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Abstract Trial by trial covariations between neural activity and perceptual decisions (quantified 
by choice Probability, CP) have been used to probe the contribution of sensory neurons to 
perceptual decisions. CPs are thought to be determined by both selective decoding of neural 
activity and by the structure of correlated noise among neurons, but the respective roles of these 
factors in creating CPs have been controversial. We used biologically-constrained simulations to 
explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons 
in area MSTd that represent self-motion. Although models that relied on correlated noise or 
selective decoding could both account for the peculiar pattern of CPs, predictions of the selective 
decoding model were substantially more consistent with various features of the neural and 
behavioral data. While correlated noise is essential to observe CPs, our findings suggest that 
selective decoding of neuronal signals also plays important roles.
DOI: 10.7554/eLife.02670.001

Introduction
In most sensory systems, neurons encode sensory stimuli by responding selectively to a particular 
range of stimulus parameters, as typically characterized by tuning curves (Dayan and Abbott, 2001). 
In turn, the pattern of activation across a population of such neurons provides information about the 
most likely stimulus that may have occurred (Dayan and Abbott, 2001). Whether or not a sensory 
neuron contributes to perceptual decisions generally depends on whether that neuron is selective to 
the stimulus dimensions relevant to the task at hand, and how much weight is given to the activity of 
that neuron in population decoding. One method for assessing the potential contribution of a sensory 
neuron to perception involves measuring the trial-by-trial covariation between neural activity and 
perceptual decisions, as typically quantified by computing the choice probability (CP) (Britten et al., 
1996; Dodd et al., 2001; Uka and DeAngelis, 2004; Purushothaman and Bradley, 2005; Gu et al., 
2007, 2008; Nienborg and Cumming, 2009, 2010; Liu et al., 2013).

When a sensory neuron shows a significant CP, there is a stereotypical relationship between 
response, tuning, and choice: neurons tend to respond more strongly when the subject reports perceiving 
the stimulus as having a value that is more preferred by the neuron. Tested properly, such effects are 
typically found to be independent of the stimulus value itself (Britten et al., 1996; Uka and DeAngelis, 
2004). While the phenomenology is rather consistent across many studies, the interpretation of CPs 
has remained controversial (Nienborg and Cumming, 2010; Cohen and Kohn, 2011). Some studies 
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have suggested that the pattern of CPs across a population of neurons can provide insight into how 
responses of neurons with different tuning properties are selectively weighted in the decision process, 
that is selective decoding (Britten et al., 1996; Uka and DeAngelis, 2004; Purushothaman and 
Bradley, 2005; Gu et al., 2007, 2008). Other studies have pointed out that correlated noise among 
neurons is necessary to observe significant CPs in large populations, suggesting that CPs are domi-
nated by correlated noise and may not carry any useful information about decoding strategy (Nienborg 
and Cumming, 2010; Cohen and Kohn, 2011; Nienborg et al., 2012). As an extreme example, 
neurons that are not involved in the decision process can exhibit significant CPs solely through correla-
tions with other neurons that do contribute (Cohen and Newsome, 2009). Thus, a critical issue is 
whether CPs can reflect selective decoding of sensory neurons.

A recent theoretical study potentially unifies these divergent perspectives (Haefner et al., 2013), 
demonstrating mathematically that CPs could reflect both the structure of correlated noise and selective 
decoding of neurons. However, experimental evidence that can dissociate these causes has been lacking. 
Here, we take advantage of a peculiar pattern of CPs exhibited by multisensory neurons that represent 
translational self-motion (i.e., heading). Some neurons in areas MSTd (Gu et al., 2006, 2008) and VIP 
(Chen et al., 2013) have matched heading preferences in response to visual and vestibular stimuli 
(‘congruent’ cells), whereas others prefer widely disparate headings (‘opposite’ cells). Opposite cells 
could be decoded such that they provide evidence in favor of either their visual or their vestibular heading 
preference. We showed previously that congruent and opposite cells have CPs with opposite polarities  

eLife digest Even the simplest tasks require the brain to process vast amounts of information. 
To take a step forward, for example, the brain must process information about the orientation of 
the animal's body and what the animal is seeing, hearing and feeling in order to determine whether 
any obstacles stand in the way. The brain must integrate all this information to make decisions 
about how to proceed. And once a decision is made, the brain must send signals via the nervous 
system to the muscles to physically move the foot forward.

Specialized brain cells called sensory neurons help to process this sensory information. For 
example, visual neurons process information about what the animal sees, while auditory neurons 
process information about what it hears. Other sensory neurons—called multisensory neurons—can 
process information coming from more than one of an animal's senses.

For more than two decades, researchers have known that the firing of an individual sensory 
neuron can be linked to the decision that an animal makes about the meaning of the sensory 
information it has received. The ability to predict whether an animal will make a given decision 
based on the firing of individual sensory neurons is often referred to as a ‘choice probability’. 
Measurements of single neurons have often been used to try to work out how the brain decodes 
the sensory information that is needed to carry out a specific task. However, it remains unclear 
whether choice probabilities really reflect how sensory information is decoded in the brain, or 
whether these measurements are just reflecting coordinated patterns of background ‘noise’ among 
the neurons as the decisions are being made.

Gu et al. set out to help resolve this debate by examining choice probabilities in the multisensory 
neurons in one area of the brain. A series of experiments was conducted to see how these neurons 
process information, both from the eyes and the part of the inner ear that helps control balance, to 
work out the direction in which an animal was moving. By performing computer simulations of the 
activity of groups of neurons, Gu et al. found that choice probability measurements are better 
explained by the models whereby these measurements did reflect the strategy that is used to 
decode the sensory information. Models based solely on patterns of correlated noise did not 
explain the data as well, though Gu et al. suggest that this noise is likely to also contribute to the 
observed effects.

Following on from the work of Gu et al., a major challenge will be to see if it is possible to infer 
how the brain extracts the relevant information from the different sensory neurons. This may require 
recordings from large groups of neurons, but it might help us to decipher how patterns of activity in 
the brain lead to decisions about the world around us.
DOI: 10.7554/eLife.02670.002
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in a visual heading discrimination task (Gu et al., 2008; Chen et al., 2013), and we suggested that this 
may result from selectively decoding both congruent and opposite cells according to their vestibular 
heading preferences (Gu et al., 2008). This system provides a valuable test bed for exploring the roles 
of noise correlations and selective decoding in producing CPs.

Using simulations, we explore whether the peculiar pattern of CPs exhibited by multisensory 
neurons can be explained solely by correlated noise or whether selective decoding is also involved. 
Our results suggest that selective decoding can play important roles in shaping the pattern of CPs 
across a population of sensory neurons.

Results
We explore how selective decoding and correlated noise contribute to choice probabilities (CPs) in 
three stages. First, we consider a population of hypothetical neurons that represent a stimulus feature, 
such as heading, based on a single sensory modality (e.g. visual motion). Second, we extend this 
simplified population model to the multisensory case, in which a second sensory cue (e.g., vestibular) 
also provides information about the stimulus feature, and we consider the predictions that arise for 
choice probabilities in neurons with mismatched tuning for the two sensory modalities (opposite cells). 
Finally, we apply our analyses to models that are based more closely on data from neurons in area 
MSTd, and we compare the predictions of selective decoding and pure correlation models with the 
animals' behavior, as well as the structure of correlated noise among neurons.

Noise correlations and readout for the single modality case
To study how correlated noise and selective decoding affect the CPs of sensory neurons, we first  
considered a simple model in which only one sensory cue (e.g., visual) was involved. We generated a 
population of 1000 hypothetical neurons with cosine tuning for heading. All neurons in this population 
had tuning curves with the same amplitude and width, but differed in their heading preferences. 
For simplicity, half of the neurons preferred leftward heading (−90°) while the other half preferred 
rightward heading (+90°) so that tuning curves for any pair of neurons had either identical slopes or 
opposite slopes around a straight-forward heading reference. Other distributions of heading prefer-
ences (e.g., uniform or bimodal) did not substantially alter our conclusions. We used a maximum 
likelihood decoder (Sanger, 1996; Dayan and Abbott, 2001; Jazayeri and Movshon, 2006; Gu et al., 
2010; Fetsch et al., 2011) to estimate heading from simulated population activity, and we required 
the population activity to discriminate between headings that were slightly leftward or rightward rela-
tive to a straight-forward reference heading. Specifically, a likelihood function over heading was com-
puted from the population activity on each trial. The decoder then made a ‘leftward’ choice if the area 
under the likelihood function for leftward headings exceeded the area under the curve for rightward 
headings, and vice versa for a ‘rightward’ choice. We then computed each model neuron's CP for the 
ambiguous stimulus condition (i.e., straight forward motion, 0°, ‘Materials and methods’), and we 
explored how correlated noise and selective decoding affected CPs.

As a prelude to considering the multisensory situation, we consider two extreme cases in which CPs 
of a group of neurons are driven mainly by correlated noise or by selective decoding. In both schemes, 
structured noise correlations are necessary to observe significant CPs, but the models differ in terms 
of which pools of neurons are correlated and how they are decoded. For the ‘pure-correlation’ model 
(Figure 1A,B), only correlated noise is needed to produce CPs that are significantly different from the 
chance level of 0.5. In this model, we divided the population of neurons into two groups, each of which 
contained an equal number of neurons preferring leftward and rightward headings. The first group  
of neurons (pool 1 in Figure 1A) contributed to the decoder's heading report (decoding weight = 1), 
while responses from the other group (pool 2) were ignored by the decoder (decoding weight = 0). 
We then examined the CPs of pool 2 neurons as a function of their correlations with pool 1. Although 
the signals from pool 2 neurons did not contribute to the decoder output, they still exhibited significant 
CPs as long as their noise was correlated with that of pool 1 neurons (Cohen and Newsome, 2009).

We introduced correlated noise having a structure that is based on experimental observations from 
heading-selective neurons in both cortical (Gu et al., 2011; Chen et al., 2013) and subcortical (Liu et al., 
2013) areas. Specifically we assumed that noise correlations among pairs of model neurons are a linear 
function of their tuning similarity, or signal correlation (rsignal, Figure 1B, insets). In this correlation struc-
ture, neurons with similar heading tuning (positive rsignal) generally have positive noise correlations, 
whereas neurons with dissimilar tuning (negative rsignal) tend to have negative noise correlations. This 
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correlation structure was applied to all pairs of neurons, regardless of whether they were from pool 1 
or pool 2. For the simulations, the average noise correlation across all neurons was close to zero, 
consistent with some previous findings (Gu et al., 2011), but the results are not sensitive to this mean 
value (Liu et al., 2013). Rather, the critical factor is the slope of the relationship between rnoise and rsignal 
(Liu et al., 2013): larger slopes lead to greater CPs among pool 2 neurons (Figure 1B). Hence, in this 
pure-correlation model, CPs of pool 2 neurons are driven exclusively through correlations with 
neurons in pool 1 that contribute to the decision process (Cohen and Newsome, 2009; Nienborg and 
Cumming, 2010).

For the ‘selective decoding’ model, noise among neurons within each pool was correlated in the 
same manner as described above, but there were no correlations between neurons in different pools 
(Figure 1C). In this case, significant CPs for pool 2 neurons require that these neurons make a contri-
bution to the decision (Figure 1D). We manipulated two aspects of the contribution of each pool 
2 neuron to the decoder output: magnitude and polarity. The magnitude reflects how strongly each 
neuron's activity influenced the decoder and was implemented mathematically by multiplying each 
neuron's contribution by a value in the range [0–1]. If the weight value is 1, then pool 2 neurons 
contribute equally as pool 1 neurons. As the weight is reduced toward zero, the contribution of pool 
2 neurons diminishes and eventually is eliminated. The polarity (or sign) of the weight determines 

Figure 1. Comparison of models in which choice probabilities (CPs) arise through either correlated noise or 
selective decoding. Each model consists of two pools of neurons (500 neurons each) with equal numbers of neurons 
that prefer leftward and rightward headings. In the 'pure-correlation' model (A and B), neurons in pool 2 make no 
contribution to the decision and activity within or across pools is correlated according to the relationship illustrated 
in panel B. In the 'selective decoding' model (C and D), neurons shared correlated noise within each pool but not 
across pools. Neurons in pool 1 were always given a decoding weight of 1, while neurons in pool 2 were given 
weights ranging from 0 to 1. Solid curves in D: responses of pool 2 were decoded according to each neuron's 
preferred stimulus; dashed curves: pool 2 responses were decoded relative to each neuron's anti-preferred 
stimulus. Dashed black horizontal line: CP = 0.5.
DOI: 10.7554/eLife.02670.003
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whether each neuron provides the decoder with evidence for (positive polarity) or against (negative 
polarity) its heading preference. It may appear counterintuitive to consider that neurons might provide 
evidence against their stimulus preference, but the need to consider this case will arise later in the 
multisensory version of the model due to the presence of opposite cells. These neurons have different 
heading preferences for the two sensory modalities, so they can provide evidence in favor of their 
stimulus preference for one modality or the other.

In this selective decoding model, the magnitude of CP increases with the weight applied to pool 
2 neurons. In addition, whether the CP value is greater or less than 0.5 depends on the polarity of 
the contribution of pool 2 neurons (Figure 1D). Interpreting responses as evidence in favor of the 
preferred heading produces CP >0.5 (solid curves) while decoding responses as evidence against 
the preferred heading leads to CP <0.5 (dashed curves). Hence, the two models generate CPs for pool 
2 neurons through different mechanisms. In the pure-correlation model, CPs of pool 2 neurons are 
produced through correlations with pool 1 neurons that are involved in the decision process (Figure 1B). 
In the selective decoding model, pool 2 neurons have CPs that depend on how strongly they con-
tribute to the decision, as well as the polarity of the contribution of each neuron to the decision 
(Figure 1D).

Noise correlations and readout for the multiple modality case
We next consider a more complicated case in which two different sensory cues are involved in a per-
ceptual decision. For example, both visual (optic flow) and vestibular signals provide information about 
the direction of self-motion, or heading (Angelaki and Cullen, 2008; Britten, 2008). Previous studies 
have reported that neurons in multiple cortical areas (e.g., MSTd, VIP, VPS) are tuned for heading, and 
tend to prefer either the same or opposite headings defined by optic flow and vestibular cues 
(Page and Duffy, 2003; Gu et al., 2006, 2008; Chen et al., 2011a, 2011b). We refer to these as 
congruent cells and opposite cells, respectively (Figure 2A). For opposite cells, the preferred heading 
is different for the two sensory modalities, thus raising the fundamental question of how these cells 
may be decoded. In a multimodal heading discrimination task (Gu et al., 2008), we showed previously 
that CPs of MSTd neurons have a peculiar dependence on the congruency of visual/vestibular heading 
tuning (Figure 2B). For congruent cells (cyan symbols in Figure 2B), CPs were consistently >0.5 when 
heading judgments were based on either vestibular or visual cues. In contrast, CPs for opposite cells 
tended to be >0.5 in the vestibular task condition but <0.5 in the visual condition (magenta symbols 
in Figure 2B). We suggested previously (Gu et al., 2008) that this peculiar pattern of CPs might result 
from decoding the responses of MSTd neurons according to their vestibular heading preferences, a 
form of selective decoding. In what follows, we evaluate whether this pattern of CPs is compatible with 
a multisensory version of either the pure correlation or selective decoding models described above.

We again divided 1000 model neurons into two pools of equal size, with one pool consisting of 
congruent cells and the other consisting of opposite cells (Figure 2C,E). For simplicity, these neurons 
again preferred either leftward or rightward headings. In the pure-correlation model, only pool 1 neu-
rons (congruent cells) provided inputs to the decoder’s decision process, whereas pool 2 neurons 
(opposite cells) were given no weight. However, opposite cells can still exhibit CPs as long as they are 
correlated with congruent cells (Figure 2D). For a pair of neurons that includes an opposite cell, cor-
related noise could depend on the similarity of vestibular tuning between the members of the pair or 
on the similarity of visual tuning (or on both, as discussed further below). If correlated noise is 
dependent on the similarity of vestibular tuning (i.e., vestibular signal correlation), opposite cells show 
CPs that are >0.5 in the vestibular condition and <0.5 in the visual condition (Figure 2D), roughly 
similar to experimental data from MSTd neurons (Figure 2A,B). The intuition for this result is straight-
forward. When a congruent cell fires more spikes than average, an opposite cell that shares the same 
vestibular tuning will also fire more spikes than average and will have a CP >0.5 in the vestibular con-
dition. In the visual condition, this correlation structure will lead to an opposite cell responding more 
when the animal chooses its non-preferred visual heading, thus producing a CP <0.5. Note that this 
prediction of the pure correlation model only mimics real data if opposite cells are correlated with 
congruent cells having matched vestibular heading preferences.

In contrast, if correlated noise depends on the similarity of visual heading preferences, then the 
pattern of results will be reversed for the vestibular and visual conditions (Figure 2—figure supple-
ment 1), which is clearly inconsistent with the experimental data (Figure 2B). Finally, correlations 
between the two pools of the pure-correlation model could depend on the similarity of heading 
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Figure 2. Responses of multisensory neurons and multisensory versions of the pure-correlation and selective-decoding models. (A) Heading tuning 
curves from two example MSTd neurons measured during a fine heading discrimination task (Gu et al., 2008): one congruent cell (left) and one 
opposite cell (right). Red and blue data show responses measured for the visual and vestibular conditions, respectively. (B) Choice probability as a 
function of congruency for MSTd neurons tested in the vestibular (left) and visual (right) conditions (adapted, with permission, from Supplement Figure 
8A and Figure 6C of Gu et al.(2008); respectively). Cyan and magenta symbols denote data for congruent and opposite cells, respectively (unfilled 
symbols: intermediate cells). (C and D) Multisensory version of the pure-correlation model (500 model neurons in each pool). Pool 1 consists of all 
congruent cells (same slope tuning curves for the two cues), whereas pool 2 contains all opposite neurons. Correlated noise within or across pools 
depends only on the similarity of tuning for cue 1. (E and F) In the selective decoding model, neurons were correlated according to the similarity of 
tuning for both cues (‘Materials and methods’). This rule generated correlated noise within each pool but not between pools. Neurons in pool 1 were 
always given a full weight of 1 in the decoding, whereas the decoding weights of neurons in pool 2 ranged from 0 to 1 (different colors in F). Dashed 
black horizontal line: CP = 0.5.
DOI: 10.7554/eLife.02670.004
The following figure supplements are available for figure 2:
Figure 2. Continued on next page
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preferences for both the visual and vestibular modalities (‘Materials and methods’; Equation 2). If cor-
related noise depends equally on both visual and vestibular signal correlations (i.e., Equation 2 with 
avestibular = avisual), then correlations between opposite cells and congruent cells become effectively zero 
because the two terms of Equation 2 cancel. In this case, the pure-correlation model becomes equiv-
alent to the selective decoding model with zero weight placed on opposite cells, as considered below.

In the selective decoding model, we assume that correlated noise among a pair of neurons depends 
on the similarity of both vestibular and visual tuning (‘Materials and methods’), as demonstrated pre-
viously for pairs of MSTd neurons (Gu et al., 2011). Because we assume avestibular = avisual in Equation 2, 
the resulting effective noise correlation between mixed pairs of congruent and opposite cells will be 
zero (denoted by ‘ × ’ between the two pools in Figure 2E). Thus, use of the selective-decoding model 
with this particular correlation structure effectively eliminates correlated noise between the two pools 
while allowing the decoding weights of pool 2 to vary. Under these conditions, non-zero decoding 
weights must be applied to pool 2 in order to observe CPs for opposite cells (Figure 2F). Note that, 
for the selective decoding model, we do not consider situations in which correlated noise between the 
two pools depends only on vestibular or visual heading preferences. In such cases, there would be 
correlated noise between pairs of neurons drawn from the two pools, and the CPs of opposite cells 
would depend on both readout weights and noise correlations. Thus, the two models would no longer 
be conceptually distinct. We shall evaluate these assumptions in the following sections.

To examine the predictions of the selective decoding model, we again manipulated two aspects of 
the readout. With regard to magnitude of the decoding weights, a decoding weight different from 
zero was essential to produce CPs for opposite cells that were different from the chance level (green 
symbols/lines vs other colors in Figure 2F). With regard to polarity (or sign) of the decoding weights, 
decoding responses of opposite cells with respect to their vestibular heading preference led to CP 
>0.5 in the vestibular condition and <0.5 in the visual condition (Figure 2F), which was similar to that 
seen in the real data. On the other hand, if responses of model neurons were decoded with respect to 
their visual heading preferences, the pattern of CPs across stimulus conditions would reverse and 
would be incompatible with that observed for MSTd neurons (Figure 2—figure supplement 2).

Hence, both models can produce CP patterns for congruent and opposite cells that are similar to 
those seen in the real data, but through critically different mechanisms. In the pure-correlation model, 
CPs of opposite cells arise solely through correlations with congruent cells having matched vestibular 
tuning, even though opposite cells do not contribute directly to the decision. In the selective decoding 
model, there is no effective correlation between mixed pairs of congruent/opposite cells (i.e., no 
correlated noise between pools). In this case, to qualitatively match the pattern of CP results from real 
neurons, the activity of opposite cells must be given weight in the decoding and these cells must be 
decoded selectively according to their vestibular preferences. Another way to summarize the distinction 
between models is that the pure correlation model mimics experimental CP results by virtue of modality 
specificity in the structure of correlated noise, whereas the selective decoding model achieves this by 
modality specificity in the decoding weights.

For completeness, we also considered a hybrid model that combines features from both of the 
above models. Noise correlations were linearly dependent only on the similarity of vestibular tuning, 
as in the pure-correlation model. This produced correlations between the two pools (congruent and 
opposite cells), unlike in the selective decoding model. In addition, a readout weight was assigned to 
the opposite cells, as in the selective decoding model. Under these conditions, we found that the 
predicted patterns of CPs largely resembled those from the pure-correlation model, as if the decoding 

Figure supplement 1. Predictions from a variant of the pure-correlation model in which correlated noise depends only on signal correlations from the 
visual tuning curves. 
DOI: 10.7554/eLife.02670.005

Figure supplement 2. Predictions from a variant of the selective decoding model in which responses are decoded according to the visual heading 
tuning of each neuron, instead of the vestibular tuning. 
DOI: 10.7554/eLife.02670.006

Figure supplement 3. Predictions from a “hybrid” model (see text for details) in which correlated noise was assigned according to vestibular signal 
correlations, and heading was decoded relative to the vestibular heading tuning of each neuron. 
DOI: 10.7554/eLife.02670.007

Figure 2. Continued
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weights on pool 2 played little role (Figure 2—figure supplement 3). In the following analyses, we only 
considered comparisons between the pure-correlation model and the selective decoding model, as 
these are conceptually distinct. Although this distinction is useful for exploring the relative roles of corre-
lated noise and selective decoding in producing CPs, we recognize that both factors may contribute.

Comparison of model predictions with data: noise correlations
Which model best matches experimental data on correlated noise? Our previous study (Gu et al., 
2011) showed that rnoise measured for pairs of MSTd neurons depended approximately equally on rsignal 
computed from both visual and vestibular tuning curves (Figure 3A). This dependence on rsignal for 
both modalities is not due to strong covariance between the two signal correlations because rsignal 
values for visual and vestibular tuning are only weakly correlated (Figure 3—figure supplement 1). 
Note also that noise correlations are generally negative for neurons with opposite tuning (negative 
signal correlations) in our heading discrimination data sets (Gu et al., 2011; Chen et al., 2013; Liu 
et al., 2013), such that subtracting responses of oppositely tuned neurons is not expected to have the 
benefit seen in other systems (Romo et al., 2003).

Here, we have sorted these previous data (Gu et al., 2011) into two groups according to whether 
the congruency of visual/vestibular tuning is matched or mismatched for the two members of each pair 
of neurons: ‘matched congruency’ pairs consist of either two congruent cells or two opposite cells, 
whereas ‘mismatched congruency’ pairs consist of one congruent cell and one opposite cell (see 
‘Materials and methods’ for classification procedure). Pairs that could not be classified into either 
group were labeled as ‘undefined’ (open symbols, Figure 3A). We found that the dependence of rnoise 
on both visual and vestibular signal correlations was weak for the mismatched congruency pairs (ves-
tibular rsignal: slope = 0.033, CI = [−0.5–0.27], R = 0.08, p=0.8; visual rsignal: slope = −0.057, CI = [−0.424–
0.258], R = −0.12, p=0.7, type II linear regression), whereas this dependence was quite robust for the 
matched congruency pairs (vestibular rsignal: slope = 0.192, CI = [0.082–0.288], R = 0.61, p=0.001; visual 
rsignal: slope = 0.186, CI = [0.069–0.28], R = 0.62, p<0.001, type II linear regression). This pattern of 
results is consistent with the correlation structure assumed in the selective decoding model.

To evaluate whether the experimental data significantly favor the selective decoding model over the 
pure correlation model, we fit the data from these 127 pairs of neurons with two correlation structures: 
(1) rnoise depended only on vestibular rsignal, rnoise = avestibular * rsignal_vestibular, as in the pure correlation model; 
(2) rnoise depended on both vestibular and visual signal correlations, rnoise = avestibular * rsignal_vestibular + avisual 
*rsignal_visual, as assumed in the selective decoding model. We then used linear regression to fit the data with 
both correlation structures. Importantly, we found that the model with coefficients for both vestibular and 
visual signal correlations provided a significantly better fit to the data, after accounting for the difference 
in the number of parameters (p=0.0003, sequential F-test). The coefficients of the best-fitting model were 
avestibular = 0.12 and bvisual = 0.09, respectively. Thus, the empirical correlation data are significantly better 
fit with a correlation structure in which rnoise depends on rsignal for both vestibular and visual tuning curves.

To help visualize why the second structure above better fits the data, we used the measured signal 
correlations for each pair of neurons, along with the fitted coefficients, to predict rnoise for each pair of 
neurons. When rnoise is predicted based on both visual and vestibular signal correlations (Figure 3B), 
the dependence of rnoise on rsignal was much weaker for mismatched congruency pairs (vestibular rsignal: 
slope = 0.074, 95% CI = [0.044–0.109], R = 0.82, p=0.004; visual rsignal: slope = −0.01, 95% CI = [−0.08–
0.066], R = −0.09, p=0.8, type II linear regression) than for matched congruency pairs (vestibular rsignal: 
slope = 0.19, 95% CI = [0.177–0.203], R = 0.99, p<<0.001; visual rsignal: slope = 0.18, 95% CI = [0.157–
0.195], R = 0.96, p<<0.001, type II linear regression), similar to the MSTd data (Figure 3A). In contrast, 
when rnoise is only dependent on vestibular rsignal, the predicted correlation structure is quite different 
(Figure 3C). While rnoise is perfectly correlated with vestibular rsignal for all neurons (by assumption), the 
mismatched congruency pairs reveal roughly equal but opposite dependencies on vestibular and 
visual signal correlations (vestibular rsignal: slope = 0.16, 95% CI = [0.161–0.161], R = 1, p<<0.001; visual 
rsignal: slope = −0.12, 95% CI = [−0.220–0.018], R = −0.65, p=0.04, type II linear regression). Thus, the 
available data on noise and signal correlations compare more favorably with the assumptions of the 
selective decoding model than the pure correlation model.

Comparison of model predictions with data: choice probabilities
We now evaluate whether predictions of the pure correlation and selective decoding models are 
compatible with choice probability data obtained from area MSTd neurons during a fine heading 
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Figure 3. Comparison of the structure of correlated noise between models and data. (A) Data from pairs of 
neurons recorded from area MSTd (Gu et al., 2011). Noise correlation is plotted against signal correlations 
obtained from the vestibular (left column) or visual (right column) tuning curves. Black and gray symbols denote 
pairs with matched (black) or mismatched (gray) congruency. Open symbols represent undefined pairs. (B) 
Predicted noise correlations as a function of signal correlation based on fits of the selective decoding model. 
Format as in panel A. (C) Predicted noise correlations as a function of signal correlation by for the pure-correlation 
model fit, for which noise correlations depend only on vestibular signal correlation.
DOI: 10.7554/eLife.02670.008
The following figure supplements are available for figure 3:

Figure supplement 1. Comparison of vestibular and visual signal correlations for 127 pairs of neurons simultaneously 
recorded from area MSTd by Gu et al. (2011). 
DOI: 10.7554/eLife.02670.009
Figure 3. Continued on next page
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discrimination task (Gu et al., 2008). The Gu et al. dataset consisted of 129 single neurons that were 
not recorded simultaneously. Thus, to generate model population responses for decoding analyses, 
we generated responses for a model population of 1000 neurons, each of which had visual and vestib-
ular tuning curves that were obtained by drawing data (with replacement) from the sample of 129 real 
MSTd neurons. Responses of the 1000 model neurons on each simulated trial were generated from a 
covariance matrix that was based on the two different correlation structures described in the previous 
section, with parameters that were obtained by fits to the MSTd data. This yielded noise and signal 
correlations similar to those described in Figure 3 (Figure 3—figure supplements 2 and 3). With 
these constraints, we can decode the simulated population responses (‘Materials and methods’) and 
make predictions of CPs and neuronal thresholds.

With our biologically-constrained versions of the pure correlation and selective decoding models, we 
now consider the patterns of choice probabilities predicted by each model and how they compare to 
data from MSTd neurons. In the pure-correlation model (Figure 4A), the average CP for congruent cells 
is significantly greater than 0.5 for both the vestibular (0.65 ± 0.06 SD) and visual (0.65 ± 0.04 SD) condi-
tions (p<0.001, t test). For opposite cells, the average CP is significantly >0.5 in the vestibular condition 

Figure supplement 2. Noise correlation structure of the pure correlation model computed from the signal correlations 
of all distinct pairings of 129 neurons that were recorded previously by Gu et al. (2011). 
DOI: 10.7554/eLife.02670.010

Figure supplement 3. Noise correlation structure of the selective decoding model computed from the signal 
correlations of all distinct pairings of 129 neurons that were recorded previously by Gu et al. (2011). 
DOI: 10.7554/eLife.02670.011

Figure 3. Continued

Figure 4. Predictions of choice probabilities from the two models. (A) The pattern of CPs predicted by the 
pure-correlation model. Format as in Figure 2B. (B) A family of weighting profiles used to consider various degrees 
of contribution of opposite cells to the selective decoding model. Each curve shows the decoding weight as a 
function of congruency between visual and vestibular heading tuning. Each curve corresponds to a specific value 
of the Readout Index (RI). (C) Predicted average CPs from the selective decoding model for a subset of the RI 
values illustrated in (B). (D) The pattern of CPs across neurons in the selective decoding model for an RI value of 
0.5. Cyan symbols: congruent cells; Magenta symbols: opposite cells; Unfilled symbols: intermediate cells. Solid 
squares: mean CP. Dashed horizontal line: CP = 0.5.
DOI: 10.7554/eLife.02670.012
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(0.623 ± 0.039 SD, p<0.001, t test) and significantly <0.5 in the visual condition (0.372 ± 0.047 SD, 
p<0.001). This pattern of CPs is qualitatively similar to that observed for MSTd neurons (Figure 2B).

In the selective decoding model, we need to consider how the weight applied to opposite cells 
influences the pattern of CPs. However, unlike the simple hypothetical model of Figure 2, real neurons 
exhibit a range of congruencies between visual and vestibular tuning. To explore a range of possible 
relative weightings of opposite cells, we used a sigmoidal function (having a single parameter called 
the Readout Index, RI) to selectively weight the contributions of congruent and opposite cells (Figure 4B, 
‘Materials and methods’). For RI values near 1.0, all neurons contribute equally to the decoder output, 
regardless of congruency. As RI declines, opposite cells are given gradually less weight in the decod-
ing (Figure 4B). For small values of RI, opposite neurons in the selective decoding model show CPs 
that approach 0.5, as expected since these neurons are given little weight in the decision process. 
However, as RI increases, the average CP for opposite cells increases in the vestibular condition and 
decreases in the visual condition (Figure 4C). For RI values near 0.5 (Figure 4D), the pattern of CPs 
across the population of simulated neurons resembles that exhibited by MSTd neurons (Figure 2B).

Together, these results (Figure 4) demonstrate that both the pure correlation and selective decoding 
models are capable of mimicking the patterns of CPs shown by MSTd neurons in the visual and vestibular 
conditions (although the pure correlation model assumes a correlation structure different from that seen 
experimentally). We now consider whether the models make distinct predictions regarding CPs for the 
combined condition, in which visual and vestibular cues are presented together. As described previously 
(Gu et al., 2008), when animals judge heading based on congruent combinations of visual and vestibular 
cues, congruent cells tend to have CPs >0.5, whereas opposite cells have CPs that cluster around the 
chance level of 0.5 (Figure 5A). Interestingly, although the average CP of opposite cells was approxi-
mately 0.5 for both models in the combined condition (pure-correlation model: 0.486 ± 0.13 SD; selec-
tive decoding model: 0.491 ± 0.06 SD), the SD of CP across the population of opposite cells was much 
greater for the pure-correlation model than for the selective decoding model (Figure 5B,C). Indeed, a 
non-parametric test showed that the dispersion of the CPs was significantly greater for the pure correla-
tion model (p<<0.001, Ansari–Bradley test). The reason for this difference is apparent: CPs of opposite 
cells in the pure correlation model clearly have a bimodal distribution (puni<<0.001, pbi>0.05, modality 
test, middle column of Figure 5D). In contrast, CPs of opposite cells in the selective readout model have 
a unimodal distribution centered around 0.5 (puni>0.05, modality test, right column in Figure 5D), which 
is similar to that seen for MSTd neurons (puni>0.05, modality test, left column in Figure 5D). Thus, the 
pattern of CPs in the combined condition favors the selective decoding model.

Additional analyses suggest that this difference in the shape of the CP distribution between models 
is fairly robust to variations in the key model parameters. For the pure correlation model, a bimodal 
distribution of CPs in the combined condition is a robust result over a range of values of avestibular, 
including values much smaller than needed to fit our noise correlation data (Figure 5—figure supple-
ment 1). For the selective decoding model, a unimodal distribution of CPs is predicted for a wide 
range of RI values, and significant bimodality only occurs for RI values ≥0.8, which are not consistent 
with behavioral thresholds as described below (Figure 5—figure supplement 2).

A possible explanation for the near-chance CPs of opposite cells in the combined condition is that the 
sensitivity these cells is low relative to that in the single cue conditions and thus opposite cells contribute less 
to the decision process (see insets in Figure 5A, left panel). Indeed, for real MSTd neurons, congruent cells 
tend to have low thresholds and high CPs whereas opposite cells tend to have high thresholds and low 
CPs (Figure 5E; R = −0.65, 95% CI: [−0.47 to −0.78], p<<0.001, linear regression). Although both models 
also show a similar dependency of CP on neuronal sensitivity in the combined condition (p<<0.001, linear 
regression, Figure 5F,G), the strength of the correlation is significantly weaker for the pure correlation model 
(R = −0.41, 95% CI: [−0.32 to −0.48]) than for the selective readout model (R = −0.67, 95% CI: [−0.61 to 
−0.72], Figure 5H). This also appears to be largely due to the bimodal distribution of CPs for opposite 
cells in the pure correlation model, which is not observed for the real MSTd data. Thus, while both models 
produce similar patterns of CPs in the vestibular and visual conditions (Figure 4), the pattern of CPs 
from the selective decoding model was more analogous to the measured data in the combined condition.

Comparison of task performance between models and monkeys
Finally, we compute the predicted psychophysical performance by decoding data from real MSTd 
neurons using each readout model, and we compare the results to animals’ behavioral performance. 
In a fine heading discrimination task, we have previously shown that heading sensitivity in the combined 
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condition increases when the two cues have comparable sensitivity, and that the effects are close to 
that predicted from optimal cue integration theory (Gu et al., 2008; Fetsch et al., 2009, 2011). In 
Figure 6A, we have replotted the animals' behavioral data (solid circles and dashed curve). The average 
psychophysical thresholds were 2.03°±0.09° (mean ± SEM) and 2.12° ± 0.1° for the vestibular and 
visual conditions, respectively. In the combined condition, the average threshold was reduced to 1.44° 
± 0.06°, a 29% improvement compared to the best single cue, and was very close to the prediction 
(1.43° ± 0.06°) from optimal cue integration theory.

Unlike the animals' behavior, decoder performance based on the pure-correlation model predicted 
mismatched thresholds for the visual and vestibular conditions (Figure 6A, open symbols and solid 
black curve). The average threshold predicted for the visual condition (1.24° ± 0.02°, mean ± SEM) was 
42% lower than that for the vestibular condition (2.16° ± 0.14°,mean ± SEM). This may be due to the 
fact that the average neuronal threshold of congruent MSTd neurons tends to be lower for the visual 
condition (5.5°) than the vestibular condition (7.1°), although this difference did not reach significance 
(p=0.106, t test, N = 30, Figure 6—figure supplement 1). Despite the performance mismatch between 
the two single-cue conditions, sensitivity was still improved during the combined condition (1.10° ± 0.05°), 
as expected by optimal cue integration predictions (1.07° ± 0.02°).

Figure 5. Analysis of choice probabilities for the combined condition in which both visual and vestibular heading 
cues are present. (A) CP values plotted as a function of congruency index for neurons from area MSTd tested in the 
Combined condition (adapted, with permission, from Figure 6A of Gu et al., 2008). (B and C) CP as a function of 
congruency for model neurons from the pure-correlation model, and model cells from the selective decoding 
model, respectively. (D) Distributions of CPs for opposite cells from area MSTd, the pure-correlation model and the 
selective decoding model. (E–G) CP values plotted as a function of neuronal discrimination thresholds for real 
MSTd neurons (adapted, with permission, from Figure 6B of Gu et al., 2008), units from the pure-correlation 
model and units from the selective decoding model, respectively. (H) Correlation coefficient of the best linear fit to 
the relationship between CP and neuronal threshold for MSTd data (filled black circles), pure-correlation model 
(open black circles) and selective decoding model (open red circles). Error bars represent 95% confidence intervals.
DOI: 10.7554/eLife.02670.013
The following figure supplements are available for figure 5:

Figure supplement 1. Bimodality of CP for opposite cells in the cue combined condition. 
DOI: 10.7554/eLife.02670.014

Figure supplement 2. Same format as in Figure 5—figure supplement 1, but results are shown for the selective 
decoding model. 
DOI: 10.7554/eLife.02670.015
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For the selective decoding model, we examined how performance changes as a function of the 
weighting applied to opposite cells (Readout Index, Figure 6B, ‘Materials and methods’). In the ves-
tibular condition, the decoder's discrimination threshold decreased modestly as more weight was 
applied to opposite cells because more cells contribute to the likelihood function (Figure 6B, blue 
curve). In the visual condition, because heading was decoded with respect to the vestibular preference 
of each neuron, a greater contribution of opposite cells tends to drive the decoder to make choices 
that are opposite to that being signaled by congruent cells. Consequently, predicted thresholds in the 
visual condition rise precipitously as opposite cells are given more weight (Figure 6B, red curve). From 
these data, we can see that a Readout Index value of ∼0.5 produces roughly matched visual and ves-
tibular heading thresholds, similar to the animals’ behavior (arrow in Figure 6B). With this weighting 
of opposite cells, the selective decoding model predicts similar heading thresholds for vestibular 
(2.33° ± 0.04°, mean ± SEM) and visual (2.40° ± 0.1°) conditions, as well as thresholds in the combined 
condition (1.58° ± 0.01°) that are very close to the optimal prediction (1.57° ± 0.02°, Figure 6B, green 
and brown curves). Critically, we note that the value of the readout index (0.5) that allows the selective-
decoding model to mimic behavioral performance is the same value that we separately found to pro-
duce a pattern of CPs that approximates the experimentally observed data (Figure 5C,G). Thus, 
converging lines of evidence suggest a readout in which opposite cells contribute, but substantially 
less than congruent cells.

The above simulation results were based on an arbitrarily sized population of neurons (n = 1000). 
Not surprisingly, as the population size is varied in the simulations, predicted psychophysical thresh-
olds decline as a function of population size in all stimulus conditions (Figure 6C). In our simulations, 
performance reaches a plateau at a population size of a few hundred neurons, and is roughly compa-
rable to the animals' behavioral performance over a broad range of pool sizes. It must be noted that 
the extent to which performance asymptotes with population size is likely to depend on the exact 
structure of correlated noise, the extent to which the true decoder has full and accurate knowledge of 
the correlation structure, the extent to which correlated noise mimics stimulus variations and thus can 
be removed by decoding, and the degree of heterogeneity of the tuning curves in the population 

Figure 6. Comparisons between model population threshold and psychophysical performance of the animals. (A) 
Average thresholds are shown for the vestibular, visual, and combined conditions, along with the prediction 
from optimal cue integration theory. Data are shown for the average of two monkeys (filled symbols, dashed curve), 
for predictions of the pure-correlation model (black open symbols and solid curve), and for predictions of the 
selective decoding model with RI = 0.5 (red symbols and curve). (B) Predicted thresholds from the selective 
decoding model are plotted as a function of Readout Index for vestibular, visual, and combined conditions, as 
well as the optimal prediction from the single-cue thresholds. (C) Thresholds from the selective-decoding model 
(with RI = 0.5) as a function of population size. Solid curves: model predictions; dashed horizontal lines: average 
performance of two animals.
DOI: 10.7554/eLife.02670.016
The following figure supplements are available for figure 6:

Figure supplement 1. Comparison of neuronal sensitivity between the visual (ordinate) and vestibular (abscissa) 
stimulus conditions for 30 congruent cells. 
DOI: 10.7554/eLife.02670.017
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(Ecker et al., 2011; Beck et al., 2012). Importantly, however, the key experimental features that we 
have sought to understand here are related to the sign of CP for opposite cells and not simply the 
magnitude of CPs; thus, the basic qualitative nature of our findings is not likely to be altered by the 
considerations above.

Discussion
We explored the relative roles of correlated noise and selective decoding in generating the pattern of 
CPs observed across a population of multisensory neurons. While it is well accepted that correlated 
noise is necessary to observe CPs in large populations of cortical neurons (Nienborg and Cumming, 
2010; Cohen and Kohn, 2011; Nienborg et al., 2012), a critical question is whether CPs can also 
reflect selective decoding of neural responses. Both the pure-correlation model and the selective 
decoding model could account for the peculiar finding that opposite cells show CPs that are system-
atically >0.5 in the vestibular condition and <0.5 in the visual condition (Gu et al., 2008; Chen et al., 
2013). However, three main features of our findings favor the selective decoding model over the pure 
correlation model. First, the pure correlation model predicts a pattern of correlated noise that is incon-
sistent with experimental data from area MSTd, whereas correlated noise in the selective decoding 
model depends on congruency of tuning in a manner that is similar to that exhibited by pairs of MSTd 
neurons. Second, the pure correlation model predicts that CPs for opposite cells in the combined 
condition should be bimodally distributed, which is inconsistent with data from MSTd and with a broad 
range of predictions of the selective decoding model. Third, with modest weight given to opposite 
cells, the selective decoding model predicts a pattern of psychophysical sensitivity across stimulus 
conditions that closely matches the behavioral data from monkeys. Together our findings indicate that, 
although correlated noise is essential to observe CPs in large neural populations, selective decoding 
can play important roles in shaping patterns of CPs and behavioral performance.

Origins of choice probability
Choice probability measures the trial-by-trial correlation between the activity of a single neuron and 
perceptual decisions. While the measurement itself is straightforward, the interpretation of CPs has been 
varied and somewhat controversial (Nienborg and Cumming, 2010; Nienborg et al., 2012). One pos-
sible interpretation of a significant CP is that variability in the response of a sensory neuron drives varia-
bility in perceptual decisions across trials—this is the so-called ‘bottom-up’ interpretation (Parker and 
Newsome, 1998). If this were true, then CPs would at least partially reflect the contribution of each 
neuron to the decision, and would be shaped by selective decoding of sensory signals. Along these lines, 
some studies have suggested that the pattern of CPs observed reflects the strategy by which sensory 
signals are decoded to perform specific tasks (Uka and DeAngelis, 2004; Purushothaman and Bradley, 
2005; Gu et al., 2007, 2008). Somewhat analogous conclusions were drawn in a previous study which 
showed that ‘detect probabilities’ depend on tuning preferences in a change-detection task, which may 
also be compatible with the notion of selective decoding (Bosking and Maunsell, 2011).

An alternative (but not mutually exclusive) possibility is that CPs are mainly driven by top-down 
feedback signals from parts of the brain involved in making decisions (Nienborg and Cumming, 2009, 
2010). If this is the case, then the pattern of CPs need not be directly related to the way that sensory 
signals are decoded to perform a task. Regardless of the relative roles of bottom-up and top-down 
signals in generating CPs, it is broadly recognized that CPs should not be observable in large neural 
populations unless noise is correlated among neurons (Shadlen et al., 1996; Cohen and Newsome, 
2009; Nienborg and Cumming, 2010; Cohen and Kohn, 2011; Nienborg et al., 2012). Indeed, a 
recent study (Liu et al., 2013) provided the first experimental evidence that the difference in magni-
tude of CPs between two brain areas coincides with a difference in the structure of correlated noise 
between areas.

The controversy regarding whether CPs can reflect decoding strategy or just correlated noise was 
recently resolved by an important theoretical study (Haefner et al., 2013), which shows that CPs are 
determined by both factors. However, whether the pattern of CPs in a population reflects decoding 
strategy or not will depend on the specific details of the decoding weights, correlation structure, pop-
ulation size, etc. This theory shows that the decoding weights could be inferred from CPs if the full 
structure of correlated noise is known with sufficient accuracy and precision.

Using multisensory heading perception as a model system, we show that the pattern of CPs exhib-
ited by neurons in area MSTd is more compatible with a model in which both selective decoding and 
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correlated noise contribute to the generation of CPs than a model in which CPs are determined solely 
from correlations. Multisensory representations may have advantages for studying CPs because of the 
presence of neurons that show opposite tuning for the two cues. If such neurons are decoded as pro-
viding evidence in favor of either their visual or vestibular heading preference, then the sign of their 
CP (whether it is > or <0.5) may reverse depending on the decoding strategy. We suspect that this 
feature of our model system has provided us with additional leverage to dissociate models that 
emphasize correlations vs selective decoding.

In our selective decoding model, we assume that responses of all MSTd neurons, both congruent 
and opposite, are decoded relative to their vestibular heading preference. This accounts for opposite 
cells having CPs <0.5 in the visual condition, as seen in the real data. Why might responses be decoded 
according to the vestibular heading preference? One possibility is that this allows the system to esti-
mate heading in a manner that is robust to the presence of moving objects in a scene. Indeed, we have 
recently shown that a strategy of decoding both congruent and opposite cells according to their ves-
tibular preferences can provide a near-optimal solution to the problem of marginalizing over object 
motion in order to extract heading in a robust manner (Kim et al., 2014). Moreover, adjusting the 
relative weighting of opposite to congruent cells can allow the population code to tradeoff robustness 
to object motion against increased sensitivity during cue integration (Kim et al., 2014). Thus, the se-
lective decoding strategy that we employ here may provide a flexible way to decode self-motion sig-
nals efficiently under conditions in which moving objects may or may not distort optic flow.

Materials and methods
Tuning curves for hypothetical and real neurons
Hypothetical neurons
Two populations of MSTd-like neurons were simulated with cosine heading tuning:

, ,
_ ( ) = ×(cos(( + )× /180)+1),k i k iFiring mean A Pθ θ π  (1)

where k is the stimulus condition (visual, vestibular), i indexes a particular neuron, and θ denotes 
heading direction within the horizontal plane [−180° +180°]. To simulate the heading discrimination 
task (Gu et al., 2007, 2008), we used a small range of headings [θ = ±8°, ±4°, ±2°, ±1°, ±0.5°, ±0.25°, 
±0.1° and 0°] around straight ahead. Pk,i denotes the heading preference of each neuron, which is 
either +90° (rightward) or −90° (leftward) for the purposes of simulating heading discrimination, given 
that most neurons have monotonic tuning over this range (Gu et al., 2008). Each model population 
contains equal numbers of units with leftward and rightward heading preferences. A is a scaling factor 
to adjust the peak response amplitude, and was arbitrarily set to be 100 such that the peak response 
of each neuron is 200 spikes/s and the minimum response is 0 spike/s.

Real neurons
Data were acquired from 129 single MSTd neurons that were recorded previously while animals per-
formed a fine heading discrimination task based on either vestibular or visual (optic flow) cues, as well 
as the congruent combination of these cues (Gu et al., 2008). In each trial of the discrimination task, 
the monkey experienced forward motion with a small leftward or rightward component. At the end of 
each trial, the monkey made a saccadic eye movement to report his perceived motion as leftward or 
rightward relative to straight ahead. Across trials, heading was varied in fine steps around straight 
ahead. Nine logarithmically spaced heading angles were tested for each monkey, including an ambig-
uous straight-forward direction (monkey A: ±9°, ±3.5°, ±1.3°, ±0.5° and 0°; monkey C: ±16°, ±6.4°, 
±2.5°, ±1°, and 0°). Because the tested headings were different between the two animals, these meas-
ured tuning curves were linearly interpolated to 0.1° resolution, and a set of new local tuning curves 
was constructed that had a common set of stimulus headings for the two animals [±8°, ±4°, ±2°, ±1°, 
±0.5°, ±0.2°, ±0.1° and 0°]. This allowed data to be pooled across animals and decoded as a single 
population.

Correlated noise
Correlation matrices that describe interneuronal noise correlations for a simulated population of neu-
rons were constructed by assigning correlated noise (rnoise) to each pair of neurons (either hypothetical 
or real) according to the measured relationship between rnoise and the signal correlation between the 
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pair of tuning curves, that is rsignal (Gu et al., 2011). Signal correlation, rsignal, was computed as the 
Pearson correlation coefficient between the tuning curves (mean firing rates) for a pair of neurons. We 
previously showed that the relationship between rnoise and rsignal for MSTd neurons could be well 
described by Gu et al. (2011):

, , , , , , , ,
= × + × ,noise i j vestibular signal vestibular i j visual signal visual i jr a r a r  (2)

where avestibular was 0.12 and avisual was 0.09 (Gu et al., 2011). For population decoding simulations 
based on real neurons (Figures 4–6), correlated noise between pairs of neurons was assigned 
according to Equation 2 with the parameters above. For simulations based on hypothetical neurons, 
both coefficients in Equation 2 were set to 0.1 for simplicity.

Single-trial responses of model neurons to each heading stimulus were generated according to the 
assumption of proportional Gaussian noise, with response variance set to be 1.5 times the mean firing 
rate to approximate the general behavior of cortical neurons (Shadlen et al., 1996; Gu et al., 2008; 
Cohen and Newsome, 2009). To generate simulated population responses that incorporated correlated 
noise among neurons, we incorporated the estimated correlation matrix and generated population 
activity for each stimulus modality (k), trial (tr), and heading (θ) according to the following equation 
(Shadlen et al., 1996; Cohen and Newsome, 2009):

, , ,( ) =< ( ) > + × × 1.5× < ( ) >,k tr k tr rand k trresponse response Q r responseθ θ θ  (3)

where Q is the square root of the correlation matrix, rrand is a random vector of standard normal 
deviates with the same length as the number of neurons (Matlab function ‘normrnd’, zero mean, unit 
variance), and ‘<>’ represents the mean value. We typically produced 200 trials of responses for each 
heading (θ).

Analysis of visual-vestibular tuning congruency
As shown previously, neurons in area MSTd have vestibular heading tuning that can be either con-
gruent with or opposite to their visual heading tuning (Gu et al., 2006, 2008). Over the narrow range 
of headings used in the discrimination task, congruent cells generally have monotonic visual and 
vestibular tuning curves with matched slopes, whereas opposite cells generally have oppositely signed 
slopes (Figure 2A). To quantify tuning congruency, we compute a Pearson correlation coefficient 
between firing rate and heading for each tuning curve. From these, we compute a Congruency Index 
for each neuron, which is the product of the correlation coefficients for the visual and vestibular tuning 
curves. Thus, congruent cells will have a positive Congruency Index, whereas opposite cells with have 
a negative Congruency Index.

A pair of MSTd neurons can therefore have matched congruency (congruent–congruent pairs or 
opposite–opposite pairs), or mismatched congruency (congruent–opposite pairs). We categorized 
each pair of neurons as matched or mismatched by computing the product of their two congruency 
indices. Specifically, matched congruency pairs were classified as those having a product >0.2 (black 
symbols, Figure 3A), and mismatched pairs are those having a product <−0.2 (gray symbols, Figure 3A). 
The remaining cell pairs with products of Congruency Indices that fall in the range from −0.2 to +0.2 
were classified as ‘undefined’ (open symbols, Figure 3A). These criteria are rather stringent, but we 
found that they reliably classify cells pairs.

To test whether a distribution of CPs contains a single mode (unimodal) or two modes (bimodal), 
we used a multimodality test based on the kernel density estimate method (Gu et al., 2006; Takahashi 
et al., 2007). Watson's U2 statistic, corrected for grouping, was computed as a goodness-of-fit test 
statistic to obtain a p value through a bootstrapping procedure. This test generates two p values, with 
the first one (puni) for the test of unimodality and the second one (pbi) for the test of bimodality. If 
puni >0.05, the distribution is defined as unimodal. If puni <0.05, the hypothesis of unimodality is 
rejected. If pbi >0.05 as well, the distribution is considered bimodal.

Population decoding
To transform responses from a population of neurons into quantitative predictions of behavioral 
sensitivity and choice probabilities, we decoded simulated population activity by computing a likelihood 
function as in previous studies (Sanger, 1996; Dayan and Abbott, 2001; Jazayeri and Movshon, 
2006; Gu et al., 2010; Fetsch et al., 2011). For each stimulus modality (k), the likelihood over heading 
(θ) given the observed population activity on a particular trial (tr) was given by:
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The first term describes the summation of each cell’s contribution to the log likelihood function, 
which corresponds to the response on each trial weighted by the logarithm of each cell’s tuning curve. 
The second term is the sum of all tuning curves, to counter biases associated with a non-uniform dis-
tribution of stimulus preferences.

This formulation embodies two assumptions. First, it assumes Poisson firing statistics. We have 
also tried alternative decoders that are based on Gaussian noise, such as the Fisher linear discrim-
inant (Dayan and Abbott, 2001), and the results are almost identical. Thus, the details of the 
spiking statistics have little effect on our conclusions. Second, this formulation does not assume 
that the decoder has knowledge of the structure of correlated noise among neurons in the popu-
lation, that is, a factorized decoder (Averbeck et al., 2006). While this assumption very likely 
affects the absolute sensitivity of the decoder, it is unlikely to alter the basic pattern of predicted 
results regarding CPs (Gu et al., 2010). However, further investigation is needed to systematically 
examine the detailed differences between decoders with and without knowledge of correlations, 
as well as the effects of different forms of correlated activity. Given these assumptions, our decoder is 
optimal in the maximum-likelihood sense, and does not otherwise assume a specific (and perhaps 
substantially suboptimal) ‘pooling model’, as was done in some previous simulations of CPs (Shadlen 
et al., 1996).

The decoder determined whether a tested heading was leftward or rightward relative to straight 
ahead by comparing the area under the computed likelihood function for leftward headings and right-
ward headings. If the summed likelihood for rightward headings was greater than that for leftward 
headings, the decoder would report ‘right’, and vice versa. Choice probability for each neuron in the 
simulated population was consequently computed for the ambiguous straight-forward heading (0°) 
(Britten et al., 1996; Shadlen et al., 1996; Gu et al., 2007, 2008). The precision (threshold) of the 
decoder was also computed from each simulated psychometric function, which was analyzed using 
methods identical to those applied to the human and monkey behavior (Gu et al., 2010).

Heading information was decoded in two ways. According to our hypothesis that both congruent 
and opposite cells are decoded according to their vestibular heading preference (Gu et al., 2008), our 
main method of decoding involved using the vestibular heading tuning curve for each neuron in the 
formulation of Equation 4. In addition, for some analyses, heading was also decoded relative to the 
heading preference of each neuron in each stimulus condition. In this case, responses from the visual 
condition were decoded based on visual tuning curves, and so on.

For the selective decoding model, we implemented a function that controlled the contribution 
of each model neuron to the decoder output based on each neuron’s congruency value, as given 
below:

( )2 ×

1

1
= .

1

icongruency RI

i

e
weight

e

−

−

−
−  (5)

Here, weighti denotes the decoding weight of the ith neuron, congruencyi denotes the Congruency 
Index (described above) for the ith neuron, and RI represents a Readout Index that ranges from 0 to 1 
in steps of 0.1 (Figure 4B).

In the selective decoding model, the computed decoding weight of each neuron was then multi-
plied by that neuron's contribution to the likelihood function (Equation 4) before the likelihood con-
tributions are summed across neurons. Thus, the computation of the likelihood under the selective 
decoding model was given by:
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