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Abstract
The last twelve years have witnessed the development of new therapies for
relapsing-remitting multiple sclerosis that demonstrate increased efficacy
relative to previous therapies. Many of these new drugs target the inflammatory
phase of disease by manipulating different aspects of the immune system.
While these new treatments are promising, the development of therapies for
patients with progressive multiple sclerosis remains a significant challenge. We
discuss the distinct mechanisms that may contribute to these two types of
multiple sclerosis and the implications of these differences in the development
of new therapeutic targets for this debilitating disease.
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Introduction
Multiple sclerosis (MS) is an inflammatory, demyelinating disease 
of the central nervous system (CNS) and is the most common cause 
of non-traumatic neurologic disability in young adults. Although the 
etiology of MS has been debated in the past, recent data from GWAS 
studies provide exceptionally strong evidence that MS is an autoim-
mune disease1–3. This view was originally based on the observation 
that experimental autoimmune encephalomyelitis (EAE), an animal 
model that recapitulates many important features of MS, is induced 
by the activation or adoptive transfer of self-reactive CD4+ T cells 
specific for myelin proteins4. Furthermore, susceptibility to MS is 
most strongly associated with MHC class II alleles1. Inflammatory 
lesions and plaques of demyelination in the CNS are considered 
hallmark features of MS; however, substantial heterogeneity (with 
respect to clinical course, pathology, and response to therapies) is 
seen among patients. This review will focus on current ideas regard-
ing the role of different pathological mechanisms in shaping these 
different manifestations of MS. Achieving an understanding of the 
specific pathogenic pathways that are relevant to individual patients 
with MS is critically important in order to predict which patients will 
respond well to current therapies, and to identify new therapeutic 
targets that can be tailored for patients with different types of MS.

Heterogeneity in MS
For the majority of patients with MS, disease course begins with a 
relapsing-remitting phase with intermittent, discrete periods of neu-
rological symptoms that coincide with the appearance of inflam-
matory lesions. Over time, most patients with relapsing-remitting 
MS convert to a progressive stage called secondary progressive MS, 
characterized by a decrease in the frequency, or complete cessa-
tion, of relapses and gadolinium-enhancing MRI lesions, and the 
gradual accumulation of disability associated with brain and spinal 
cord atrophy. A small subset of patients with MS initially present 
with a progressive disease course that is not preceded by clinical 
exacerbations. This form of MS is called primary progressive MS 
because it is not preceded by a relapsing-remitting phase5,6.

Significant heterogeneity is also observed in the structure of lesions 
and types of tissue injury seen in patients with MS. Lesions have 
been grouped into four different patterns, based on the presence 
or absence of antibody deposition and complement activation, dif-
ferential loss of certain myelin proteins, whether lesions occur at 
perivenous sites, and whether oligodendrocytes are spared or die 
by apoptosis or necrotic cell death7,8. The observation that individ-
ual patients with MS exhibit only one pattern of lesions led to the 
proposal that different patterns may arise from distinct pathogenic 
pathways. However, these patterns have not been associated with 
particular clinical disease courses. Differences are also seen among 
patients in the distribution of lesions between the brain and spinal 
cord. The vast majority of patients with relapsing-remitting MS 
exhibit numerous lesions in the cerebral white matter. However, a 
small subset (10–15%) of patients with MS exhibit lesions predom-
inantly in the spinal cord with relatively sparse brain involvement.

Relapsing-remitting MS pathogenesis and therapies
Relapsing-remitting MS is the best studied form of MS, as the 
majority of patients initially exhibit this form of disease, and the 
EAE model recapitulates many aspects of the inflammatory lesions 

seen in relapsing-remitting MS. Both MRI and immunohistochemi-
cal analyses of tissue sections indicate that inflammation is the key 
component leading to tissue injury and clinical relapses in relaps-
ing-remitting MS patients. Perivascular lesions are comprised of 
inflammatory infiltrates dominated by lymphocytes and myeloid 
cells. Our conceptual framework for understanding how these  
lesions arise is based on studies in EAE. In EAE, activation of  
myelin-specific T cells induces expression of adhesion molecules 
and integrins that facilitate their extravasation across the blood brain 
barrier (BBB). Upon entry into the CNS, myelin-specific T cells are 
reactivated by the small number of antigen-presenting cells (APCs)  
in the healthy CNS that constitutively present myelin antigens in the 
perivascular and subarachnoid spaces. This reactivation triggers the 
T cells to produce soluble, inflammatory mediators that cause BBB 
permeability and recruitment of a range of inflammatory leukocytes4. 
Formation of a localized, inflammatory environment within lesions 
results in plaques of demyelination and axonal damage.

In EAE, CD4+ T cells are the predominant lymphocyte in the infil-
trate, as the protocol for inducing EAE specifically primes CD4+ 
T cells. However, there is an abundance of CD8+ T cells in lesions 
in MS patients, and clonal expansion indicative of antigen-driven 
activation is more evident in the CD8+ T cell subset in the blood 
and cerebrospinal fluid of MS patients. Furthermore, depletion 
of CD4+ T cells resulted in limited therapeutic efficacy in MS 
patients9, although the results of this trial may not be conclusive. 
In contrast, treatments that deplete all leukocytes demonstrated 
greater efficacy in MS patients10. These observations raise key 
questions (Box 1) about the role for different lymphocyte subsets 
in CNS autoimmunity.

Box 1. Outstanding questions regarding the role of 
lymphocyte subsets in relapsing-remitting MS

•   Do both CD4 and CD8 T cells contribute to the pathogenesis 
of MS? What are their relevant effector mechanisms?

•   Do CD8+ T cells exhibit both regulatory and pathogenic 
activity as seen for different subsets of CD4+ T cells?

•   How do B cells contribute to the pathogenesis of MS?

The case for CD4 T cells
An important role for CD4+ T cells in MS is clear from the strong 
association of MHC class II molecules with disease susceptibility1. 
Studies of effector CD4+ T cells in EAE implicated both IFN-γ-
producing Th1 and IL-17-producing Th17 cells as pathogenic 
mediators11. Originally, Th1 cells were considered the main effec-
tor cells, as adoptive transfer of Th1 cells could induce EAE12,13. 
This finding was consistent with an earlier observation that MS was 
exacerbated by the administration of IFN-γ14. However, mice defi-
cient in cytokines associated with the differentiation and function of 
Th1 cells developed severe EAE15. In contrast, deficiency in IL-23, 
which is important for Th17 cell stabilization, conferred resistance 
to EAE, suggesting that Th17 cells may be the true effector cells16. 
An increase in IL-17 transcripts was also reported in chronic MS 
lesions17. However, IL-17A-/- and IL-17F-/- mice, treated with 
anti-IL-17A blocking antibody, are still susceptible to EAE18.  
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Subsequently, GM-CSF was reported to be essential for EAE  
pathogenesis19–21, and recent studies have suggested that T cells 
producing GM-CSF may represent a distinct T cell subset22,23.

The studies described above were all carried out in C57BL/6 
mice. Our studies of EAE in C3Heb/Fej mice have provided fur-
ther insight into the complexity of EAE pathogenesis. While the 
incidence of EAE in C3Heb/Fej mice is strongly reduced in mice 
lacking both IL-17RA and IFN-γ receptors, disease incidence 
was only modestly reduced in mice that lacked either only IL-17 
or only IFN-γ signaling. Importantly, we found that IFN-γ and  
IL-17 signaling had a much greater impact on the pattern of lesion 
localization within the CNS. IL-17 promoted inflammation in the 
brain via induction of chemokines that recruit neutrophils, and neu-
trophils contributed significantly to parenchymal tissue damage in 
the brain24. In contrast, IFN-γ inhibited inflammation in the brain by 
inhibiting neutrophil recruitment. Surprisingly, IFN-γ exerted the 
opposite influence in the spinal cord by promoting both neutrophil 
recruitment and inflammation in this microenvironment. Despite 
the enhanced, IFN-γ-mediated neutrophil recruitment to the spi-
nal cord, neutrophils contributed less to spinal cord tissue dam-
age compared to their role in the brain24. Recent work by Segal 
and colleagues in C57BL/6 mice also suggested that neutrophils 
may be more important effector cells in the brain compared to the 
spinal cord25. Interestingly, in contrast to EAE in C57BL/6 mice, 
we have observed only a modest reduction in disease incidence 
in C3Heb/Fej mice when EAE is induced by adoptive transfer of 
GM-CSF-/- T cells in C3Heb/Fej mice, suggesting that the stringent 
requirement for GM-CSF seen in C57BL/6 mice may be a strain-
specific finding (Pierson E.R., Johnson M.C., and Goverman J.M., 
unpublished observations). Collectively, these studies demonstrate 
that it is critical to study different mouse strains in order to under-
stand the complexity of disease manifestation in MS patients.

The finding that the brain and spinal cord microenvironments in 
mice respond very differently to cytokines produced by infiltrat-
ing T cells suggests that patients with distinct neuroinflammatory  
patterns may respond quite differently to therapies that target 
specific cytokines. There are also other challenges in designing 
cytokine-based therapies for MS patients. Despite the substantial 
data supporting key roles for Th1 and Th17 cells in EAE, a clini-
cal trial administering ustekinumab (an antibody that neutralizes 
cytokines that promote differentiation of both Th1 and Th17 cells), 
had no beneficial effect26. It is difficult to draw conclusions from this 
one trial, however, especially in light of the fact that it is not known 
whether effector T cell differentiation occurs in the periphery or the 
CNS, or how important ongoing T cell differentiation is in patients 
with established MS. The dramatic benefit seen in patients with  
psoriasis following administering of an IL-17-neutralizing antibody 
has also not yet been reported for similar clinical trials in patients 
with MS. It is possible that better stratification of patients with MS, 
with respect to their neuroinflammatory pattern and other key dis-
ease characteristics, is needed to properly evaluate the effectiveness 
of therapeutic targeting of specific cytokines.

The case for CD8 T cells
CD8+ T cells often predominate in tissue sections and in CSF of 
MS patients, and clonal expansion is more commonly observed in 

the CD8+ compared to the CD4+ T cell subset4,27,28. However, the 
role of CD8+ T cells is still unclear, as EAE models have pointed 
to both pathogenic and regulatory functions. Global elimination 
of CD8+ T cells using either CD8-/- mice or antibody-mediated 
depletion of CD8+ T cells in vivo suggested a regulatory role for 
CD8+ T cells29,30. The observations that Qa-1-deficient mice exhibit 
increased susceptibility to EAE, and that adoptive transfer of  
Qa-1-restricted CD8+ T cells ameliorates disease, suggested that there 
may be distinct regulatory subsets of CD8+ T cells31,32. Other stud-
ies have reported a pathogenic role for myelin-specific CD8+ T cells  
in CNS autoimmunity33–35, and animal models using neo-antigens 
expressed in the CNS and CD8+ T cells that recognize the neo-
antigen support a pathogenic role for CD8+ T cells36–40. We identi-
fied CD8+ T cells that recognize a MHC class I-restricted myelin 
basic protein (MBP) epitope and showed that these CD8+ T cells 
were pathogenic and produced lesions distinct from those seen in 
conventional EAE but similar to some lesions seen in patients with 
MS33,41,42. We also showed that both dendritic cells and oligodendro-
cytes presented the MHC class I-restricted epitope of MBP within 
the CNS of mice with CD4+ T cell-initiated EAE43. We speculate 
that CD8+ T cells could be pathogenic if they are triggered to pro-
duce inflammatory cytokines upon encountering dendritic cells 
and/or lyse oligodendrocytes, but they might ameliorate disease if 
they subsequently lyse dendritic cells that present antigen to both 
CD4+ and CD8+ T cells within the CNS. Our preliminary data 
suggest that recruitment of MBP-specific CD8+ T cells during dis-
ease induction can exacerbate CD4+ T cell-initiated EAE and may 
enhance brain inflammation (Wagner C.A. and Goverman J.M., 
unpublished data). However, CD8+ T cells may play different roles 
at different phases of disease, and it is important to identify their 
specific effects during each disease stage in order to therapeutically 
target (or harness) their activity.

The case for B cells
A pathogenic role for B cells in MS is suggested by the therapeu-
tic benefit observed in patients treated with anti-CD20 monoclonal 
antibodies (rituximab or ocrelizumab) that deplete B cells44,45. As 
anti-CD20 does not deplete antibody-producing plasma cells, the 
ability of B cells to present antigen to T cells may be critical in 
CNS autoimmunity. In animal models, B cells have been shown to 
promote EAE induction by acting as antigen-presenting cells for 
T cells in both the periphery46–49 and CNS50. We found that in the 
healthy CNS, B cells comprise the majority of MHC class II+ cells, 
and that they play a role in the initial reactivation of infiltrating 
myelin-specific T cells, specifically the Th1 subset50. Despite the 
therapeutic efficacy of B cell depletion in MS, B cells that pro-
duce IL-10 and ameliorate EAE have been described51,52. If these 
regulatory B cells retain a stable phenotype in patients, transfer of 
this subset may be beneficial, in addition to depleting B cells that 
function only to present antigen to T cells53.

Secondary progressive MS pathogenesis and therapies
Following the success of anti-inflammatory therapies in relapsing-
remitting MS, clinical trials were initiated in secondary progres-
sive MS cohorts. However, clinical trials analyzing the effects of 
beta-interferon found no significant treatment effect, particularly in 
patients that had not exhibited MRI lesions for several years54–57. 
The lack of efficacy of anti-inflammatory therapies in secondary 
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progressive MS suggested that neurodegeneration proceeds inde-
pendently of inflammation in this stage58. However, further analy-
ses of normal-appearing white matter and meninges tissue sections 
revealed that inflammation was still present, albeit in a different 
form59. Staining, using a marker that selectively stains for leaky 
endothelial cells, indicated that inflammation is compartmentalized 
behind a less permeable BBB60. Differences in the pathology, clini-
cal signs and response to current therapies suggest that different 
mechanisms predominate in progressive MS, requiring new thera-
peutic approaches.

Secondary progressive MS is characterized by increasing brain atro-
phy and accumulation of irreversible axonal and neuronal degen-
eration. Gadolinium-enhancing MRI lesions subside61 and a diffuse 
pattern of inflammation predominates in normal-appearing white and 
grey matter62. The mechanisms underlying these changes in pathol-
ogy are poorly understood. Axonal transection begins early in relaps-
ing-remitting MS63; however, the mechanisms may differ in these 
two stages of disease. During relapsing-remitting MS, inflammatory 
cells are thought to mediate demyelination via secretion of degrada-
tive enzymes, production of oxidative products, and increased levels 
of glutamate that can damage oligodendrocytes via excessive NMDA 
receptor signaling64. Thus, transected axons are more abundant in 
active lesions where inflammatory cells are localized versus chronic 
lesions in relapsing-remitting MS63. In contrast, demyelination and 
axonal injury is primarily associated with microglia activation in sec-
ondary progressive MS65. The pattern of diffuse parenchymal inflam-
mation, as well as the presence of T and B cells in the meninges, 
may contribute to microglial activation; however the role of adaptive 
immune cells in facilitating, versus responding to, microglial activa-
tion remains to be established. A major consequence of microglial 
activation is the production of reactive oxygen species. Mitochondria 
and mitochondrial DNA are very susceptible to oxidative injury66,67, 
and axons are extremely susceptible to mitochondrial dysfunction 
due to their high demand for ATP production to propagate action 
potentials68. Failure of remyelination in progressive disease is another 
key difference between relapsing-remitting MS and secondary pro-
gressive MS. The state of chronic demyelination leads to diffusion of 
Na+ channels away from nodes of Ranvier and a subsequent influx of 
sodium and increased ATP consumption. The resulting energy imbal-
ance ultimately leads to axonal degeneration and tissue damage64. 
Thus, remyelination may be a critical therapeutic target in second-
ary progressive MS, together with strategies to dampen microglial 
activation. Potential contributions of adaptive immune cells may also 
need to be addressed in secondary progressive MS.

An additional challenge in designing effective therapies for second-
ary progressive MS is our lack of understanding of mechanisms 
that lead to subpial demyelination. Therapies that prevent or resolve 
subpial lesions may be very important in treating secondary pro-
gressive MS patients as increased progression in disability is asso-
ciated with cortical atrophy69, and subpial lesions are represented to 
a greater extent than leukocortical lesions in the total cortical lesion 
load62,70. However, subpial lesions typically lack peripheral inflam-
matory cells and the mechanism of demyelination that produces 
these lesions, while unknown, may be distinct from mechanisms of 
demyelination in white matter. Additionally, meningeal inflammatory 
aggregates are present in some patients with secondary progressive 

MS and some studies have identified lymph follicle-like structures. 
Post-mortem analyses of brain and spinal cord tissue revealed pro-
liferating B cells and follicular dendritic cells in the follicles, sug-
gesting germinal center formation71. The presence of these follicles 
correlates with disease severity and the extent of demyelination72. 
However, the contributions of these follicles to disease pathogen-
esis are still unclear.

Concluding remarks
In this review, we have highlighted potential differences in patho-
genic mechanisms between relapsing-remitting MS and secondary 
progressive MS, and how these differences may require distinct 
therapeutic approaches. Lesions in relapsing-remitting MS patients 
arise from a complex interplay of both CD4+ and CD8+ T cells, with 
B cells and innate immune cells playing critical roles in orchestrat-
ing T cell responses. The efficacy of therapies such as Natalizumab73 
and fingolimod74,75 that reduce T cell entry into the CNS highlight 
the key role played by T cells in relapsing-remitting MS. While cur-
rent therapies are relatively effective at reducing new MRI lesion 
formation and relapse rates, they are broadly anti-inflammatory and 
often associated with side effects. New therapies capable of target-
ing inflammation relevant only to the CNS are needed. In addition, 
patients with relapsing-remitting MS exhibit heterogeneity in CNS 
lesions, including the distribution of lesions within the CNS, rein-
forcing the need for treatments tailored to the individual patient. 
Finally, the long-term impact of reducing inflammatory lesions and 
clinical relapses during relapsing-remitting MS on the progression 
of neurological disability remains to be firmly established.

The distinct pathology seen in secondary progressive MS patients sug-
gests that targeting different disease mechanisms may be important.  
Specifically, therapies that promote remyelination and prevent 
microglia activation, mitochondria dysfunction, and oxidative dam-
age, while beneficial in relapsing-remitting MS, appear particularly 
crucial in treating patients with secondary progressive MS. It is 
also important to determine the exact role of inflammation during 
this phase to prevent relapse after tissue damage has been resolved. 
Because the BBB is more intact in secondary progressive MS, devel-
oping therapeutic agents capable of crossing the BBB is an additional 
challenge. A key to developing therapies for secondary progressive 
MS is the generation of new animal models that better reproduce the 
key features seen in this disease. While we have focused on second-
ary progressive MS, similarities in the pathology seen between sec-
ondary progressive MS and primary progressive MS support the hope 
that the same therapies will be beneficial in both types of disease.
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