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Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years

ago. Human basophils represent <1% of peripheral blood leukocytes. During the

last decades, basophils have been described also in mice, guinea pigs, rabbits,

and monkeys. There are many similarities, but also several immunological differences

between human and mouse basophils. There are currently several strains of mice with

profound constitutive or inducible basophil deficiency useful to prove that these cells have

specific roles in vivo. However, none of these mice are solely and completely devoid

of all basophils. Therefore, the relevance of these findings to humans remains to be

established. It has been known for some time that basophils have the propensity to

migrate into the site of inflammation. Recent observations indicate that tissue resident

basophils contribute to lung development and locally promote M2 polarization of

macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit

a specific phenotype, different from circulating basophils. Activated human and mouse

basophils synthesize restricted and distinct profiles of cytokines. Human basophils

produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl

leukotriene C4) angiogenic factors. Activated human and mouse basophils release

extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness

of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia

vera. Basophils are present in the immune landscape of human lung adenocarcinoma

and pancreatic cancer and can promote inflammation-driven skin tumor growth. The

few studies conducted thus far using different models of basophil-deficient mice have

provided informative results on the roles of these cells in tumorigenesis. Much more

remains to be discovered before we unravel the hitherto mysterious roles of basophils in

human and experimental cancers.
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INTRODUCTION

Peripheral blood basophils and tissue mast cells were described
over 140 years ago by Paul Ehrlich the founder of modern
Immunology (1, 2). Basophils have been characterized in humans
(3), guinea pigs (4), mice (5, 6), rabbits (7) and monkeys
(8). Basophils represent <1% of human peripheral leukocytes,
whereas mast cells are ubiquitous in essentially all tissues (9, 10).
Basophils share some characteristics with mast cells, including
the presence of similar, but distinctive basophilic granules within
the cytoplasm (11), surface expression of the full tetramer (αβγ2)
form of the high affinity receptor for IgE (FcεRI) and release
of proinflammatory mediators such as histamine and cysteinyl
leukotrienes (12, 13). These similarities had initially generated the
erroneous hypothesis that basophils represented the circulating
precursor/counterpart of tissue mast cells. This concept is no
longer accepted, as there is now ample evidence that human
basophils and mast cells differ morphologically, ultrastructurally,
immunologically, biochemically, and pharmacologically (13–
15). In a series of eloquent studies, Ann M. Dvorak carefully
described and compared the distinctive morphological and
ultrastructural features of human basophils and mast cells
(11). Figure 1 illustrates the striking ultrastructural differences
between human peripheral blood basophils and lung mast cells
(18). In addition to highlighting key ultrastructural differences
between basophils and mast cells, Dr. Dvorak also pioneered
the characterization of mouse basophils. In fact, there was
early belief that questioned the existence of basophils in
mice. However, Dr. Dvorak’s meticulous work clearly identified
mouse basophils as a rare, and often elusive, population of

FIGURE 1 | Morphologic and ultrastructural differences between human basophils and mast cells. (A) Human peripheral blood basophil shows irregular blunt surface

processes and a polylobed nucleus with condensed chromatin pattern. The cytoplasm contains large-membrane bound secretory granules filled with electron dense

particles and/or finely granular material (11) X 21,500. (B) Isolated human lung mast cell has a narrow surface fold and single lobed nucleus with partially condensed

chromatin pattern. The cytoplasm is filled with a large number of membrane-bound secretory granules that have an extremely variable ultrastructural pattern (16, 17).

The cytoplasm also contains six non–membrane-bound spherical lipid bodies that are larger than secretory granules, are osmophilic and do not contain scrolls

(16, 17) X 14,000. Photos kindly provided by Ann M. Dvorak and reproduced with permission from Marone et al. (18).

granular cells typically found in bone marrow, with some
ultrastructural characteristics similar to human basophils (6, 11,
19).

BASOPHIL DEVELOPMENT

Like other myeloid lineages basophils develop from
hematopoietic stem cells in the bone marrow (20). IL-3 is
generally viewed as the most important growth factor for
basophil development, both in humans and mice (21, 22).
Indeed, human and murine basophils can be generated in
vitro by culturing bone marrow cells in the presence of
recombinant IL-3 (23–25). More recently, it has been proposed
that thymic stromal lymphopoietin (TSLP) is another growth
factor important for the development of mouse basophils
(26). Interestingly, IL-3- and TSLP-elicited murine basophils
differ in terms of gene expression and functions, suggesting
heterogeneity among these basophil populations (27). A study
has suggested clinical relevance to this concept in reporting
evidence that a small percentage (? 10%) of basophils isolated
from asthmatic patients express the TSLP receptor and respond
directly to TSLP by releasing histamine and cytokines (28).
In contrast, subsequent studies have failed to confirm these
findings, showing that human basophils lack expression of the
IL-7Rα subunit of TSLP receptor (29) and are unresponsive to in
vitro stimulation with TSLP (29, 30). Collectively, these findings
illustrate some of the controversies yet to be resolved between
human and mouse basophils, but also those within each species
(13, 31, 32).
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PROINFLAMMATORY AND
IMMUNOREGULATORY
MEDIATORS/CYTOKINES RELEASED BY
BASOPHILS: HUMAN VS. MOUSE

Many phenotypic markers have been identified on human and
mouse basophils, with some minor differences worth noting.
For example, basophils from both species express of a variety
of activation-linked markers, namely FcεRI (33, 34), but also
the degranulation marker, CD63 (35–37), as well as CD203c –
an ecto-nucleotide pyrophosphatase/phosphodiesterase (15, 36,
38, 39). In contrast, human basophils express the IgG receptors
FcγRIIA, FcγRIIB, and minute amounts of FcγRIIIB, whereas
mouse basophils express FcγRIIB and FcγRIIIA (40, 41). As
indicated above, both human and mouse basophils express
receptors for IL-3 (CD123) (26, 42), but also for GM-CSF
(CD116) (43), and IL-33 (ST2) (44–47). Again, it remains unclear
whether they similarly express the heterodimeric receptor for
TSLP (26, 28–30). To date, only human basophils are reported
to express IL-5 receptors (CD125). Human basophils express
tropomyosin receptor kinase A (TrkA)(48, 49)—the high affinity
receptor for nerve growth factor (NGF) and that this factor
mediates functional activity (50). In contrast, there are currently
no reports that mouse basophils express TrkA. Both human
and mouse basophils share the expression of a variety of
chemokine receptors (13, 51–56), but it remains to be determined
if mouse basophils express CCR1 and CXCR1 (57). These
phenotypic comparisons between human and mouse basophils
are summarized in Table 1.

There are several proinflammatory mediators found
preformed in human basophils, including histamine (≃ 1
pg/cell), basogranulin (57, 77) and very low concentrations of
tryptase (78). Human (79) andmouse basophils release granzyme
B (80), which possesses cytotoxic effects on cancer cells (81, 82).
Both human and mouse basophils rapidly synthesize cysteinyl
leukotriene C4 (LTC4) through the 5-lipoxygenase pathway (83).
There is evidence that mouse basophils metabolize arachidonic
acid through cyclooxygenase activity to form prostaglandin
D2 (PGD2) and prostaglandin E2 (PGE2) (72, 84). In contrast,
there is currently no solid evidence that highly purified human
basophils can produce measurable levels of PGD2, or any
other lipid mediator generated through the cyclooxygenase
pathway (85).

With regard to the cytokines secreted by human vs. mouse
basophils, there are several similarities and differences. First,
it is now well-accepted that both human and mouse basophils
produce IL-4 (44, 86–97) and IL-13 (44, 89, 92, 94, 97–
100). Several reports show that mouse basophils additionally
produce IL-6 (44, 73, 101) and TNF-α (44, 73). There are at
least two publications reporting TNF-? production by human
basophils (88, 102). Numerous attempts to detect this cytokine
in supernatants of highly purified human basophils activated by
IgE-mediated stimuli have produced negative results. Certainly,
other cell types (e.g., monocytes, DCs) produce copious amounts
of TNF-? and IL-6 (103, 104), thus making it possible that even
low-level contamination with these cells could skew the basophil

TABLE 1 | Comparison of the phenotypic differences between human and mouse

basophilsa,b.

Phenotypic Marker Human

Basophil

Mouse

Basophil

References

FcεRI ++ ++ (34)

FcγRIIA + - (33, 40, 58)

FcγRIIB + + (33, 40, 58)

FcγRIIIA - + (33, 40, 58, 59)

FcγRIIIB ± - (33, 40, 58, 60)

CD63 + + (35–37)

CD203c + + (15, 36, 38, 39)

(CD123) IL-3Rα ++ ++ (26, 42)

(CD116) GM-CSFRα + + (43)

(CD125) IL-5Rα + ND (43)

TSLPR – + (26, 28–30, 32)

(ST2) IL-33R + + (44–47)

CCR1 + ND (13, 51)

CCR2 ++ + (13, 51–53)

CCR3 ++ ± (13, 51, 61)

CCR5 + – (13, 51, 53)

CXCR1 ++ ND (13, 51)

CXCR2 + + (13, 51, 62)

CXCR4 + + (13, 51, 62, 63)

CRTH2 ++ + (51, 55, 62, 64, 65)

CD200R + + (56, 66)

CD300a + + (67–69)

CD300c + + (68, 70)

CD300f + + (68, 70)

PD-L1 + ND (50)

VEGFR2 + ND (57)

NRP1/2 + ND (57)

TrKA + ND (48, 49)

ND, not done.
aSeveral key surface markers are used to characterize human [IgE+, FcεRI+, CCR3+,

(CD123)IL-3Rα+, CD63+, CD203c+ ] (15, 36, 57, 61, 71) and murine basophils (FcεRI+,

KIT−, CD49b+, CD200R3+) (35, 62, 72–76) by flow cytometric analysis.
bThis table essentially includes the phenotypic characteristics of peripheral blood human

and mouse basophils. Phenotypic and/or molecular characteristics of human (50) and

mouse basophils in tissues (26, 39, 44, 53, 55, 62) are also included.

+: means “expressed”; ++: means “highly expressed”; – means “not expressed”; ±:

means “probably expressed under certain circumstances”.

findings. This issue must be taken into consideration each time
any cytokine is reportedly made by basophils. Nevertheless,
consistent with the general theme of this review, it is becoming
apparent that basophils secrete several angiogenic factors that,
when combined with the cytokines thus far mentioned, point
to a possible role for these cells in wound healing and/or
tumorigenesis (as further discussed below). In particular, vascular
endothelial growth factor-A (VEGF-A) (57), angiopoietin-1
(ANGPT1) (105), hepatocyte growth factor (HGF) (44, 106),
and amphiregulin (71, 107, 108) are all reportedly produced
by human basophils, with some of these also made by
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TABLE 2 | Comparison of the mediators differently produced by human and mouse basophils.

Mediator Human

Basophil

Mouse

Basophil

References

Cytokines IL-3 + + (21, 109)

IL-4 ++ + (44, 87–91, 93–97,

110, 111)

IL-5 – ND (86)

IL-6 ± + (44, 73, 89, 95, 101)

IL-8/CXCL8 + ND (86, 88–90, 112)

IL-13 + + (44, 88, 89, 92, 94,

97–100)

IL-31 + + (113)

TNF-α ± + (44, 73, 88, 95, 102)

Chemokines CCL3 + + (100, 114)

CCL5 + ND (112)

CXCL10 + ND (112)

Angiogenic factors VEGF-A + ND (57)

VEGF-B + ND (57)

ANGPT1 + ND (105)

HGF + + (44, 106)

LTC4 + + (83, 115)

Amphiregulin + + (71, 107, 108)

Extracellular DNA Traps + + (116–118)

Granzyme B + + (78, 79)

ND, not done.

+: means “expressed”; ++: means “highly expressed”; – means “not expressed”; ±: means “probably poorly expressed”.

mouse basophils (44). Table 2 summarizes the cytokines/factors
produced by human vs.mouse basophils.

There are many other fundamentals of basophil biology not
discussed herein, but have been extensively reviewed elsewhere
(13, 86, 119–123). In this review, we focus our discussion
instead on the relatively novel concept of how basophils and
their mediators/cytokines may play a role in promoting or
limiting tumorigenesis.

DIFFERENCES BETWEEN PERIPHERAL
BLOOD AND TISSUE BASOPHILS

The life-span of peripheral blood basophils has been calculated
to be relatively short (? 2.5 days in mice) (124) and therefore
newly generated basophils are constantly supplied from the bone
marrow to the blood (20). It has long been thought that basophils
circulate in peripheral blood and are rarely present in tissues
unless during specific kinds of inflammation, reported both in
mice (62, 73, 124–126) and in humans (50, 127–131). However,
this dogma has been recently challenged by a study in mice
whereby the authors found that basophils are present in all phases
of lung development (44). Lung-resident basophils localize in
close proximity of alveoli and, interestingly, exhibit a specific
phenotype, highly divergent from peripheral blood basophils.

IL-33 and GM-CSF produced in the pulmonary environment
mediate the specific gene signature of lung alveolar basophils.
Importantly, lung basophils are essential for transcriptional
and functional development of alveolar macrophages and their
polarization toward the M2 state. The latter finding raises the
intriguing possibility that in pathologies characterized by M2
macrophages, as happens in many tumors (132, 133), basophils
may be involved in regulating the activity of tumor-associated
macrophages. This experimental study has several relevant
pathophysiological implications. First, it demonstrates that tissue
resident basophils exhibit a specific phenotype, different from
circulating basophils. Second, the tissue microenvironment can
modulate the specific gene signature of resident basophils
through exposure to cytokines (e.g., IL-33, GM-CSF). Third,
lung resident basophils can influence the transcriptional and
functional development of macrophages. The observations of this
elegant study represent important premises for future research.

We would like to suggest that any difference between
circulating and tissue basophils should be confirmed in
human models, given the differences between human and
murine basophils. Moreover, studies are urgently needed to
characterize the possible roles of tissue basophils residing in
the tumor microenvironment (TME) of different human tumors
in order to identify novel potential prognostic biomarkers and
therapeutic targets.
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CANONICAL AND NON-CANONICAL
ANGIOGENIC FACTORS PRODUCED BY
BASOPHILS

Angiogenesis, the formation of new blood vessels from
preexisting ones via a process called sprouting, represents
one of the hallmarks of cancer (134, 135). Angiogenesis is a
highly complex process that may occur under physiological
conditions, such as during embryonic development. Pathological
angiogenesis can occur in inflammation and in cancer and
is driven by the coordinated overexpression of several
proangiogenic factors (136). Unlike wound healing, where
angiogenesis undergoes a resolution phase, tumor angiogenesis
continues abnormally in growing cancers supported by
angiogenic factors produced by both cancer cells and infiltrated
immune cells (137, 138). The VEGF family (VEGF-A, VEGF-B,
VEGF-C, VEGF-D) and their receptors (VEGFR1, VEGFR2,
VEGFR3) play intricate roles in initiating and promoting
tumor and inflammatory angiogenesis (136). Activated
human basophils release substantial amounts of VEGF-A,
the most potent proangiogenic molecule (57). VEGFs are
potent chemotactic stimuli for human basophils through the
engagement of VEGFR2expressed in these cells (57, 139). Thus,
VEGFs produced by tumor cells and by several immune cells in
TME (136, 139–141) can induce basophil chemotaxis through
the activation of VEGFR2 on their surface.

The angiopoietin/Tie receptor system is another player in
tumor angiogenesis. Angiopoietins (ANGPTs) are a group of
growth factors that are involved in regulating vascular functions
(142). ANGPTs and their receptors (Tie1 and Tie2) participate
in inflammatory and tumor angiogenesis (143). ANGPT1
binds with high affinity to the Tie2 receptor on endothelial
cells and promotes endothelial stabilization (144). By contrast,
ANGPT2, released by activated endothelial cells, causes vascular
permeability. Human basophils constitutively express ANGPT1
and ANGPT2 mRNAs (105). In vitro basophil activation causes
the release of ANGPT1. Hepatocyte growth factor (HGF) is
one of the most powerful angiogenic factors (145) and human
basophils are a major source of HGF (106). Recently, it has
been demonstrated that mouse lung-resident basophils express
a specific gene signature including Hgf (44).

The cysteinyl leukotrienes (cys-LTs) are lipid mediators
initially characterized for their proinflammatory activities (146).
The cys-LTs include leukotriene C4 (LTC4), LTD4, and LTE4.
LTC4 is de novo synthesized by several immune cells (146,
147) and is the major lipid mediator produced by activated
human basophils (83, 115). LTC4 is converted by the extracellular
enzymes, γ -glutamyl transpeptidases to LTD4 and to LTE4
by the membrane-bound dipeptidases (146). Cys-LTs activate
three distinct receptors (CysLTRs) CysLT1R, CysLT2R, and
CysLT3R (148–150). Recent evidence demonstrates that LTC4

and LTD4 were equipotent in forming tubes in the Matrigel in
vitro assay of angiogenesis (151). The proangiogenic activities
of LTC4 and LTD4 were also confirmed in vivo and were
found to be mediated by the engagement of CysLT2R on blood
endothelial cells (BECs). CysLT2R deficiency and pharmacologic

antagonism reduced tumor growth and the formation of lung
metastases in a mouse model of Lewis lung carcinoma (151).
These novel findings emphasize the importance of cys-LTs as
non-canonical angiogenic factors in cancer. It is possible to
speculate that LTC4 released by circulating basophils can activate
CysLT2R overexpressed in tumor BECs (151), thus contributing
to angiogenesis. It has been suggested that CysLT2R might
represent a possible pharmacologic target in tumor growth and
metastases formation (151).

FORMATION OF EXTRACELLULAR DNA
TRAPS BY BASOPHILS

Extracellular traps (ETs) are DNA structures released by activated
immune cells, including neutrophils, eosinophils, mast cells,
macrophages, and basophils (116, 117, 152–155). ETs released
by these cells are draped with proteins from primary granules
(e.g., myeloperoxidase and elastase) (156), secondary granules
(e.g., lactoferrin and pentraxin 3) (156, 157), and tertiary
granules (e.g., matrix metalloproteinase 9) (156). Initial studies
highlighted the antibacterial activity of ETs (154, 158, 159).
During the last years, there has been increasing evidence that
ETs, particularly neutrophil extracellular traps (NETs), have a
role in different aspects of cancer (160). For instance, it has
been demonstrated that NETs can promote cancer metastasis
in mouse models and in humans (161–164). Moreover, it has
been found that NETs formed during lung inflammation awaken
dormant cancer cells (165). Neutrophils from patients with
myeloproliferative neoplasms associated with JAK2V617F somatic
mutation have an increase in NET formation and thrombosis and
mice with knock-in of JAK2V617F have an increased propensity
for NET formation and thrombosis (166). Recently, we have
demonstrated that anaplastic thyroid cancer cells can induce
the release of mitochondrial DNA traps by viable neutrophils
(167). Collectively, these studies indicate that NETs can sustain
several aspects of tumor growth, the formation of metastasis, and
promote cancer-associated thrombosis. Activated human and
mouse basophils can form extracellular DNA traps (BETs) in vitro
and in vivo (116–118). Future studies should investigate whether
BETs modulate tumor growth and the formation of metastasis in
preclinical models and/or in human cancer.

BASOPHIL-DEPLETED MICE TO
INVESTIGATE BASOPHIL FUNCTIONS
IN VIVO

It seems pertinent to review the mouse models currently
employed to investigate basophil functions in vivo. Basophil-
depleted mice will certainly play a critical role in discerning the
functions of this granulocyte in cancer. Indeed, several models of
basophil-deficient mice have been developed and are undergoing
testing for this very purpose.

Initially, studies were performed using administration of
antibodies that transiently deplete basophils. These antibodies
recognize either the FcεRI (MAR-1) (168) or the activating
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receptor CD200R3 (Ba103) (169). Although these antibodies
can deplete basophils, they can also deplete/activate other
cells (e.g., mast cells, DCs, monocytes) expressing FcεRI (169–
171). Furthermore, Ba103 is FcR-dependent and might activate
myeloid cells and NK cells (168). Studies using these depleting
antibodies have led to the controversial conclusion that basophils
have a role as antigen-presenting cells (APCs) during Th2
polarization (95, 172, 173). Several new mouse strains with
constitutive or inducible depletion of basophils have recently
been generated (119). The Bas-TRECK and theMcpt8DTR are two
diphtheria toxins (DT)-inducible basophil depletionmicemodels
(125, 174). The latter models are characterized by a transient
depletion of more than 90% of basophils. The Mcpt8DTR mice
express the human diphtheria toxin (DT) receptor (DTR), which
makes it possible to induce a transient (∼ 5 days) depletion
of basophils after intraperitoneal treatment with DT (125). The
Mcpt8 gene is specifically expressed by basophils (175, 176) and
encodes mouse mast cell protease 8 (mMCP-8), a granzyme B-
like protease stored in the secretory granules of basophils (175).
Although the expression of Mcpt8 is specific to basophils among
mature cells, it is still transiently expressed at the progenitor stage
to a sufficient level to allow their depletion by a high dose of
DT in the Mcpt8DTR mice (177). Injection of DT in Bas-TRECK
mice also causes efficient (≥90%) depletion of basophils (174). In
this model, the human DTR was inserted under control of the 3’
proximal enhancer in the IL4 locus.

Basoph8 (Mcpt8IRES−YP−Cre) (178), Mcpt8-Cre (179) and
P1-Runx1 (180) are three different mouse models showing
constitutive depletion (∼90%) of basophils. The Mcpt8-Cre
model was developed by engineering a bacterial artificial
chromosome transgenic mouse that expresses the Cre
recombinase under control of the regulatory elements of
Mcpt8 (179). Mcpt8-Cre mice are constitutively deficient for
basophils; therefore, this model is suitable for experiments
that need long-term ablation of these cells. In the Basoph8
(Mcpt8IRES−YP−Cre) mice an IRES-YFP-Cre cassette was inserted
before the start codon of the Mcpt8 gene (178). The dysruption
of the distal (P1) promoter of the transcription factor Runx1
resulted in >90% depletion of basophils indicating that Runx1
plays a critical role in the development of mouse basophils
(180). Runx1P1N/P1N mice have markedly reduced numbers
of basophils in bone marrow, spleen and peripheral blood
(180). Recently, a new mouse model (Mcpt8ìCre/+Il4fl/fl) was
established by crossing two mouse stains, Mcpt8iCre/+ and
Il4fl/fl mice (74). These mice are selectively deficient for IL-4
only in basophils and are thus suitable to assess the role of
basophil-derived IL-4 in different pathophysiological conditions,
including cancer. Several excellent reviews have analyzed in
details the different mouse models to investigate basophil
functions in vivo (75, 119, 181, 182).

It is important to emphasize that previous studies using
antibody-depleted basophils (114) and genetically engineered
models (62, 91) provided contrasting results on the role of
basophils in cancer. Moreover, it should be pointed out that
even newmousemutants have some hematological abnormalities
(177). Therefore, results obtained with basophil-deficient mouse
models should be interpreted with caution.

PERIPHERAL BLOOD BASOPHILS AND
HUMAN CANCER

It has been well-known for some time that basophilia can occur
during the advanced phase of chronic myeloid leukemia (CML)
(183). The transcription factor IKAROS is markedly reduced
in bone marrow from CML patients (184). Overexpression of
the dominant-negative isoform of IKAROS in CD34+ cells
from CML patients resulted in inhibition of IKAROS activity
and increased differentiation into basophils (184). Basophils
from CML patients express HGF, which promotes CML cell
expansion in an autocrine fashion (106). In a mouse model
of CML it has been shown that basophil-like leukemia cells
promote CML development by producing the chemokine CCL3
(185). In this model basophil-derived CCL3 negatively regulates
the proliferation of normal hematopoietic stem/progenitor cells
and promotes the expansion of leukemia cells (186). There
is also evidence that basophilia is an independent risk factor
for evolution of myelodysplastic syndrome to acute myeloid
leukemia (187, 188).

Peripheral blood basophils have also been associated with
certain solid tumors (189). Basopenia appears to be associated
with poor prognosis of colorectal cancer (190, 191), whereas
circulating basophils have no predictive role in breast cancer
(192), ovarian cancer (54) and oral squamous cell carcinoma
(193). Of note, high relative circulating basophils positively
associated with improved outcome in melanoma patients
undergoing immunotherapy with nivolumab plus ipilimumab
(194). On the other hand, baseline basophil count may predict
recurrence in patients with high-grade bladder cancer receiving
bacillus Calmette-Guérin (BCG) following resection (195).
Finally, in a mouse model of breast cancer, a low percentage
of circulating basophils correlated with an increased number of
pulmonary metastases, suggesting a protective role of basophils
in this model (196).

Basophils and Polycythemia Vera
Polycythemia vera (PV) is a myeloproliferative neoplasm
characterized by clonal stem cell proliferation of erythroid,
megakaryocytic, and myeloid cell lines (197, 198). An activating
Janus kinase 2 (JAK2) mutation (JAK2V617F or exon 12
mutation), leading to an overactive JAK-STAT signaling pathway
is found in more than 90% of PV patients (199, 200).
Pruritus is a common symptom in PV patients (198, 201) and
basophil-derived mediators have been implicated in this disorder
(202). Absolute basophil counts have been found increased in
JAK2V617F-positive PV patients compared to control subjects
(203). The expression of CD63, a surface marker of basophil
activation, is increased in PV patients with pruritus compared
to controls. Finally, PV basophils are hyperresponsive to IL-
3 compared to basophils from normal donors. Collectively,
these findings indicate that JAK2V617F mutation is associated
with hyperreactivity of PV basophils. The latter observation is
likely responsible for pruritus in PV patients. Given the role of
basophils as major source of Th2 cytokines (e.g., IL-4), we cannot
exclude the possibility that the hyperresponsiveness of these cells
might play a role in the possible evolution of PV patients.
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Basophils and Ovarian Cancer
In a recent study, Bax and co-workers examined the role of
basophils in ovarian cancer patients (204). They found that
higher percentage of circulating basophils from ovarian cancer
patients was positively associated with improved overall survival.
Furthermore, by protein and gene expression analyses they
detected resting (CCR3, CD123, FcεRI) and activated basophils
(CD63, CD203c) in ovarian tumors. Whereas, gene expression
for tumor-resident basophils was not associated with patient
survival outcomes, gene signatures for activated basophils were
positively associated with improved progression-free and overall
survival. This study suggests that activated basophils, either in
circulation or in tumor, are associated with a survival benefit in
ovarian cancer patients.

BASOPHILS AND LUNG CANCER

It has been well-known for some time that murine (62, 73,
124, 125) and human (127–131) basophils have a propensity
to migrate into the site of inflammation, including the lung.
Whether this influx contributes to the supply of tissue resident
basophils that promote M2 polarization of lung macrophages
(44) remains to be determined. Nonetheless, the evidence
that lung-resident basophils acquire the expression of several
cytokines due to the exposure to lung-specific signals (e.g., IL-33,
GM-CSF), emphasizes the plasticity of these cells. Thus, basophils
migrating into tissue may take on completely new roles, based
on the cytokine environment they encounter. The observation
that the pulmonary microenvironment may condition the
transcriptional and functional development of immune cells has
recently been extended to the oncological context. Single-cell
transcriptomics of human and mouse lung cancers revealed that
blood and tumor neutrophils and monocytes strongly differed in
their gene expression (205). Interestingly, basophils were present
in mouse lung tumors. Lavin and collaborators compared the
simultaneous single-cell analysis of the immune compartments
in early (stage I) lung adenocarcinoma, non-involved lung tissue
(nLung), and peripheral blood of each patient (50). Basophils
were present in both solid tumor site and nLung. A percentage
of basophils in the tumor were PD-L1+. This study demonstrates
that, as early as in stage I disease, basophils are present in the
immune landscape of nLung adenocarcinoma.

In a related example of how the TME can influence
basophil function, Schroeder and collaborators demonstrated
that highly purified human basophils release histamine and
produce IL-4 and IL-13 when co-cultured with the lung
carcinoma cell line, A549 (30). Remarkably, these responses
required that basophils express IgE, yet occurred independently
of allergen, and were suppressed pharmacologically by inhibitors
of FcεRI signaling. It was subsequently determined that the
IgE-binding lectin, galectin-3, expressed on the A549 cells,
was responsible for basophil activation (206). In support of
these findings, basophils co-cultured with microspheres coated
with galectin-3 also secreted IL-4 and IL-13. Galectin-3 is
implicated as a biomarker and/or factor contributing to the
pathogenesis of a wide range of conditions, including cancer,

cardiovascular disease, autoimmunity, wound healing, and
chronic inflammation in general (207). Overall, these findings
illustrate a novel mechanism by which galectin-3 expressed by
human lung carcinoma cells can activate basophils (and likely
other cell types) to release several immunoregulatory cytokines
and proinflammatory mediators. Additional studies are required
to elucidate the exact role of galectin-3 in activating basophils,
and how the mediators and cytokines released by these cells
contribute to human and experimental lung cancer.

BASOPHILS AND MELANOMA

The role of basophils has been evaluated in a mouse model
of melanoma in which Treg depletion was induced (114).
Treg depletion in Foxp3DTR mice was associated with tumor
infiltration of basophils and CD8+ T cells leading to rejection
of melanoma. Basophils promoted CD8+ lymphocyte infiltration
into the tumor through the production of CCL3 and CCL4.
Depletion of basophils, through administration of MAR1 (i.e.,
anti-FcεRI), in Foxp3DTR melanoma-bearing mice prevented the
rejection of melanoma, suggesting a pivotal role of basophils
in this model. However, as previously mentioned, MAR1 can
also deplete/activate other immune cells (e.g., mast cells, DCs,
monocytes) expressing FcεRI (170, 171). Thus, the possible role
of basophils in melanoma will need to be confirmed using the
newer genetically engineered basophil-deficient mouse models.

We recently explored the anti-tumor activity of IL-33, a
cytokine known to induce tumoricidal functions in eosinophils
(208, 209) on bone marrow-derived murine basophils.
Incubation of basophils with IL-33 upregulated granzyme
B mRNA and the surface expression of CD63 (80), indicating
phenotypic and functional activation. When IL-33-activated
basophils were co-cultured with metastatic B16-F10 melanoma
cells, tumor cell-growth was substantially inhibited, as compared
to melanoma cells co-cultured with resting basophils. These
preliminary findings suggest that, under appropriate stimulation,
basophils can acquire tumoricidal properties in vitro. Whether
similar activity occurs in vivo remains to be determined, but it is
an area of ongoing investigation.

BASOPHILS AND PANCREATIC CANCER

In the mid 1990s, AnnM. Dvorak showed ultrastructural features
of piecemeal degranulation of human basophils in the stroma of
pancreatic cancer (11). More recently, Protti and collaborators
elegantly investigated the role of basophils and their mediators
in experimental and human pancreatic cancer (91). In a large
cohort of pancreatic ductal adenocarcinoma (PDAC) patients,
they found basophils expressing IL4 in tumor-draining lymph
nodes (TDLNs) of PDAC. Importantly, the presence of basophils
in TDLNs was an independent negative prognostic biomarker
of patient survival after surgery. The authors also examined the
possible role of basophils in an orthotopic model of pancreatic
cancer using the Mcpt8-Cre basophil deficient (179) and WT
mice. At 8 weeks after implant, tumor was found in 80%WT, but
in none of basophil-deficient mice. The authors demonstrated
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the presence of basophils in TDLNs in this model of pancreatic
cancer and provided evidence that cancer-associated fibroblasts
(CAFs) released TSLP which activated DCs to produce IL-3
fromCD4+ T cells. IL-3-activated basophils produced substantial
amounts of IL-4. It was further determined that DCs and
CD14+ monocytes produced CCL7 which was responsible
for basophil migration into TDLNs. Based on these findings,
schematically illustrated in Figure 2, the authors concluded that
basophils can favor both Th2 and M2 polarization through the
production of IL-4, thus playing a relevant pro-tumorigenic role
in PDAC progression. Consistent with this latter concept of IL-4
driving M2 development, our own in vitro studies point to the
importance of basophil-derived IL-4 (and IL-13) in promoting
M2-like cells (211).

There is compelling evidence that CD4+ CD25+ Foxp3+

regulatory T cells (Tregs) contribute to maintain immune

tolerance in the TME (212, 213) particularly in pancreatic cancer
(214). A recent study has shown that Tregs can induce the
expression of activationmarkers (CD69, CD203c, and CD13) and
promote the release of several cytokines (IL-4, IL-8, IL-13) from
human basophils (90). Tregs induced basophil activation through
the release of IL-3. It has been suggested that Tregs might also
promote tumor evasion by activating basophils to augment and
sustain Th2 responses in TME by secreting IL-3 (215).

IGE, BASOPHILS AND SKIN CANCER

IgE is an ancient and the least abundant circulating
immunoglobulin isotype (216). It has been suggested that
IgE has evolved to provide protection against helminths (217)
and environmental toxins such as venoms (218–220). Moreover,
dysregulated IgE responses can cause a variety of allergic

FIGURE 2 | Proposed model of how basophils are recruited and activated in tumor draining lymph nodes (TDLNs) in the context of pancreatic cancer. It has been

previously demonstrated (210) that cancer-associated fibroblasts (CAFs) can produce TSLP that engages TSLP receptor on dendritic cells (DCs). TSLP-conditioned

DCs migrate into TDLNs were they prime CD4+ T cells for early IL-3 production. Monocytes, which are driven to differentiate toward a M2-type by activated CAFs,

release the basophil chemoattractant CCL7/MCP3 (52). Basophils are recruited from afferent arterial blood into lymph nodes and are activated by IL-3 to express IL-4.

Basophils are a major source of IL-4 contributing to both Th2 and M2 polarization. The percentage of basophils in TDLNs is an independent negative prognostic factor

of survival after surgery of pancreatic cancer patients (91).
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disorders (221, 222). IgE binds with very high affinity to FcεRI
on mast cells and basophils and remains bound to its receptor
for the life of these cells (223). It has been demonstrated
that once-weekly topical application of the carcinogen 7,12-
dimethylbenz [a] anthracene (DMBA) to the skin of WT mice
led to the development of squamous-cell carcinomas (SCCs)
after 8–15 weeks associated with high concentrations of serum
IgE and infiltration of IgE-bearing basophils in skin and tumors
(224). The same group of investigators extended the previous
observation by demonstrating that topical application of the
proinflammatory agent 12-0-tetradecanoylphorbol-13-acetate
(TPA) (2x a week for 2 weeks) to the skin of WT mice increased
serum IgE and IgE-bearing basophils in the skin (62). Using a
two-stage inflammation drivenmodel of epithelial carcinogenesis
(DMBA and subsequent exposure to TPA) (225), they found
that mice lacking IgE (lgh7−/−) were less susceptible to tumor
development compared to WT mice. IgE-bearing basophils
(Mcpt8+) accumulated inside skin tumors of WT mice. In
this model, IgE-signaling was necessary for activation and
histamine release from basophils. Infiltrating tissue basophils
showed expression of Cxcr2, Cxcr4, and Ptger2 (CRTH2, the
PGD2 receptor). Blocking CXCR4 with a neutralizing antibody
selectively reduced basophil infiltration to the inflamed skin.
TSLP and IL-3, abundantly expressed in inflamed skin, increased
the surface expression of CXCR4 on basophils, allowing their
recruitment to the skin in response to CXCL12. Blocking TSLP
and IL-3 simultaneously with neutralizing antibodies abolished
basophil recruitment to the skin. The Mcpt8Cre/+ mice, which
have normal mast cell numbers but strongly reduced basophils
(179), were less susceptible to tumor growth. Together, these
results indicate that in this inflammation-driven model of
epithelial carcinogenesis, tumor promotion is mediated via
FcεRI signaling in skin-infiltrating basophils.

CONCLUSIONS AND OUTSTANDING
QUESTIONS

For several decades, basophils were considered erroneously
as primary effector cells participating solely in allergic
disorders (226, 227). The concept that they might possess
immunomodulatory roles became more widely appreciated
when murine (5) and human basophils were shown to
produce a variety of cytokines (e.g., IL-4, IL-3, and IL-13)
(21, 89, 92, 93, 97, 99, 110), which at the time, were thought to
be made only by Th2 cells. In addition, there is now compelling
evidence that human basophils can synthesize several canonical
(57, 86, 105, 106) and non-canonical angiogenic factors (151).
It has long been known that human (127–131) and mouse
(62, 73, 124–126) basophils have a propensity to migrate
from peripheral blood into sites of inflammation. Moreover,
basophils were identified in human lung (50), gastric (127, 128),
pancreatic (11, 91) and ovarian cancer (204). It was recently
shown, at least in mice, that basophils are present in all phases
of lung development (44), and display a divergent phenotype
from peripheral blood. These resident basophils can favor
M2 polarization of lung macrophages, as occurs in several

tumors (132, 133). Studies are urgently needed to characterize
the presence and the state of activation of basophils in TME
and their possible roles in early vs. late stages of human and
experimental tumors.

Human basophils are a major source of several canonical
angiogenic factors such as VEGF-A and VEGF-B (57), HGF
(106), ANGPT1 (105), and CXCL8 (86, 89, 90, 228). An
elegant study has recently demonstrated that LTC4 and LTD4,
also produced by human basophils (83), promote tumor
angiogenesis andmetastasis through the engagement of CysLT2R
on endothelial cells (151). Collectively, these findings suggest
that further in vitro and in vivo investigations should evaluate
the roles of canonical and non-canonical angiogenic factors
produced by basophils in experimental and human tumors.

Activated human and mouse basophils release BETs (116–
118). There is mounting evidence that extracellular DNA traps
have multiple effects in cancer (160) favoring tumor growth
(167), awakening dormant cancer cells (165), and promoting
metastasis in mouse models and in humans (161, 164). Further
studies should evaluate the presence of BETs in experimental
and human cancers and whether basophil extracellular traps
modulate tumor growth and the formation of metastasis in vivo.

There are contemporary and developing models/techniques
that should greatly facilitate this area of investigation. For
example, basophil-deficient mice are powerful models for
analyzing basophil functions in vivo, but, in some instances,
have produced erroneous findings. For example, models using
antibody-depleted basophils (168, 169) can often result in the
activation of other immune cells (170, 171). Indeed, such
models provided highly controversial results on the role of
basophils as APCs (95, 170, 172, 173, 229, 230). It is therefore
not surprising that basophils may appear to play a protective
(114) or a pro-tumorigenic role (62, 91) depending on the
experimental model utilized. In general, mouse models with
constitutive or inducible basophils depletion should be preferred,
but need to take into consideration that even new mouse
mutants can have hematologic abnormalities (177) and/or show
incomplete removal of basophils. Studies attempting to evaluate
basophil functions in a complex and heterogeneous disorder,
such as cancer should be performed using multiple genetically
engineered models of basophil deficiency.

In conclusion, the last years have witnessed exceptional
progress in our understanding of basophil biology. Recent studies
have demonstrated that basophils are present in the immune
landscape of human (50, 91, 204) and experimental (62, 91)
tumors, play a role in lung development and M2 macrophage
polarization (44), and participate in canonical (57, 105, 106,
145) and non-canonical angiogenesis (151), and release BETs
(117, 118). Further investigations are required before we unravel
the mysterious role of basophils in experimental cancer and,
more importantly, in humans. The elucidation of basophil
role in tumor immunity will require studies of increasing
complexity beyond those assessing their microlocalization.
High dimensional analysis, particularly single-cell RNA-seq of
immune landscape of human and experimental tumors will be
of paramount importance in characterizing basophil role in
different human and experimental cancers.
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