylogenetic tree was generated from all
taxa identified by both 16S rRNA gene (amp) and shotgun metagenomic
sequencing (mgx). Colors indicate which method was able to identify taxa (peach
= identified by 16S, cyan = identified by shotgun metagenomics). Labels at tree
tips indicate genera from Figure 2B.

Supplementary Figure 4 | Species richness increases with sampling depth
within each age group. (A) Boxplots of species richness among all samples at
each sampling depth, colored and grouped by developmental stage. (B) Boxplots
of species richness among all samples at each re-sampling depth, separated
by sampling depth.

Supplementary Figure 5 | Alpha diversity decreases with sequencing depth in
DIABIMMUNE dataset. (A) Shotgun metagenomic reads from 804 deeply
sequenced samples were resampled times at six different sequencing depths
(100k; 250k; 500k; 750k; 1M, and 10M reads). Reads from both cohorts were
reassigned taxonomy using MetaPhlAn and diversity was recalculated. Each dot
represents a single resampled community. (B) Boxplots of Shannon diversity
among all samples at each re-sampling depth, colored by developmental stage.
Scatter plot indicates Shannon diversity of original samples.

Supplementary Figure 6 | Genera found by 16S rRNA amplicon sequencing
have significantly higher primer coverage. TestPrime 1.0 was used to calculate the
percent primer coverage of the primers used in our study for amplicon
sequencing. We compared the percent coverage for microbes found uniquely by
16S rRNA sequencing, both methods, and shotgun metagenomic sequencing.
A pairwise Wilcoxon test found that primer coverage for microbes found uniquely
by amplicon sequencing is significantly higher than that in the genera found
uniquely by shotgun metagenomics (p < 0.05).

Supplementary Table 1 | Genera systematically over-represented with either
profiling method. The Wilcoxon signed-rank test was used to compare the relative
abundances of a particular genera, calculated from 16S and shotgun
metagenomics profiling. “Diff” is the average relative abundance difference for a
particular genera (mean 16S rRNA gene relative abundance–mean shotgun
metagenomics relative abundance) “P.adjust” is the p-value after
Benjamini-Hochberg correction. The table presents genera with significant
differences (adjusted p-value < 0.05), indicating genera that had higher average
relative abundances when profiled by 16S rRNA or shotgun metagenomics.
“Method” indicates the profiling method where the genus was more
abundant.

Supplementary Table 2 | Output of linear model used to predict Shannon Index
based on read depth and developmental stage in RESONANCE dataset. lme4
was used to construct a Mixed effects linear model to analyze data from the
RESONANCE subsampling results. “Estimates” reports the estimated coefficients
for the intercept of the fitted line and each variable (read depth, developmental
stage) or interaction of variables.

Supplementary Table 3 | Output of linear model used to predict Shannon Index
based on read depth and developmental stage in DIABIMMUNE dataset. lme4
was used to construct a Mixed effects linear model to analyze data from the
DIABIMMUNE subsampling results. “Estimates” reports the estimated coefficients
for the intercept of the fitted line and each variable (read depth, developmental
stage) or interaction of variables.
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