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Abstract 

Studies have found that feature estimates are systematically compressed towards the distribution center, show-
ing a central tendency. Additionally, the estimate of current features is affected by the previously seen feature, 
showing serial dependence or adaptation effect. However, these all remain unclear in the speed estimation. To 
address this question, we asked participants to estimate the speed of moving Gabor patches. In Experiment 1, 
speeds were selected from three uniform distributions with different lower and upper boundaries (i.e., slow, moder-
ate, and fast ranges). In Experiment 2, speeds were arranged in an increasing, uniform, or decreasing distribution. 
The boundaries of three distributions were the same. The results found that speed estimates were systemati-
cally compressed towards the center of the uniform distribution center, showing a central tendency, and its size 
increased with the range boundaries. However, in the decreasing and increasing distributions, aside from central 
tendency, the speed estimates were also showed a bias away from the heavy tail of the distributions. Moreover, 
there was an attractive serial dependence that was not affected by the speed range. In summary, the current study, 
along with previous studies that reveal a slow-speed bias, comprehensively reveals various estimation biases in speed 
perception.

Keywords Speed perception, Central tendency, Serial dependence, Slow-speed bias, Efficient encoding, Bayesian 
decoding

Introduction
It is crucial for animals to accurately estimate speed in 
order to survive. For instance, when an antelope detects a 
leopard accelerating its pace, it must also rapidly increase 
its own speed in order to seize the fleeting opportunity. 
Similarly, when driving on the road, it is necessary to cap-
ture the changes in the speed of the car in front to avoid a 
collision. Given the importance of this ability, numerous 
researchers have conducted extensive studies to reveal 

the estimation bias and the related factors. In general, 
studies have found that the speed is generally underes-
timated, showing a slow-speed bias [38, 40, 46]. Some 
researchers argue that this bias is due to the structure of 
the past experience learned in daily life or the evolution-
ary process, known as the prior. In the prior, the propor-
tion of slow speeds is significantly higher than that of 
high speeds [38, 39]. Additionally, the speed estimation 
is consistent with a Bayesian decoding process, in which 
observers generate a posterior distribution about the cur-
rent stimulus by optimally combining its representation 
(i.e., likelihood) with the prior. The final speed estimate is 
derived from the posterior distribution [38, 39].

In most of speed estimation studies, the speeds are gen-
erally simulated by moving a Gabor patch and selected 
from a broad range, e.g., [0.5, 12] deg/s in Stocker and 
Simoncelli, [39] and [1, 12] deg/s in Sotiropoulos et  al. 
[38]. However, at a specific point in time in the real 
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world, the speed is always constrained to a short range. 
For example, the speed for a healthy adult is within the 
range of 0.77 to 1.79  m/s when walking [28]; the speed 
is within the range of 80 to 120  km/h when driving on 
a highway in China. It is therefore unclear how partici-
pants estimate speed when speeds are limited to a certain 
range. This is the first question addressed in the current 
study.

Previous studies have found that a central tendency is 
presented in visual perception, meaning that when the 
stimulus feature is selected from a limited range, the 
feature estimate is symmetrically compressed toward 
the range center. For example, Jazayeri and Shadlen [22] 
asked participants to estimate a time-interval estimation 
task. Each participants completed three sessions of trials. 
On each trial of each session, the time interval was ran-
domly selected from a range of time-intervals that was 
varied among sessions. They found that the estimates of 
time-intervals were systematically compressed towards 
the range center, showing a central tendency (see also 
Ryan [36], . Similar tendency has been revealed in vari-
ous visual features, including line length estimation [3, 
13, 21], facial expressions [12, 35], and color [30, 31]. In 
the present study, we sought to examine whether speed 
estimation was centrally dependent.

Additionally, extensive studies have found that the esti-
mate of the currently presented feature is affected by the 
previously presented feature. This effect can be either 
attractive or repulsive [2, 5, 9]; Cicchini et  al. Fritsche 
et al., [16] 2023; Moon & Kwon [27, 32, 37, 45], . It has 
been proposed that the attractive serial dependence can 
assist observers in maintaining the world continuity 
[14], while the repulsive serial dependence can improve 
our perceptual sensitivity [2, 45]. Both types of serial 
dependences have been observed in various features, but 
they remain unclear in speed perception. It is well estab-
lished that being alert to changes in speed can help us 
to avoid danger in time. However, sometimes or in most 
cases, we need to propose that the speed maintains con-
stant in a short-time window, so that we can save limited 
cognitive resources. When a danger event occurs, we 
can allocate these resources to the event and capture it 
timely. Accordingly, the aim of this study was to exam-
ine the effects of the previous speed on the current speed 
estimation.

Moreover, for the computational mechanisms, previ-
ous studies have found that both central tendency and 
serial dependence are consistent with the Bayesian infer-
ence process. That is, when the uncertainty of the physi-
cal feature is decreased, the estimate will be biased more 
towards the previous experience Knill & Richards, [23]. 
The previous experience can be either the distribution 
of the features with certain range (e.g., Ashourian & 

Loewenstein [3], Jazayeri & Shadlen, [22]; Olkkonen & 
Allred [30, 31], or the internal representation (i.e., like-
lihood) of the previously seen feature (e.g., Gallagher 
& Benton [10, 18], see Cicchini et  al., [11]for a review). 
Previous studies have found that the certainty (i.e., dis-
crimination sensitivity) of speeds decreases with the 
increase of speed [39]. Therefore, it can be expected that 
the central tendency increases with the increase of speed 
(or speed range), and when the currently presented speed 
was high, the serial dependence could be also stronger.

In summary, the current study examined whether the 
speed estimation showed central tendency and serial 
dependence. To address these questions, two experi-
ments were conducted. In Experiment 1, the speeds were 
selected from three uniform distributions with different 
boundaries. In Experiment 2, the speeds were selected 
from a decreasing, uniform, or increasing distribution.

Experiment 1 Uniform distributions with different 
boundaries
Experiment 1 was designed to examine the presence of 
central tendency and serial dependence in speed estima-
tion, utilizing three uniform distributions with varying 
lower and upper boundaries.

Methods
Participants
Thirty participants (20 females, 10 males, 18–25 years 
old) were recruited from Zhejiang Normal University. 
All were naïve to the experimental purpose and had nor-
mal or corrected-to-normal vision. The experiment was 
approved by the Scientific and Ethical Review Commit-
tee in the Department of Psychology of Zhejiang Normal 
University, which is in accordance with the Declaration 
of Helsinki.

Stimuli and apparatus
In each trial of the current experiment, a vertical Gabor 
patch (4.39  H ×4.64  V degrees; 200  H × 200  V pix-
els; Fig.  1  a) was presented against a gray background 
(8.73 cd/m2; RGB: [110 110 110]). The spatial frequency 
of the Gabor patch was 1 cycle/deg (CPD). The lumi-
nance of the darkest and lightest areas of the stimuli were 
27.87 cd/m2 and 0.73 cd/m2. Each stimulus horizontally 
shifted to the right. The motion speed was randomly 
selected from three ranges: [0.88  deg/s, 6.15  deg/s], 
[3.51  deg/s, 8.78  deg/s], and [6.15  deg/s 11.42  deg/s], 
labeled as low-speed, moderate-speed, and high-speed 
distributions. The speed in each range was increased with 
a step of 0.66 deg/s.

Additionally, a static mask stimulus (Fig. 1 d) was gen-
erated that included 100 (10 × 10) gray squares. The 
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luminance of each square was randomly selected from 
the range of [27.87 cd/m2, 0.73 cd/m2].

The displays were programmed in MATLAB using the 
Psychophysics Toolbox  3 and presented on a 27-inch 
Dell monitor (resolution: 2560 H× 1440 V pixels; refresh 
rate: 60 Hz) with NVIDIA GeForce GTX 1660Ti graphics 
card.

Procedure
All participants sat in a lighted and quiet room with their 
heads stabilized with a chin-rest at a viewing distance of 
56  cm. Before the start of the experiment, participants’ 
straight-ahead direction was aligned with the display 
center. On each trial, the Gabor stimulus was presented 
for 200 ms, followed by a 200-ms mask display (Fig. 1b). 
Note that a 200-ms Gabor and 200-ms mask can inhibit 
the generation of motion aftereffect, which had been 
confirmed with participants’ report in the pilot study. 
After the mask display, a gray horizontal line (length: 
28.34 degrees) appeared in the mid-section of the dis-
play, and a mouse-controlled probe was on the gray line 
(Fig.  1c). Participants were asked to move the probe to 
indicate their speed estimate. The left endpoint indicated 
that the Gabor was static (i.e., speed was 0  deg/s); the 
right endpoint indicated that the Gabor moved at a speed 
of 12.21 deg/s. When the participants clicked the mouse 
button, the next trial started immediately.

The current experiment consisted of three blocks. Each 
block corresponded to one speed range: [0.88  deg/s, 
6.15  deg/s], [3.51  deg/s, 8.78  deg/s], or [6.15  deg/s, 
11.42  deg/s]. Each block first started with 40 prac-
tice trials, the speeds of which were randomly selected 
from 3.07  deg/s, 6.15  deg/s, 9.22  deg/s, or 12.29  deg/s. 
Each repeated 10 times. This manipulation aimed to 
help participants familiarize the speed distribution on 
the response line (Fig. 1e). After the 40 trials, 180 trials 
were followed, the speeds of which were randomly from 

the nine speeds in the corresponding speed range. Each 
speed was repeated 20 times.

Before starting the experiment, the experimenter first 
introduced the experimental task and showed Gabor 
stimuli with 0  deg/s, 3.07  deg/s, 6.15  deg/s, 9.22  deg/s, 
and 12.29 deg/s. Meanwhile, the experimenter told par-
ticipants to move the probe to the left endpoint, quar-
tile point, middle point, three-quarter point, and right 
endpoint along the response line, respectively. After the 
instruction, participants were given 20 practice trials, 
the speeds of which were randomly 0 deg/s, 3.07 deg/s, 
6.15 deg/s, 9.22 deg/s, or 12.29 deg/s. After the practice, 
the experiment started. The conducting sequences of the 
three blocks were counterbalanced among participants. 
The experiment lasted for about 20 min.

Data analysis
Estimation bias
The speed estimate (SE) was recorded. To examine 
whether the speed was central tendent or low-speed 
biased, we first fitted the speed estimate as a linear func-
tion of the actual speed (AS), given as:

where c represents the slope. If central tendency is in 
the speed estimation, the c will be negative; in contrast, if 
c is positive, then central repulsion is in the speed estima-
tion. r represents the intercept, meaning the speed esti-
mate residual when the actual speed was 0  deg/s. Note 
that when the SE equals to the AS (dashed diagonal line 
in Figs. 1 d and 2 a), c will be 1, indicating that partici-
pants perfectly estimate the speed; when the SE is sys-
tematically compressed towards the range center (solid 
colored lines in Figs.  1  d and 2  a), showing central ten-
dency, c will be smaller than 1, and the stronger the cen-
tral tendency is, the smaller the c is.

Additionally, to estimate whether there was a slow-
speed bias, we calculated the speed estimate (SECenter) 

SE=c× AS+r

Fig. 1 Stimulus illustrations used in the current study. a An example of a vertical Gabor patch used in Experiments 1 and 2. b Mask illustration 
that consists of 100 Gy squares, the illuminances of the squares are randomly selected from the range of [27.87 cd/m2, 0.73 cd/m2]. c Response 
display in which a horizontal line (1300 pixels) is in the mid-section of the display, and a vertical mouse-controlled blue probe is on the line. 
d Illustrations of different linear fitting results in the slow-speed distribution
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when the AS was the range center and used the SECenter to 
minus the range center. This difference, represented by r′ , 
could indicate whether slow-speed bias was in the speed 
estimation. Specifically, if the sign of r′ was negative, the 
speed estimate was biased towards the slow-speed side; 
in contrast, if the sign of r′ positive, the speed estimate 
was biased towards the high-speed side (Fig. 1 d).

Here, we used the low-speed distribution to illustrate 
the potential results. As shown in Fig.  1  d, the dashed 
gray oblique line indicates that observers accurately 
estimate the speed, showing a perfect estimation where 
c =1 and r’=0. The dashed dark horizontal line indicates 
that the speed estimate is always the center of the speed 
range, showing an ideal central tendency where c =0 and 
r’=0. The solid gray line indicates that the speed estimate 
was accurate but systematically biased towards the slow 
speed, showing an ideal slow-speed bias where c =1 and 
r’<0. The solid blue line indicates that the speed estimate 
was systematically biased towards the slow speed and the 
center of the speed distribution, showing that the speed 
estimation was both central tendency and slow-speed 
biased where c<1 and r’<0.

Serial dependence
To examine serial dependence, we first calculated the 
estimation error of each trial which was the difference 
between the speed estimate and the actual speed. Then, 
we calculated the difference in the actual speed between 
the previous 1st trial and the current trial, named as the 
relative speed of pre-trials  (RSpre). The negative relative 
speed of pre-trials  (RSpre_neg) means that the speed of 
previous trials was slower than that of the current trial, 

and vice versa  (RSpre_pos). If the relative speed of pre-tri-
als is zero  (RSpre_0), then the speeds of the previous trial 
and the current trial were the same. Next, we calculated 
the mean estimation errors of current trials as the rela-
tive speed of pre-trials was negative, zero, and positive. 
Finally, we took the mean estimation error of  RSpre_0 as 
the baseline and used the mean estimation error of  RSpre_

neg  (RSpre_pos) to minus the above estimation error. The 
differences were named as the relative mean estimation 
errors  (REEpre_neg,  REEpre_pos).

Several previous studies have revealed that the cen-
tral tendency was correlated with serial dependence. In 
particular, some studies argued that serial dependence 
and central tendency effects are two facets of the same 
phenomenon (Boboeva, Pezzotta, Clopath, & Akrami 
[7], ; Wang, Luo, Ivry, Tsay, & Pöppel, [48]); and some 
studies also found that the two effects could be mutually 
predicted by each other [19]; Sun, Zhang, Wang, Gong, 
& Dong, [41]. To get the pure serial dependence (i.e., 
removing the effect of central tendency on serial depend-
ence), an additional analysis was employed. Specifically, 
as we all know, an unpresented feature cannot affect the 
perception of the presented feature. That is, the speed 
presented after the current trial cannot affect the esti-
mation of the speed in the current trial. Accordingly, we 
repeated the above procedures except that the relative 
speed was the difference in the actual speed between the 
trial after the current trial (i.e., the unpresented 1st trial). 
To differentiate the  REEpre induced by previously pre-
sented trials, here we named the  REEnext  (REEnext_neg and 
 REEnext_pos) meaning the REE induced by next, unpre-
sented trials. If the correlation between the  REEnext and 

Fig. 2 Results of estimation bias in Experiment 2. a The speed estimate is against the actual speed. The black, red and blue dots correspond 
to the increasing, uniform, and decreasing distributions. Each dot indicates the mean speed estimate averaged across 30 participants. Error bars are 
the standard error across 30 participants. Solid lines are the best fitting results of Eq. 1. b and (c) plot the slope (c) and the intercept of distribution 
center (r’, the difference between the speed estimate when the actual speed was the distribution center and the range center) against three 
distributions (increasing, uniform, and decreasing). Error bar is the standard error across 30 participants. Circles correspond to the participants’ data
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the relative speed (RS) was significant, then the  REEnex 
indicates the error induced by other non-serial depend-
ence factors.

Next, to remove the effects of non-serial dependence 
factors, we used the  REEpre_neg to minus the  REEnext_neg 
and the  REEpre_pos to minus the  REEnext_pos. These differ-
ences were named as the corrected relative estimation 
error (CREE). If the speed estimation was serial depend-
ent, then CREE was negative (positive) when the RS was 
negative (positive).

Results
Estimation bias
To examine the estimation bias, we fitted the speed esti-
mate as a linear function of the actual speed (Eq.  1) in 
the three ranges, as shown in Fig. 2 a. Black, red and blue 
dots show participants’ performance in slow, medium, 
and fast speed ranges. The linear functions explained 
more than 96.44% variances. In Fig. 2 a, the gray diagonal 
line indicates that the speed estimates are the same as the 
actual speeds, showing the perfect estimation (Fig. 1 d). 
The horizontal dashed lines indicate that the speed esti-
mate is always the center of each range, showing an ideal 
central tendency (Fig.  1  d). Figure  2  a shows that the 
speed estimates are between the ideal central tendency 
and the perfect estimation, suggesting that the speed esti-
mate is central tendent.

Figure  2  b plots the slope (c) of the linear function 
against the three ranges. One sample t test showed that 
the slopes were all significantly smaller than 1 (Slow: 
Mean ± SD, 0.63 ± 0.28, t(29) =-7.12, p < 0.001, Cohen’s 
d = 2.64; Medium: 0.55 ± 0.26, t(29) =-9.57, p < 0.001, 

Cohen’s d = 3.56; Fast: 0.35 ± 0.20, t(29) = -18.11, 
p < 0.001, Cohen’s d = 6.73). These suggested that central 
tendency was present in the speed estimation. Addition-
ally, Fig. 2 b also shows that the slope decreases with the 
increase of the speed range, which was supported by 
one-factor repeated measures ANOVA (F(2,58) = 27.67, 
p < 0.001, η2 = 0.49). Further simple-effect analysis with 
Bonferroni correction showed that the slope of the slow 
range was significantly larger than that of the fast range 
(p < 0.001), and the slope of the moderate range was 
between the slow and fast range. These suggested that the 
size of the central tendency increased with the boundary 
of the speed range.

Figure  2  c plots the intercept of the range center (r’) 
against the three ranges. It clearly shows that all r’ are 
around 0. One sample t test showed that none of the 
intercepts (rs) in the three ranges was significantly dif-
ferent from 0 (Slow: Mean ± SD, 0.10 ± 0.98, t(29) = 0.57, 
p = 0.58, Cohen’s d = 0.038; Medium: 0.15 ± 0.57, 
t(29) = 1.44, p = 0.16, Cohen’s d = 0.055; Fast: -0.18 ± 1.16, 
t(29) = -0.86, p = 0.40, Cohen’s d = 0.32). These suggested 
that the speed estimation was not low-speed biased in 
the current study. Additionally, these results indicate 
that the r’s were not significantly different among differ-
ent ranges, which was supported by one-factor repeated 
measures ANOVA (Greenhous-Geisser corrected: 
F(1.22,35.31) = 0.92, p = 0.36, η2 = 0.031).

Serial dependence
Figure 3 plots the results of serial dependence. It clearly 
shows that the corrected relative estimation error (CREE) 
when the speed of the previous 1st trial was slower than 

Fig. 3 Serial dependence results of Experiment 1. a–c correspond to the slow, moderate, and fast ranges. In each panel, the left and right bars 
correspond to the negative and positive relative speed (RS). The relative speed means the difference in the actual speed between the previous 1st 
trial and the current trial.  RSneg and  RSpos mean that the speed of the previous 1st trial is slower and faster than the speed of the current trial. Error 
bar is the corrected relative estimation error (CREE) across 30 participants. Circles correspond to the participants’ data
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that of the current trial  (RSneg) was more negative than 
that when the speed of the previous 1st trial was faster 
than that of the current trial  (RSpos). A repeated meas-
ures ANOVA with the relative speed  (RSneg vs.  RSpos) and 
speed ranges (slow, moderate, fast) as the within-subject 
factors showed that only the relative speed was signifi-
cant (F(1,29) = 40.64, p < 0.001, η2 = 0.58), and the CREE 
in the  RSneg (Mean ± SE: -0.23 ± 0.043) was more negative 
than that in the  RSpos (0.017 ± 0.035). These suggested 
that an attractive serial dependence was in the speed esti-
mation, which was not affected by the speed range.

Summary
In summary, the results of Experiment 1 demonstrated 
that the speed estimates were systematically biased 
towards the distribution center, showing a central ten-
dency. Additionally, the current speed estimate was 
biased towards the previously presented speed, showing 
a serial dependence. Note that the central tendency was 
affected by the speed range. The faster the speed range is, 
the more central tendent the speed estimation is. In con-
trast, the serial dependence was not affected by the speed 
range.

Experiment 2 non‑uniform distributions 
with the same range
Experiment 1 revealed central tendency and serial 
dependence in the speed estimation with three uniform 
distributions. In Experiment 2, we selected speeds in 
increasing, unform, and decreasing distributions to re-
examine the findings of Experiment 1.

Methods
Participants
Twenty-four participants (14 females, 7 males, 19–25 
years old) were recruited from Zhejiang Normal Uni-
versity. All were naïve to the experimental purpose and 
had normal or corrected-to-normal vision. The experi-
ment was approved by the Scientific and Ethical Review 
Committee in the Department of Psychology of Zhejiang 
Normal University, which is in accordance with the Dec-
laration of Helsinki.\.

Stimulus, apparatus, procedure, data analysis
These parameters were similar to those in Experiment 1, 
except that that (1) speeds were selected from the slow 
range: [0.88 deg/s, 6.15 deg/s] with a step of 0.66 deg/s; 
(2) Each participant finished three blocks with each cor-
responding to one distribution: increasing, uniform, and 
decreasing distributions. Table 1 lists the trial numbers of 
different speeds in different distributions. It is important 
to note that the centers of the three distributions were 
different (Right column in Table  1). The center of the 
increasing distribution is faster than that of the uniform 
distribution. In contrast, the center of the decreasing dis-
tribution is slower than that of the uniform distribution.

Results
Estimation bias
The linear fitting results were shown in Fig.  4  a. Black, 
red and blue dots show participants’ performance in the 
increasing, uniform, and decreasing distributions. The 
linear functions explained more than 92.36% variances. 
Consistent with Experiment 1 (Fig. 2 a). In Fig. 4 a, the 
gray diagonal line indicates that the speed estimates are 
the same as the actual speeds, showing the perfect esti-
mation (Fig.  1  d). The horizontal dashed lines indicate 
that the speed estimate is always the center of each dis-
tribution, showing an ideal central tendency (Fig.  1  d). 
Figure 3 a shows that the speed estimates are between the 
pure central tendency (dark dashed line) and the perfect 
estimation (gray dashed line), suggesting that the speed 
estimate is central tendent, consistent with Experiment 1.

Figure  4  b plots the slope (c) of the linear function 
against the three distributions. One sample t test showed 
that the slopes were all significantly smaller than 1 (Slow: 
Mean ± SD, 0.52 ± 0.33, t(29) = -7.12, p < 0.001, Cohen’s 
d = 2.97; Medium: 0.51 ± 0.27, t(29) = -8.83, p < 0.001, 
Cohen’s d = 3.68; Fast: 0.52 ± 0.23, t(29)=-10.06, p < 0.001, 
Cohen’s d = 4.20). These suggested that central ten-
dency was in the speed estimation. Additionally, Fig. 4 b 
also shows that the slopes were not significantly differ-
ent among the three distributions decreases with the 
increase of the speed range, which was confirmed by 
one-factor repeated measures ANOVA (F(2,46) = 0.027, 
p = 0.97, η2 < 0.001). This suggested that the size of the 

Table 1 Trial numbers of different speeds in three distributions

Distribution Speed (deg/s)

0.88 1.54 2.20 2.85 3.51 4.17 4.83 5.49 6.15 Distribution 
center

Increasing 4 8 12 16 20 24 28 32 36 4.39

Uniform 20 20 20 20 20 20 20 20 20 3.51

Decreasing 36 32 28 24 20 16 12 8 4 2.63



Page 7 of 11Wang et al. BMC Psychology          (2024) 12:598  

central tendency was maintained as long as the distribu-
tion range remained constant.

Figure 4 c plots the intercept of the distribution center 
(r’) against the three distributions. One sample t test 
showed that the r’ in the uniform distribution was not 
significantly different from 0 (-0.079 ± 0.50, t(29) = -0.78, 
p = 0.45, Cohen’s d = 0.32), suggesting that when the 
actual speed was the distribution center (3.51  deg/s), 
the speed estimate was equal to the distribution center, 
which was consistent with Experiment 1. In contrast, the 
r’ in the increasing distribution was significantly smaller 
than 0 (Mean ± SD, -0.70 ± 0.40, t(29) = -8.57, p < 0.001, 
Cohen’s d = 3.57), meaning that when the actual speed 
was the distribution center (4.39  deg/s), the speed esti-
mate was slower than the actual speed by 0.70  deg/s; 
the r’ in the decreasing distribution was significantly 
larger than 0 (0.57 ± 0.53, t(29) = 5.31, p < 0.001, Cohen’s 
d = 2.21), meaning that when the actual speed was the 
distribution center (2.63  deg/s), the speed estimate was 
faster than the actual speed by 0.57 deg/s.

As shown in Table 1, in comparison to the uniform dis-
tribution, there was a greater prevalence of fast speeds 
in the increasing distribution, while there was a greater 
prevalence of slow speeds in the decreasing distribution. 
These findings indicated that the speed estimates in the 
increasing and decreasing distributions were systemati-
cally biased away from the heavy side of the distributions.

Serial dependence
Figure 5 plots the results of serial dependence. It clearly 
shows that the corrected relative estimation error (CREE) 
when the speed of the previous 1st trial was slower than 
that of the current trial  (RSneg) was more negative than 

that when the speed of the previous 1st trial was faster 
than that of the current trial  (RSpos). This pattern is con-
sistent with Experiment 1. A repeated measures ANOVA 
with the relative speed  (RSneg vs.  RSpos) and distributions 
(increasing, uniform, decreasing) as the within-subject 
factors showed that only the relative speed was signifi-
cant (F(1,23) = 37.03, p < 0.001, η2 = 0.62), and the CREE 
in the  RSneg (Mean ± SE: -0.092 ± 0.039) was more nega-
tive than that in the  RSpos (0.16 ± 0.032). These suggested 
that an attractive serial dependence was in the speed esti-
mation, which was not affected by the speed distribution, 
consistent with Experiment 1.

Summary
In summary, Experiment 2 well replicated the central 
tendency and serial dependence revealed in Experiment 
1. Importantly, the current experiment showed that the 
size of central tendency was constant as long as the dis-
tribution range was constant. Additionally, when the 
distribution was non-uniform, the speed estimates were 
biased away from the heavy tail of the distribution.

General discussion
In the current study, two experiments were conducted 
to examine the overall estimation bias (central tendency) 
and serial dependence in speed estimation. The results 
showed that the estimates of currently presented speeds 
were systematically compressed towards the center 
of the speed distribution, showing a central tendency 
that was modulated by the boundaries of speed ranges. 
Additionally, the estimates were also biased towards 
the previously presented speeds, showing an attractive 
serial dependence that was not affected by the speed 

Fig. 4 Results of estimation bias in Experiment 2. a The speed estimate is against the actual speed. The black, red and blue dots correspond 
to the increasing, uniform, and decreasing distributions. Each dot indicates the mean speed estimate averaged across 24 participants. Error bars are 
the standard error across 24 participants. Solid lines are the best fitting results of Eq. 1. b and (c) plot the slope (c) and the intercept of distribution 
center (r’, the difference between the speed estimate when the actual speed was the distribution center and the range center) against three 
distributions (increasing, uniform, and decreasing). Error bar is the standard error across 24 participants. Circles correspond to the participants’ data
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distribution. Moreover, in comparison to the uniform 
distribution, the speed estimates were biased away from 
the heavy side of the distribution. In summary, the cur-
rent study comprehensively reveals the estimation biases 
in speed estimation.

It has been demonstrated that a slow-speed bias is 
present in the speed estimation, with this bias increas-
ing with the decrease in the luminance contrast [38, 40, 
46]. The speeds presented in these studies were typically 
selected from a large range. When the speed range was 
narrowed, the slow-speed bias was no longer observed. 
In other words, the speed estimation bias (i.e., the dif-
ference between the estimated and actual speed) is 
affected by the range of speeds. Specifically, when the 
range of speeds is broad and includes very slow speeds 
(e.g., 0.5  deg/s in Stoker & Simoncelli, 2006), there is a 
slow-speed bias; whereas when the range is narrow and 
the speeds in the range tend to be fast, there is a central 
tendency.

Studies have also shown that the central tendency is 
also well aligned with the predictions of the Bayesian 
observer model [22, 34, 49], which indicates that the size 
of central tendency increases with the decrease in the 
certainty of features. Given that the discrimination sen-
sitivity (i.e., certainty) of speeds decreases with the speed 
[39], it can be proposed that the increase in the size of 
the central tendency with the boundary of speed ranges 
is also consistent with the Bayesian inference account. 
Previous studies have posited that the effects of the lumi-
nance contrast on the slow-speed bias are consistent with 
the Bayesian observer model [15, 38], in which our sen-
sory system has stored a long-term prior that includes 

large proportion of slow speeds. When the certainty of 
the speed (e.g., low luminance contrast) is decreased, 
observers will improve their reliance on the long-term 
prior and bias their speed estimates towards the slow 
speed. Given the Bayesian explanation for slow-speed 
bias and central tendency, it, therefore, can be believed 
that the speed estimation is a Bayesian decoding process.

These findings also suggest that the prior used to esti-
mate speeds can be updated according to the experi-
mental conditions. Some statistical learning studies 
have proposed that our visual system integrates the 
distributions of physical features learned in the experi-
ment (short-term prior) and in the evolutionary process 
(long-term prior) to generate a new prior, which is then 
utilized to decode the feature value [1, 29, 38]. Accord-
ingly, when the speed range is extensive and encompasses 
very slow speeds, the long-term prior is derived from the 
evolutionary process (i.e., the proportion of slow speeds 
is greater than that of fast speeds, Stocker & Simoncelli 
[38, 39], , which was integrated with the distribution of 
speeds learned in the experiment. However, there are still 
more slow speeds than fast speeds in the new prior. The 
Bayesian observer will show a slow-speed bias. In con-
trast, when the speed range is narrowed, the long-term 
prior will be corrected into a uniform distribution. This is 
because, in everyday life, speeds are typically maintained 
within a narrow range and remain stable for extended 
periods, such as walking, running, and driving. As a 
result, the new prior in the experiment is the integration 
of the corrected uniform long-term prior and the short-
term prior. The Bayesian observer will show a central 
tendency. It should be noted that these are preliminary 

Fig. 5 Serial dependence results of Experiment 2. a–c correspond  to the slow, moderate, and fast ranges. In each panel, the left and right bars 
correspond to the negative and positive relative speed (RS). The relative speed means the difference in the actual speed between the previous 1st 
trial and the current trial.  RSneg and  RSpos mean that the speed of the previous 1st trial is slower and faster than the speed of the current trial. Error 
bar is the corrected relative estimation error (CREE) across 24 participants. Circles correspond to the participants’ data
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proposals, which may be subject to further examination 
in future studies.

The development of the aforementioned proposals can 
assist in elucidating the finding when the distribution of 
speed is non-uniform, and the speed estimates are biased 
away from the heavy tails of the distribution. It has been 
found that when the proportion of one feature in the fea-
ture distribution recently learned is higher than that in 
the distribution learned earlier, participants tend to bias 
their estimate away from the feature value. This phenom-
enon is referred to as the prevalence-induced concept 
change effect (PICC, Levari [24, 25, 42, 44], . Our pro-
posal suggests that observers adjust their long-term prior 
to a uniform distribution that conflicts with their short-
term prior (decreasing or increasing distribution), which 
biases the estimates away from the heavy tail of the short-
term prior. This finding may indicate the presence of a 
PICC effect in speed estimation, which requires further 
investigation.

Additionally, researchers have conducted extensive 
studies to explore the serial dependence in various physi-
cal features [11, 26, 33], yet none of them have explored 
the serial dependence in speed perception. Our current 
study well addressed this gap in the literature and found 
the serial dependence in the speed estimation.

One popular question in the serial dependence is its 
computational mechanisms. Some studies have agreed 
that serial dependence is (partially) consistent with 
the Bayesian inference process (e.g., Cicchini et  al., [10, 
18, 50]. In particular, when the certainty of current fea-
tures is decreased, observers will rely more on previous 
features [8, 18]. In the current study, we confirmed that 
when the speed range was increased, both the certainties 
of the previously and currently presented speeds were 
decreased. That is, the changes in the certainty were bal-
anced between the previous and current speeds, which 
may lead to no effect of speed range on serial depend-
ence [10]. Besides, Holland and Lockhead [20] proposed 
that observers could consciously remember the lastly 
presented feature and used it to modulate the follow-
ing judgment, which led to the reduction or no signifi-
cant difference in the estimation bias size and variances. 
Therefore, the negative results found in the current study 
could also be attributed to this proposal. In addition, pre-
vious studies also debated a lot on the occurrence mecha-
nisms underlying serial dependence. That is, whether 
serial dependence is purely perceptual or the post-per-
ceptual abilities were involved in (e.g., Bliss & D’Esposito, 
[4]; Ceylan et al., [8, 14, 17, 50]. Sun et al. [42, 44] found 
the stimulus distribution affected the serial dependence 
in self-motion direction perception and argued that post-
perceptual abilities were involved in. In contrast, the 
speed distribution did not affect the serial dependence in 

the speed estimation, suggesting that the serial depend-
ence maybe purely perceptual. Therefore, the occurrence 
mechanisms underlying serial dependence can be var-
ied among the physical features, even as they all belong 
to the same category (e.g., dynamic feature). Anyway, 
the present study will contribute to the existing litera-
ture by investigating the underlying mechanisms of serial 
dependence in speed estimation.

Blonde´, Kristja´nsson, and Pascucci [6] found that 
a stronger serial dependence was observed when the 
temporal correlation in the stimulus features was weak, 
and as the temporal correlation was strong, the serial 
dependence would become a repulsion effect. Similar 
result pattern was also observed in Sun, Wang, & Gong 
[42], in which when the stimulus distribution was close 
to the natural distribution, there was a repulsion effect; 
in contrast, as the stimulus distribution was opposite to 
the natural distribution, there was an attractive serial 
dependence. This means that when the temporal stabil-
ity of the stimulus was broken or the temporal distribu-
tion of features in the experiment conflicted with our 
previous experience, observers tended to keep stability 
or continuity across different stimuli, leading to attractive 
serial dependence. In Experiment 2, three distributions 
are all different from the natural speed distribution [39] 
and the conflicts between the distribution and natural 
distribution could be the same, the serial dependences, 
therefore, were not significantly different across different 
distributions. This proposal can also be further examined 
in future studies.

Moreover, as mentioned in Introduction, previous 
studies have argued that the central tendency and serial 
dependence can be the same effect [7, 19, 34, 48] and 
arise from a common underlying mechanism Tong et al., 
[47]. Or some even found that the two effects are posi-
tively correlated [19]; Sun, Zhang, Wang, Gong, & Dong, 
[41]. Actually, our data analysis method in which we took 
the estimation error of the current trial induced by the 
unpresented trial presented after the current trial as the 
baseline error, and used the estimate error induced by 
the previous trial to subtract the baseline error. Given the 
fact that an unpresented feature cannot affect the per-
ception of the currently presented feature, it can be pro-
posed that the residual estimation error is purely induced 
by serial dependence. Moreover, our data patterns in the 
two experiments have supported our proposal. If the cen-
tral tendency was intertwined with the serial dependence, 
then as the central tendence is increased, the magnitude 
of serial dependence will be correspondingly increased; 
and when the estimation error is systematically biased 
towards one side (meaning that central tendence was 
modulated by speed distributions), then serial depend-
ence will be also biased. However, Experiment 1 found 
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the serial dependence was not significantly changed as 
the central tendency was increased; and Experiment 2 
found that serial dependence was not affected by the 
speed distribution while central tendency was affected by 
the speed distribution. Furthermore, to further support 
our observation, we calculated the Pearson correlations 
between the estimation errors induced by central ten-
dency and serial dependence in the two experiments. The 
results showed that none of the correlations was signifi-
cant (ps > 0.10). Therefore, the central tendency and serial 
dependence were not the same effect or correlated with 
each other in the current study.

Apart from the aforementioned findings, we shall 
admit that the experimental design of the study (espe-
cially in Experiment 1) is flawed. Firstly, participants were 
asked to estimate speeds on a speed ruler with bounda-
ries, which will inevitably lead to a range effect. Recently, 
Sun, Xu, and Stocker [43] demonstrated that the range 
of the response ruler affects the bias of feature estima-
tion. In the current study, we proposed that participants 
were shown the same ruler in three sessions, which could 
balance the errors induced by the range effect. Addition-
ally, in Experiment 2, the ruler range was shorter than in 
Experiment 1. Comparing the results of the same condi-
tions Experiments 1 (slow) and 2 (uniform) showed that 
the slope of Experiment 1 tended to be larger than that 
in Experiment 2 (dark maker in Fig.  2 and red marker 
in Fig. 4) (Repeated Measures ANOVA showed that the 
main effect of the two experiment was marginally sig-
nificant (F(1, 52) = 3.71, p = 0.052, η2 = 0.067)), suggest-
ing that the response boundary could affect the speed 
estimation. However, due to the different experimental 
conditions in the two experiments, the robustness of the 
above result remains to be further tested. Moreover, to 
rule out the range effect, the most direct method is to ask 
participants to conduct a two-alternative forced choice 
(2AFC) task, which generates a psychometric function 
and then determines the bias. However, this method 
necessitates a considerable number of trials, rendering 
it ineffective. Consequently, researchers must develop a 
novel method to assess the efficacy of the findings in the 
current study.

Secondly, as mentioned in Introduction, studies have 
demonstrated that the central tendency is consistent 
with the Bayesian inference process (e.g., Ashourian & 
Loewenstein [3, 22, 30, 31], and the discrimination sen-
sitivity of speeds is decrease with the increase of speeds 
[39]. When the certainty (discrimination sensitivity) 
of physical features is decreased, the estimate will be 
biased more towards the range center. That is, when the 
speeds increase with a constant step/delta, the certainty 
or discrimination sensitivity of the speed does not line-
arly increase. Consequently, it will be more likely that a 

nonlinear relationship between the speed estimate and 
the actual speed. As in Sun, Xu, and Stocker [43], they 
found that the larger the response range is, the lower cen-
tral tendency is. In the three conditions of Experiment 1, 
the subjective/internal-represented response range could 
be also varied among conditions. Therefore, the linear 
finding of the current study can be a confounded results 
of the task difficulty and speed ruler, and so on. Future 
studies can be considered to dissociate the effects of the 
task difficulty, speed ruler, and discrimination sensitivity 
on the speed processing.

In summary, the current study explored the estima-
tion bias and serial dependence in speed estimation 
with two behavioral experiments. We also made some 
explanations for these findings, which may provide some 
research inspiration for other researchers.
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