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Abstract

Background: Recently, a gene expression algorithm, TNBCtype, was developed that can divide triple-negative breast
cancer (TNBC) into molecularly-defined subtypes. The algorithm has potential to provide predictive value for TNBC
subtype-specific response to various treatments. TNBCtype used in a retrospective analysis of neoadjuvant clinical trial
data of TNBC patients demonstrated that TNBC subtype and pathological complete response to neoadjuvant
chemotherapy were significantly associated. Herein we describe an expression algorithm reduced to 101 genes
with the power to subtype TNBC tumors similar to the original 2188-gene expression algorithm and predict
patient outcomes.

Methods: The new classification model was built using the same expression data sets used for the original TNBCtype
algorithm. Gene set enrichment followed by shrunken centroid analysis were used for feature reduction, then elastic-net
regularized linear modeling was used to identify genes for a centroid model classifying all subtypes, comprised of 101
genes. The predictive capability of both this new “lean” algorithm and the original 2188-gene model were applied to an
independent clinical trial cohort of 139 TNBC patients treated initially with neoadjuvant doxorubicin/cyclophosphamide
and then randomized to receive either paclitaxel or ixabepilone to determine association of pathologic complete
response within the subtypes.

Results: The new 101-gene expression model reproduced the classification provided by the 2188-gene algorithm and
was highly concordant in the same set of seven TNBC cohorts used to generate the TNBCtype algorithm (87 %), as well
as in the independent clinical trial cohort (88 %), when cases with significant correlations to multiple subtypes
were excluded.
Clinical responses to both neoadjuvant treatment arms, found BL2 to be significantly associated with poor response
(Odds Ratio (OR) =0.12, p =0.03 for the 2188-gene model; OR = 0.23, p < 0.03 for the 101-gene model). Additionally,
while the BL1 subtype trended towards significance in the 2188-gene model (OR = 1.91, p = 0.14), the 101-gene model
demonstrated significant association with improved response in patients with the BL1 subtype (OR = 3.59, p = 0.02).

Conclusions: These results demonstrate that a model using small gene sets can recapitulate the TNBC subtypes
identified by the original 2188-gene model and in the case of standard chemotherapy, the ability to predict
therapeutic response.
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Introduction
TNBC has a higher rate of 5-year distant recurrence than
other breast cancers, and despite adjuvant chemotherapy
as standard of care for this cancer, 5-year recurrence rates
are around 30 % [1]. Those patients that achieve a patho-
logical complete response (pCR) to neoadjuvant chemo-
therapy have significantly better overall survival [1, 2].
Furthermore, the correlation between pCR and distant re-
currence is considerably stronger within TNBC patients
compared to ER+ patients [3] leading the Food and Drug
Administration to allow pCR as a clinical endpoint for
TNBC while strongly recommending against it in ER+ pa-
tients [4]. Many studies have established that breast
tumors are heterogeneous, both in histology and clinical
outcome, and these differences can serve as the basis for
clinical classification and prognostication [5]. Additionally,
molecular classification of cancer subtypes is becoming an
increasingly important tool in devising treatment plans.
For example, mutation analysis of KRAS in colorectal can-
cer [6], and EGFR mutation and ALK rearrangement
detection in non-small cell lung cancer [7, 8] are now
standard of care.
There currently exist no clinically applied molecular

subclassification tools for TNBC. The intrinsic breast
cancer classification system [9], which has proven useful
in assigning biological information to breast cancer sub-
classes, categorizes the majority of TNBC cases within
the basal subclass [10]. However, significant heterogeneity
– both clinically and pathologically – exists in TNBC, and
better subclassification tools are needed for clinical
decision-making. To this end, Lehmann et al. used 21
breast cancer data sets containing 587 TNBC cases and
employed cluster and gene expression analysis to identify
a set of 2188 genes for the classification of TNBC into six
subtypes (two basal-like (BL1 and BL2), immunomodula-
tory (IM), mesenchymal (M), mesenchymal stem–like
(MSL), and luminal androgen receptor (LAR) subtypes)
[11]. The goal is of this study to translate the knowledge
of biologically distinct subtypes into rational design of
pre-clinical studies for TNBC clinical trials and to facili-
tate the identification of novel predictive markers. A previ-
ous study has shown the promise of clinical utility by
retrospectively subtyping 130 TNBC patients who had
received standard neoadjuvant chemotherapy comprised
of anthracycline, cyclophosphamide and a taxane. This
study showed that patients with basal-like BL1 tumor sub-
types had an improved response (52 % exhibiting pCR)
whereas basal-like BL2 tumor subtypes showed a worse
response to standard chemotherapy (0 % pCR) [12].
In the derivation of the TNBCtype subclassification

tool, the final group of 2188 classifying genes was identi-
fied from an initial set of approximately 13,000 genes by
selection of those genes with expression significantly dis-
tinct from the median gene expression among all the

cluster-defined subclasses. Although a seminal advance
for the TNBC field, this large classification panel could
best be applied for clinical use only after further refine-
ment. Such optimization would serve three purposes.
First, a more limited set of genes would speed translation
of the classifier into a cost-effective clinical tool. Second,
although not necessarily the case [13], the genes most pre-
dictive of a subtype may include those most relevant to
the regulation and function of that subtype; therefore, a
smaller set of genes may increase the likelihood of correl-
ating biological meaning to the panel members and allow-
ing easier comparison of TNBC subtype molecular
profiles to other similarly well-defined molecular prognos-
tic and predictive tools. Third, and most importantly, a
small set of classifying genes could improve the reproduci-
bility of the TNBC subtyping panel.
Initial gene expression analysis often has the problem of

inclusion of genes with little signal contribution. This prob-
lem arises from having tens of thousands of genes pro-
duced in a typical assay but a considerably smaller number
of measured samples within which to assess these potential
classifiers. This statistical problem, coupled with the inher-
ent noise of microarray platforms, creates a challenge to
the derivation of reproducible classification panels. One
study estimated that to achieve similar (i.e., overlapping)
gene panels in multiple cohorts, the number of analyzed
tumor samples would need to be at least several thousand
[14]. It is well established that overfitting occurs with
large-scale gene expression data when poor or no feature
or dimensional reduction is attempted [15, 16]. Careful
reduction of the genes included in a TNBC classifier would
potentially lead to a robust clinically applicable tool for
subtype identification.
Here we describe the development and validation of a

new TNBC classification tool using only 101 genes, less
than 5 % of the size of the original 2188 gene model of
TNBCtype and yet able to reproduce its classification. The
association of the BL1 and BL2 subtypes with pathologic
response was also reproduced in an independent patient
cohort using this new model.

Methods
Gene expression data set processing
Twenty-one expression data sets representing 13,060
unique genes that were previously used to develop (14 data
sets; N = 386 patients) and validate (7 data sets; N = 201
patients) the 2188-gene TNBC classification model were
used as prepared for the published analysis (Robust Multi-
array Average (RMA) normalized, log transformed) [11].
Expression data of an additional breast cancer data set
(TNBC: GSE41998) was downloaded along with clinical
metrics including age, menopausal status, and outcome
as measured by pCR. Patient datasets were previously
made publicly available under the ethical policies of the
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National Institutes of Health’s GEO database (http://
www.ncbi.nlm.nih.gov/geo/info/submission.html). No
additional ethics review was required for the in silico
analysis of these data sets.
As with the Lehmann et al. analysis, when multiple

probes for a gene were present, the probe with the highest
inter-quartile range was selected. Triple-negative status in
the GSE41998 breast cancer samples was determined by
the given pathological diagnosis (N = 139 patients), with
an additional seven cases being excluded because bimodal
modeling of ER, PR, and ERBB2 expression gave pos-
terior probabilities greater than 0.5 that these genes
were expressed. The original 2188-gene centroid clas-
sifier, five individual subtype classification models, and
a 101-gene centroid classifier were applied to this pa-
tient set.

Statistical analysis and model building
The TNBC subtype signatures from the original 2188-gene
model were used to identify gene sets that distinguished
the classes via gene set enrichment analysis (GSEA) using
the C2 curated gene sets of canonical pathways [17]. Lin-
ear regression, targeted maximum likelihood estimation
[18], random forest [19], and elastic-net regularized linear
models [20] were employed to create subclassifying
models, with each subclass (i.e., BL1, BL2, LAR, M, MSL,
and IM) being defined by an individual model. Strength of
association with outcome variables was assessed using lo-
gistic regression and the Fisher exact test. Classification
error was estimated using a bootstrap analysis, and the
elastic net models showed the least error (average dis-
agreement of 6 % for all five models). The genes that
contribute to the five individual subtype models were
combined to create a 101-gene centroid model. All
model coefficients and cutoffs were determined using
the 14 discovery data sets, as in the original Lehmann
et al. analysis, and were not altered afterwards. Pathway
analysis of the 258 shrunken centroid defined genes
was performed with Cytoscape using the ClueGO tools
[21, 22]. All p-values are two-sided.

Results
Building limited gene models of TNBC subtypes
The expression data sets used to generate the original
2188-gene model were assigned TNBC subclass identities
based on the Lehmann et al. results. Gene set enrichment
analysis [17] was performed on the 14 training gene sets
and 5639 genes were identified as belonging to pre-defined
gene sets that associate with the TNBC subclasses. Given
previous observations that tumor infiltrating lymphocytes
(TILs) correlate with increased expression of genes in-
volved in immune response [23], the ‘Immunomodulatory’
(IM) subtype likely reflects the presence of gene expression
contributed by immune infiltrates with the tumor cells

having the signature of a different subtype. Therefore we
performed principal component analysis (PCA) to identify
and remove the IM component. The presence of an IM
component almost completely defined the IM class (data
not shown), and its significant association with other
classes caused a significant loss of information. There-
fore, cases assigned an IM identity were excluded and
analyzed separately.
Additionally, cases not classified by the original TNBC-

type were also excluded, as well as cases that a Z-test
showed to have non-significant differences between the
most highly correlated centroids. Shrunken centroid ana-
lysis [24] was used for further feature reduction. Using all
non-IM cases, 236 genes were identified as likely classi-
fiers. Analyzing the IM cases compared to all other
combined cases identified a further 22 gene classifiers,
resulting in 258 genes in total used for subsequent
model building (Fig. 1).
Pathway analysis of the shrunken centroid-defined list

of 258 genes used for model building and their associ-
ated GO and KEGG terms showed biological processes
consistent with their putative classification role, which
lent confidence to this limited gene list (Fig. 2). Different
gene sets and algorithms were used for the initial gene

Fig. 1 Gene selection process for model building. Creation of a minimal
gene set employed gene set enrichment, shrunken centroid analysis,
and modeling using shrunken centroids, random forests, and
elastic nets
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set enrichment and this pathway analysis, and no super-
vision was employed over pathways used to define sub-
types. As an example, most of the genes associated with
the BL1 subclass correlated with the expression of genes
previously observed in basal cells [25]. Additionally,
genes associated with the LAR subclass mapped to clus-
ters of peroxisomal lipid metabolism and aromatic acid
metabolism and catabolism, which matches the func-
tions previously mapped to this subtype [10].
Linear regression, targeted maximum likelihood estima-

tion [18], random forest [19], and elastic-net regularized
linear models [20] were employed to create subclassifica-
tion models, with the latter approach giving the best fit to
the TNBCtype-designated subclasses with the least num-
ber of required genes. Six elastic net models were created
to identify each subtype individually, or an expression-
based centroid defined by the genes used in all the elastic
net models—101 genes in total. While the 101 genes were
selected independently of the original 2188 genes, 96
genes were in common between the two models. These
models were then applied to the set of seven, validation
cohorts employed in the TNBCtype analysis. The elastic
net-defined models showed a predicted misclassification
rate of 2–9 % in the discovery set of cohorts in a bootstrap
analysis, and 6–17 % in the validation cohorts (Table 1).
The 101-gene centroid had a 7 % discordance in the dis-
covery cohort, while in the validation cohort the discord-
ance was 25 % (Table 2A). The centroid model allows a
tumor to be assigned to only one subclass, in contrast to
the individual models, though some cases show character-
istics of multiple subtypes. When cases were excluded that
showed a significant correlation to multiple subtypes and

an insignificant (via a Z-test) difference between correl-
ation to these subclasses, the discordance in the valid-
ation cohort decreased to 13 % (Table 2B). As the 101
gene centroid model did not require the use of fixed
cutoff to classify samples and was thus platform inde-
pendent, this model was used for the subsequent ana-
lyses of this investigation.

Comparison of the original and newly developed subtyping
models in an independent cohort of patients treated with
doxorubicin/cyclophosphamide followed mitotic inhibitors
A previous study had demonstrated that TNBC molecular
subtypes differed in response to neoadjuvant chemotherapy
[12]. To determine if subtype classifications provided by
TNBCtype and the newly developed limited gene models
were concordant, we evaluated an independent cohort of
278 early-stage breast cancer patients, of which 139 were
TNBC patients, treated neoadjuvantly with doxorubicin/
cyclophosphamide (AC) followed by ixabepilone or pacli-
taxel [26]. Agreement between the 2188-gene and the 101-
gene centroid classifiers was 83 % among cases that had a

Fig. 2 Pathway analysis of GSEA-defined classifying genes. The 258 genes used for model building were mapped to KEGG pathways and GO
biological processes, and the network created from these functional groups was then viewed. The network is color coded by the KEGG and GO
terms and the TNBC subtype associated with the genes are designated by the shape of the network nodes

Table 1 Misclassification rate

Lehmann et al. discovery
set (N = 386)

Lehmann et al. validation
set (N = 201)

BL1 0.07 0.14

BL2 0.06 0.06

LAR 0.02 0.12

M 0.09 0.17

MSL 0.04 0.10

Misclassification rate as estimated by bootstrap analysis of elastic net models
in the Lehmann et al. [11] discovery and validation cohorts
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significant correlation with at least one subtype. When the
comparison was limited to those samples that had a signifi-
cant difference in the correlations between the highest and
second highest subtype, the agreement increased to 86 %
(Table 3).

BL1 and BL2 TNBC subtypes differ in pathologic response
to mitotic inhibitors
The clinical response of TNBC patients in the GSE41998
cohort to neoadjuvant AC was strongly predictive of pCR
after subsequent additional treatment with ixabepilone or
paclitaxel (p < 0.0001, Table 4). Age was also a very strong
predictor of outcome, as was menopausal status (Table 5).
Stage was not included in the provided data set and could

therefore not be assessed as a factor. Also not provided
was BRCA1/2 status, a factor previously shown to be pre-
dictive of response to certain chemotherapeutic agents [27].
In previous cohorts, patients with BL1 subtype tumors
had better response to chemotherapy and those with BL2
had lower rates of response [12], and similar results were
found in this cohort. Patients with BL2 subclass tumors, as
defined by either the 2188- or 101-gene models (with con-
founding calls removed for both cases as described above),
had the least response and higher incidence of more than
minimal residual disease after therapy (OR = 0.12, p = 0.03;
OR = 0.23, p = 0.02 for the 2188- and 101-gene models,
respectively, via a Fisher exact test) (Table 6). The BL1 sub-
class as defined by the 101-gene model exhibited the best

Table 2 Comparison of 2188- and 101-gene centroid classifiers in the Lehmann et al. [11] validation cohorts

TNBCtype (2188 gene centroid model)

BL1 BL2 LAR M MSL IM Unclassified

101 gene centroid model (A) All significantly classed cases BL1 25 1 3 16 4

BL2 1 15 1 2 1 7 2

LAR 1 14 3 1

M 6 1 1 26 2 2

MSL 2 1 2 4 17 5 2

Unclassified 2 5 6 1 16 3

(B) Ambiguous cases unclassified BL1 19 2 14 3

BL2 1 12 7 2

LAR 13 1 1

M 2 1 21 1 1

MSL 1 2 14 4 2

Unclassified 13 11 4 18 7 19 5

In panel A, all cases are used. In Panel B, ambiguous cases—cases that showed an insignificant difference (via a Z-test) between subclasses—are placed in the
unclassified group

Table 3 Comparison of 2188- and 101-gene centroid classifiers in the GSE41998 TNBC cohort [26]

TNBCtype (2188 gene centroid model)

BL1 BL2 LAR M MSL Unclassified

101-gene centroid model (A) All significantly classed cases BL1 36 1 1

BL2 5 12 2 2

LAR 1 10 1 1

M 3 1 25 2

MSL 3 21

Unclassified 1 1 1 1 1

(B) Ambiguous cases unclassified BL1 26

BL2 5 11 1 2

LAR 1 9 1

M 1 15 1

MSL 1 11

Unclassified 14 1 2 15 14 1

In panel A, all cases are used. In Panel B, ambiguous cases—cases that showed an insignificant difference (via a Z-test) between subclasses—are placed in the
unclassified group
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response (OR = 3.59, p = 0.02). The direction of association
of BL1 with pCR or minimal residual cancer burden
(RCB) in the 2188-gene model was similar (OR = 1.91) but
did not reach significance (OR = 0.14). When all cases
were examined with the 101-gene model (i.e., including
cases that mapped to multiple subtype but were assigned
to the subtype with the highest correlation), the BL2 sub-
type retained a significant association with poor response
to therapy while BL1 cases lost significance. When the
2188-gene model was analyzed in this manner, neither
BL1 nor BL2 had a significant association with response
to therapy, though the effect sizes were similar (data not
shown Whether this is due to superior performance by the
101-gene algorithm or a due to the small size of the cohort
cannot be determined without further study.

Discussion
TNBC comprises up to 20 % of all breast cancers (as
many as 40,000 women newly diagnosed in the US
each year), and occurs more frequently in young and
African-American women [1]. TNBC has higher rates of
metastatic recurrence and poorer prognosis than other
breast cancers, with a 5-year survival of only ~70 % after
treatment with the most aggressive conventional cytotoxic
chemotherapies. This current state is due in large part to
the heterogeneity of TNBC and the still limited knowledge
regarding therapeutic targets and biomarkers that can
predict the responsiveness of these cancers to either
standard-of-care or investigational therapies. Despite over-
all poor outcomes, approximately 30 % of TNBC patients
respond to standard chemotherapy [1]. Thus, there is a

critical unmet need to develop focused diagnostics to
identify patients that would benefit from standard chemo-
therapy and better align new therapeutic regimens with
actionable targets expressed in TNBC patients. The TNBC
subtype algorithm represents a major advance toward ad-
dressing the heterogeneity and therapeutic sensitivities of
TNBC [11]. However, certain features of this original al-
gorithm, such as the large number of genes that com-
prise it (2188 in total), are not optimal for its routine
clinical application. The refinements described herein
represent a portion of the optimization steps being per-
formed to ultimately offer TNBC subtyping as a test
with clinical utility.
Bioinformatics refinement of the original, academic re-

search-based TNBCtype algorithm allowed minimization
of the expression signature representative of all of the
TNBC subtypes from 2188 to only 101 genes. Importantly,
there was excellent agreement between the originally pro-
posed 2188-gene subclassification model and the new
“lean” 101-gene classifier in both a set of discovery and val-
idation TNBC cohorts as well as in an independent TNBC

Table 4 Comparison of clinical response

pCR/mRCB pCR

No Yes No Yes

Clinical Response to AC complete response 5 18 8 15

partial response 36 31 39 28

stable disease 20 2 20 2

progressive disease 2 0 2 0

Clinical response to neoadjuvant AC (doxorubicin/cyclophosphamide) and
pCR)/minimal RCB after subsequent neoadjuvant ixabepilone or paclitaxel in
the GSE41998 TNBC cohort [26]

Table 5 Clinical variables with association to outcome

AC response pCR/RCB

T score P value score P value

Univariate analysis age -2.71 0.007 -2.1 0.036

tumor size -0.29 0.768 -1.08 0.28

menopausal status -3.41 0.001 -1.52 0.127

Multivariate analysis age -0.32 0.749 -2.29 0.022

tumor size -0.97 0.331 -2.15 0.032

menopausal status -2.29 0.022 0.7 0.485

Association of clinical variables with outcome as measured by logistic regression in the GSE41998 TNBC cohort

Table 6 Association of centroid model-determined subtype
and pCR

pCR/mRCB

Yes No Percentage Odds Ratio p value

2188 gene centroid BL1 20 14 59 % 1.91 0.14

BL2 1 8 11 % 0.12 0.03

LAR 3 6 33 % 0.5 0.49

M 7 12 37 % 0.56 0.31

MSL 15 9 63 % 2.13 0.16

Unc 7 15 32 %

101 gene centroid BL1 16 7 70 % 3.59 0.02

BL2 4 14 22 % 0.23 0.02

LAR 3 6 33 % 0.5 0.48

M 7 7 50 % 1.1 0.99

MSL 6 5 55 % 1.35 0.75

Unc 17 25 40 % NA NA

Cases with significant association with more than one subclass were excluded.
P values determined by Fisher Exact test
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clinical trial cohort treated neoadjuvantly with AC followed
by the mitotic inhibitors [26]. The gene set enrichment
analysis that allowed the pruning of the original model of
2188 genes into only 101 genes showed comparable classi-
fication and predictive utility. The data suggest that in the
101-gene model, the genes that define each subclass have
similar biological function (Fig. 2). Further, from a practical
standpoint, the reduction of the classifier to 101 genes
with definition of the individual TNBC subtypes by only 8
to 15 genes will allow placement on assay platforms that
would be technically challenging or impossible for the
2188-gene signature.
Preliminary evidence suggestive of the clinical utility of

TNBC subtyping has already been demonstrated for both
the original 2188-gene and the optimized 101-gene
models. In the clinical trial cohort [26] analyzed herein
using both models, the BL2 subtype was demonstrated to
significantly associate with lack of tumor response to
standard chemotherapy, whereas the BL1 subtype signifi-
cantly associated pCR. Age was a significant predictor of
pathological responses in this cohort, but the BL1 and BL2
subtypes (as defined by the 101-gene model) were inde-
pendent of this factor. To put these findings in context and
emphasize their potential relevance to clinical management,
it is important to note that historical data show only ap-
proximately 25 % of TNBC patients will respond with pCRs
to the conventional anthracycline/cyclophosphamide/mi-
totic inhibitor combination chemotherapy used as neoadju-
vant treatment in the test cohort [28, 29]. By subclassifying
a TNBC population with the 101-gene model, we found
that 70 % of patients with tumors classified as BL1 experi-
enced pCR, in contrast to only 22 % of those with BL2
tumors. Our findings corroborate the independent study
published by Masuda et al., who employed the 2188-gene
model on a cohort of patients from the MD Anderson Can-
cer Center treated with neoadjuvant chemotherapy con-
taining sequential taxane and anthracycline-based regimens
and likewise found BL1 TNBC patients to have a high rate
of pCR (52 %) and BL2 patients to have the lowest (0 %)
pCR rate of all subtypes [12]. Collectively, these data are
supportive not only of the ability of the gene expression
models to classify TNBC into stable homogenous subtypes,
but also of the likely predictive utility of these subtypes to
assess therapeutic sensitivities.
In the original identification of the TNBC subtypes by

Lehmann and co-workers, it was noted that the BL1 sub-
type was typified by high expression of cell cycle and
DNA damage response genes [11]. Additionally, TNBC
cell lines that shared expression patterns with this subtype
preferentially responded to cisplatin and it was hypothe-
sized that patients with BL1 would have higher response
rates to platinum compounds and PARP inhibitors [27]
compared to the other subtypes [11]. The 101-gene model
is being further refined to an even more limited gene sets

to individually classify each subtype. Thereafter, clinical
utility studies will follow to assess the ability of subtyping
to guide therapeutic decisions regarding the use of plat-
inum agents, PARP inhibitors, as well as other agents be-
lieved to have efficacy in subsets of TNBC patients (e.g.,
checkpoint blockade inhibitors, androgen receptor antag-
onists and anti-angiogenics such as bevacizumab, etc.).
Previous attempts with targeted therapies in unselected
TNBC have largely been unsuccessful as has been the case
with VEGFR and EGFR inhibitors [30, 31]. However, align-
ment of targeted therapies with select subsets of TNBC
that display biologies dependent on a given target may ac-
celerate development of new therapeutics that are more
efficacious for patients with TNBC.

Conclusion
Our results demonstrate that a model using small gene
sets can recapitulate the TNBC subtypes identified by the
original 2188-gene model and in the case of standard
chemotherapy, the ability to predict therapeutic response.
Additional studies are planned comparing both models on
randomized clinical trial samples to fully explore the util-
ity of models to identify responsive patient populations.
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