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Secret messaging with endogenous 
chemistry
Eamonn Kennedy1, Joseph Geiser2, Christopher E. Arcadia1, Peter M. Weber2, 
Christopher Rose1, Brenda M. Rubenstein2 & Jacob K. Rosenstein1*

Data encoded in molecules offers opportunities for secret messaging and extreme information 
density. Here, we explore how the same chemical and physical dimensions used to encode molecular 
information can expose molecular messages to detection and manipulation. To address these 
vulnerabilities, we write data using an object’s pre-existing surface chemistry in ways that are 
indistinguishable from the original substrate. While it is simple to embed chemical information onto 
common objects (covers) using routine steganographic permutation, chemically embedded covers 
are found to be resistant to detection by sophisticated analytical tools. Using Turbo codes for efficient 
digital error correction, we demonstrate recovery of secret keys hidden in the pre-existing chemistry 
of American one dollar bills. These demonstrations highlight ways to improve security in other 
molecular domains, and show how the chemical fingerprints of common objects can be harnessed for 
data storage and communication.

Representing digital data in molecular form offers the potential for extreme physical information density and 
longevity1–4, by mapping information into DNA5 as well as other families of compounds6–9. The small physical 
size of molecular datasets has motivated applications where information is hidden in the chemistry of objects10–12.

Despite recent advances in the theory of molecular data storage1, there has been comparatively little work 
to understand what new vulnerabilities or avenues of attack could arise in molecular data systems13,14. Secrecy 
systems ought to be designed under the assumption that an enemy can apply unlimited resources to intercept 
a message15, so if molecular steganography is used for security, what properties of chemically embedded covers 
might alert adversaries or eavesdroppers to the presence of a message?

For example, in DNA data storage16,17, the presence of PCR primers, terminus tags, and heavily-amplified 
oligomers are all detection risks which could indicate the presence of digital data. Commercial biochemical kits 
and assays open the prospect of manipulation of DNA communications by intermediate actors (e.g. by ‘search-
and-replace’ genome editing18).

In non-genomic chemical datasets19,20, the presence of unusual chemical structures could be used to dis-
criminate an embedded covers from other unassuming objects. Even when common molecules are used, they 
may carry other noticeable features such as correlated concentration profiles, atypical isotope ratios, or bimodal 
concentration distributions, which could risk exposing the communication to third parties.

In this paper, we identify common vulnerabilities of molecular data systems (Fig. 1a), and then experimentally 
demonstrate a proof of concept chemical permutation framework, which can conceal digital data in pre-existing 
surface chemistry (Fig. 1b). We elected to encode messages using banknotes as covers (American one dollar bills), 
but the process does not rely on any specific chemistry, and could be implemented on many common objects.

Our aim was to demonstrate that the existing chemical inhomogeneity in the original substrate can be used 
to hide information. This is done by permuting pre-existing chemistry in ways that make it analytically indis-
tinguishable from the original substrate (Fig. 1c). Rather than introducing exogenous chemical compounds, we 
extract endogenous chemical profiles from the object, and then redistribute these samples across the surface in a 
pseudorandom pattern which encodes digital data. As a result, each bit of information is spread across thousands 
of pre-existing compounds, embedded into the object’s chemical background variations. The permutation of 
background noise is a routine steganographic method for embedding hidden data21,22, but its conceptualization 
and demonstration in chemistry provides a means to approach the standards of modern steganography in a 
molecular system23–25. Intriguingly, since the extracts are mixtures whose contents are not known a priori, we 
can write and recover a hidden message without ever specifying the data-encoding chemistry.

These demonstrations represent a new conceptualization of molecular data encoding which can begin to 
approach the standards of modern steganography, and improve the robustness of hidden messages against third-
party analytical detection, with broad security implications for molecular data and devices.
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Results
Characterizing the untreated chemical background.  Chemical imaging of an untreated dollar bill 
(Fig.  2) was performed with a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS, 
SolariX 7T, Bruker). The mass spectrum of 1296 surface locations was recorded from 150 to 900 m/z at a sam-
pling pitch of 2.3 mm. The average spectrum of all locations (Fig. 2a) displays a prominent peak at 575.079 m/z, 
which was identified as a phthalocyanine dye using Tandem Mass Spectrometry (MS/MS). We use this peak as 
an internal mass shift-reference for each spectrum. We also normalize each spectrum by its standard deviation 
( σ ), which allows for the comparison of signal strengths across the scanned region (Fig. 2b).

To gain an intuitive understanding of the background spectral diversity, we perform dimensionality reduc-
tion of each spectra using Uniform Manifold Approximation26 (see Fig. S1). Clustering of the reduced spectra 
illustrates that the background chemistry broadly falls into two classes, which correlate with the presence/absence 
of visible dyes across the surface (Fig. 2c), green: dye, tan: absent). A close correlation between visible features 
and chemical composition remains evident even at sub-mm scales, as illustrated by MALDI imaging (Fig. 2d).

Most of the cover chemical signal is concentrated within a small number of dye peaks, but the bill also displays 
a logarithmic tail-off of trace products acquired over time and usage (Fig. 2e). Intriguingly, many of these trace 
elements appear at only one location. About 10,000 peaks (0.13% of the full spectrum) are isolated to a single 
mm-scale surface location (Fig. 2f). Even allowing for some overcounting of ion adducts, this suggests there are 
thousands of spatially concentrated trace compounds, which we can observe directly (Fig. S2).

Characterizing a library of natural extracts.  Encoding the data begins with the extraction of natural 
samples from an object. Briefly, to generate each extract, a solvent was manually aspirated from a millimeter-
scale region of a banknote surface, and the contents of the solution were isolated and stored (see “Materials and 
methods” section). Eight samples were extracted from one dollar bill and analyzed by mass spectrometry, three 
of which are shown for comparison (Fig. 3a). The majority of chemical contents are the same across extracts, and 
only a small fraction ( ≈ 0.01%) of the peaks in the mass spectra are unique to one of the eight extracts (Fig. 3b).

Chemical permutation.  To write data, an automated liquid handler (Labcyte, Echo 550) is used to dis-
pense droplets of the extracts back onto the cover surface. In the simplest scheme, the presence (‘1’) or absence 
(‘0’) of an extract can encode one bit of data per location. Overall, the presence/absence of each extract across 
many locations encodes the whole message. One banknote may contain several thousand spots, each of which 
may be a mixture of droplets from multiple extracts. After dispensing the droplets, the solvent is evaporated, 
leaving the chemical contents of the extracts embedded on the banknote surface.

To further obscure the message, we can also encode data using more than two concentration levels. Although 
it can make the readout more complex, writing with more concentration levels improves concealment by gen-
erating softer concentration gradients, while also increasing the maximum possible information density (see 
“Materials and methods” section).

For example, given N = 32 possible concentrations (Fig. 3c), we can write log2 32 = 5 bits per liquid transfer. 
When encoding data using multiple concentrations, the message is interleaved and divided into symbols of length 
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Figure 1.   Addressing vulnerabilities of molecular steganography. (a) A myriad of non-natural features can 
expose molecular messages. (b) Chemical permutation extracts chemicals from an object, and then redistributes 
these extracts in non-random spatial patterns to encode data. (c) An area of an American one dollar bill, imaged 
before and after data encoding, showing no apparent modifications.
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log2 N  , where each symbol instructs the liquid handler to dispense a particular concentration of a particular 
extract to one location.

Reading redistributed chemistry.  After alignment, the extract concentrations at each location are esti-
mated (see “Materials and methods” section) and converted back into binary symbols (e.g. for concentration 
level 31/32, we would read back the symbol S = [11110] ). The estimated symbols of all locations and extracts are 
concatenated, forming one long binary string which is de-interleaved (see “Materials and methods” section) to 
recover the original message.

Write vs. read concentration is shown in Fig. 3c for N = 32 logarithmically spaced write concentration levels. 
Concentration regression was performed using a random forest model (see “Materials and methods” section), 
built using spectral intensities as features, and trained with labelled data (see “Materials and methods” section). 
Naturally, classification errors become more frequent as the concentration levels become more dense. Eventually, 
the increasing error rate will outweigh the information density gained by allowing more concentration levels.
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Figure 2.   Analysis of an untreated American dollar bill. (a) The spectrum average of 1296 locations acquired 
across the bill’s surface. About 50 prominent dye peaks, and > 1000 trace compounds are evident. (b) An optical 
scan of the dollar bill surface. (c) An array of spectral acquisition locations corresponding to the scan image 
(dotted lines), recorded at 2.3 mm pitch, color coded by cluster. (d) Optical image (left) and mass image (right) 
of a 4.35 mm subsection resolved at 30 × 30 pixels ((c), green square) showing the intensity of a phthalocyanine 
dye (m/z = 575.08). (e) A plot of the peak intensities observed in the mean spectrum, sorted by peak intensity. 
(f) A plot of the number of masses found uniquely in any one location, as specified by the y-axis peak intensity 
cutoff.
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Evaluating the obscurity of embedded data.  An MS imaging survey of an untreated dollar bill 
(Fig. S3) confirmed that trace elements typically localize at millimeter scales, and account for 0.01–1% of the 
local chemical diversity. In Fig. 4, we use MS imaging to observe the spatial features of an extract redeposited 
on a dollar bill. MS imaging shows that the extract deposition spot is clearly defined, but depositions can also 
track spatially with background chemistry, or may not exceed the background chemical noise. The location of a 
molecular bit is shown optically (Fig. 4a (i)) and as MS images of several relevant masses (Fig. 4a (ii–iv)). Com-
pared to previous molecular datasets which did not attempt obscurity9 (Fig. S4), the data encoding chemistry 
accounts for only a minute fraction of the location’s total chemical content.

In theory, this particular extract is detectable by MS imaging, but the identifying masses are already present 
in the context of the object, and their abundance are in line with expectations of a trace product on an untreated 
bill. Further, the identifying signals are minute against the chemical background of dyes (Fig. 4b, I ext ∼ 105 vs. 
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Figure 3.   Signal characterization of natural product mixtures and readout. (a) FT-ICR spectra of three dollar 
bill extracts dried onto a steel plate. Each extract is from the same bill. Spectral similarity is qualitatively 
evident. (b) Bar graph quantifying the ratio of identifying compounds to all compounds in each extract, 
indicating 99.99% of the compounds across extracts are the same. (c) Write concentration vs. predicted MS read 
concentration for 768 extract readings across 32 unique concentration levels, showing the spread of error after 
multi-mass regression. Observation count increases with color intensity.
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I bkg ∼ 109 ), which would make blind detection of permuted chemistry challenging. A detailed description of 
ways an attacker could intercept the embedded message are provided in Supplementary Note S1.

Digital error correction.  The strategies that hide messages in chemical noise also tend to increase their 
error rates, which can require molecular error correction27. To correct errors, a rate 1/3 Turbo code28 was applied 
to a 128-bit encryption key, producing an encoded payload of 384 raw bits. As an initial demonstration, we used 
only two concentration levels, and wrote exactly one raw bit per extract, per location. Six repetitions of the coded 
encryption key (2304 raw bits in total) were interleaved and written onto one banknote. A plot of the raw error 
rates is shown in (Fig. 5a). The two lines correspond to averaging 4 × (blue) and 32× (black) mass spectra read 
from each spot. With no write repetitions, the maximum raw error rate can exceed 20%, which precludes most 
formal error correcting codes. We are employing the same analysis which achieved just 2% error in a compara-
ble experiment6, but the raw error rates are higher here because the extracts are intrinsically difficult to detect 
against the background. At such high error rates, simple repetition coding is often the optimal outer code29 prior 
to using more sophisticated inner codes which can guarantee perfect message recovery. By integrating the signal 

Figure 4.   FT-ICR MS imaging of a data-encoded dollar bill. (a) The location of a 60 nL deposition of 
maximum-concentration extract is shown optically (i) and imaged at three masses (ii–iv). (ii) Intensity map 
at m/z = 575.08, which is a strong background dye (I ∼ 10

9 a.u.). (iii) Intensity map at m/z = 184.07, the most 
strongly identifying m/z values of the extract and (iv) the second most identifying m/z of the same extract 
(m/z = 478.33). Scale bar: 1 mm. (b) The profile of mass signals across (iii, dotted-white-line), showing the 
total integrated chemical mass signal (gray), and integrated signal of all masses which can identify the extract 
(yellow).
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from scattered repetitions written across the banknote, the raw error rate is brought well within the tolerance of 
the turbo code. The key is decoded without error if the raw error rate is 12% or lower after repetition averaging 
(Fig. 5b).

Complete workflow.  The chemical permutation read and write procedure is formalized and shown graphi-
cally in Fig. 6a. We begin with an application programming interface key (API key) which is a shared secret used 
to authenticate a program (or user), although the choice of data is arbitrary, and any other data of similar size 
could have been used. The key is preprocessed (Fig. 6a (1–5)) before chemical encoding, which involves binary 
conversion (2), turbo encoding (3), repetition with interleaving (4), and conversion of the bit string into liquid 
handler instructions (5). The automated liquid handler dispenses extracts to the banknote, which is handed off, 
and read using MS for data recovery (Fig. 5b).

Using this procedure, an API key (fa763032-6efb-4189-b626-9029686537b3) was written using three extracts 
and four concentration levels. Most of the concentrations were correctly identified (Fig. 6b), and after decoding 
the key was recovered without error (Fig. 6c).
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Discussion
Molecular data can complement traditional data systems with interesting new dimensions and features, includ-
ing covert messaging. By exploring how patterns in molecular datasets reveal the existence of the data, we offer 
a new way to think about the connections between analytical limits, natural occurring chemical diversity, and 
engineered information systems.

In previous work, we encoded data using metabolites6 and Ugi reaction products9, illustrating how small-
molecule chemical diversity can be harnessed for information storage. Although these reports projected molecu-
lar data into a broad chemical space, the chemistry was explicitly defined, and each binary value mapped to one 
compound. Here, we have extended these concepts by encoding information using extracts whose information-
bearing chemistries are never explicitly identified. Each bit of information is encoded as subtle shifts in mixture 
composition, hidden across thousands of naturally-occurring trace compounds.

A perfect secrecy system may be defined as one where the enemy is no better off after intercepting any amount 
of material than before15. Here, since the chemical profile of every object is unique and no exogenous chemistry 
is introduced30, an intercepted message will not yield identifying molecules, although it could yield identify-
ing patterns or correlations. Decoding the data does still require that the sender and receiver share knowledge 
of reference coordinates (see “Materials and methods” section). Absent this key, the whole banknote must be 
analyzed, which would take several days, and would still leave a very challenging decoding problem without 
training labels or spatial registration marks.

These demonstrations offer lessons that can be applied to molecular steganography in other domains. For 
example, to improve DNA data secrecy, data could be hidden within naturally-ocurring genomes31,32, or encoded 
as genomically plausible sequences. Although minimizing spatial addressing is often considered a feature of 
DNA data storage, incorporating more spatial encoding in a DNA dataset (multiple spatially separated pools of 
sequences) could also make it more secure.

By leveraging the chemical diversity and uniqueness of everyday objects, we have shown how molecular data 
can expand beyond archival data storage, and can offer ways to represent information in low-cost, rewritable, 
and perhaps even undetectable forms. As molecular information becomes more common, it is valuable to think 
about ways that messages can not only be protected through obscurity, but can also be made intrinsically resist-
ant to discovery by sophisticated analytical tools.

Limitations.  Coding improves instrumental detection, but it also makes the message more detectable. There 
are known tradeoffs between detectability and payload size33 which would be a valuable direction for future 
work to explore in chemical space. It is theoretically possible to attack a chemical-permutation encoded object 
by brute force, although it would be extremely challenging in practice (see Supplementary Note S1). The user 
also has finite attempts to read the message, since MS ablates material during measurement, and the embedding 
is progressively degraded. In prior work, we estimated that a dataset could be read 100 times before appreciable 
degradation9, but this study involves trace concentrations in a large chemical background, so the number of read 
attempts before information loss is likely lower.

At our standard grid pitch, a single dollar bill can hold 2050 data spots, although encoding at higher spatial 
frequency is achievable. If each spot contains 60 nL, and 2.5 nL is dispensed per extract, we expect a payload 
limit of about 50,000 raw bits per bill. It is instructive to consider this payload in the context of the pre-existing 
information content, since chemical media are dense information carriers34. The resolving power of our mass 
spectrometer is on the order of 105−106 . Our imaging experiments (see Supplementary Figs. S3, S4) demon-
strated unique spatial features well below 0.1 mm resolution, so at least 106 unique locations are addressable. 
Therefore, the pre-existing information content of the substrate is estimated to be 1012−1013 raw bits. Viewed 
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another way, our maximum payload is equivalent to introducing 1 bit of permuted chemical content for every 
100 billion bits of pre-existing information. This is very low density, which is encouraging for obscurity, but not 
for applications where larger datasets are needed. Different objects will provide high or lower payload depending 
on their available area. Our current bit density is not a hard limit, however, and could be overcome by reducing 
the spatial pitch of the droplets during liquid handling.

The initial chemical diversity of natural objects may also limit the ability to hide data in chemical permuta-
tions. Chemically homogeneous objects are likely to have a smaller proportion of extracts which are uniquely 
identifiable, which could increase error rates, requiring more overhead. The method may be more appropriate 
for embedding information into objects whose surfaces normally contain diverse mixtures and spatial distribu-
tions of chemical compounds.

Materials and methods
Materials and reagents.  All data encoding chemistry is made up of pre-existing dollar bill natural prod-
ucts. The only specifiable reagants are the solvents used for extraction: Water, methanol, and dimethylsulfoxide 
(DMSO). For illustrative purposes, we identified a few dyes and trace substances detected on banknotes by MS.

Extract preparation.  To generate an extract, a dollar bill is flattened on top of a non-absorbant tray. DMSO 
is pipetted on to a bill surface region (0.1–0.2 mL) and vigorously aspirated for 2–3 minutes. DMSO facilitates a 
longer drying time than methanol or water, which allows for repeated aspiration and improved extraction qual-
ity. Aspiration and collection is repeated for the location and all the contents are added to a 1.5 mL eppendorf. 
The extract contents are left to concentrate by evaporation down to a few µ L, and transferred to a 384 well plate 
for robotic liquid handling.

Extracts are diluted at 32 logarithmic concentration steps and stored under sealed refrigeration. A total of 
12 extracts each at 32 unique concentrations makes up one 384 well library plate. To test whole-bill extracts, a 
bill was rolled up, super-saturated in solvent, and left standing up in an eppendorf. After drying, the residual 
eppendorf sediment was reconstituted.

Mass spectrometry.  Mass spectra are acquired with a Fourier transform ion cyclotron resonance (FT-ICR) 
mass spectrometer in positive ion mode (Solarix, Bruker). No matrix is added to the banknote, so the extracts 
and background of the substrate are ionized together using only laser desorption ionization (LDI). Spectra pro-
duced by FT-ICR are particularly high resolution, often reaching peak widths below 0.001 Da. All spectra were 
aligned by a mass lock at m/z = 575.0788. We found good acquisition settings for dollar bill surface analysis by 
trial and error. The time between spectral acquisitions ranged from 4 to 9 s depending on our instrument set-
tings. The recommended MS settings using a Bruker FT-ICR instrument for analysis of a dollar bill substrate are 
laser power: 15%, Laser shots: 200, Frequency: 400 Hz, Laser Focus: Large, Beam width: 0.5 mm, and Averaging: 
> 4×.

Alignment.  When using a dollar bill as a vector for hidden messages, calculating the data encoding posi-
tions is very challenging without prior information, because the diffused, dried extracts exist below the natural 
variation of background chemical/optical signals. To read data, first, each encoded position must be known, so 
the reader must have some agreed prior information about the bill. In the example in Fig. 5, a 48 × 32 grid of 
co-ordinates was aligned using characteristic fiducial marks on the surfaced; the letter ‘w’ in ‘we’ was grid point 
X23Y09, the bottom of the large ‘N’ in ‘one’ was grid point X25Y17, and the top of the second ‘L’ in ’DOLLAR’ 
was grid point X32Y24. Triangulation was performed by inputting these three points into the Bruker software to 
approximate the position of every other grid point. More complex spatial arrangements could avoid using a grid 
at all, but we implemented this approach for its simplicity, and because it only requires a small amount of prior 
information. Specifically, 3 sets of co-ordinates (48 bits) are required, along with information about which side 
the data is written on (1 bit). This compares favorably to the payload of Fig. 5 (2304 bits).

Data plate preparation.  Experimental details of liquid handling and transfer are described in full 
elsewhere9. Briefly, the data to be written is converted to a string of binary values, and reshaped into an M × N 
matrix, where M is the number of extracts to be used, and N is the whole binary string written with only that 
extract. If required, the input binary string is concatenated with a small vector of zeros before reshaping to allow 
for the clean construction of the M × N matrix. In the simplest coding scheme, the presence (‘1’) or absence 
(‘0’) of the mth value in an extract’s string directly defines whether that extract is dispensed (or not) to each loca-
tion. Defining an extracts string across n locations as N1...n , if N3 = 1 , then that extract is deposited to the 3rd 
location. Similar decisions are made across all extracts and locations. Once all transfers are complete, the dollar 
bill is left to dry for about 1 h, and was then either read immediately, or left for a few days before MS analysis.

For variable concentration data, L concentration states are possible, and we write log2 L > 1 bits per extract 
per location. To implement variable-concentration encoding, serial dilutions of each extract are made up in 
unique library wells, and a csv file ‘picklist’ of dispense instructions is generated for the Echo liquid handler. 
The picklist defines which dilution of extract from the library is transferred to each surface location. At our 
standard pitch, a single dollar bill can hold 2050 data spots. Typical depositions are 2.5 nL dispensed per extract 
per location.

Data plate analysis.  We convert the raw data files from the instrument into custom HDF5 files, for more 
efficient querying. To normalize signals across measurements, we often convert the raw intensity values of a 
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spectrum to signal-to-noise ratios (SNR) according to the following shift-and-scale relation: SNR = (I− µ)/σ , 
where I is an intensity and µ and σ are the mean and standard deviation of the spectrum’s background.

For multi-peak detection, extract presence was found by applying a regression model trained to identify the 
spectral features correlated with the extract. To reduce computational overhead, masses whose average intensi-
ties were close to the noise floor were discarded,from eight million initial samples per spectra down to about 
100,000. The Python library Scikit-learn35 was used to construct a random forest regression, typically using a 
10/90 train/test split.

Repeated reads were performed to gather statistics. However, the time to acquire and process a large set of 
objects with MS indicates it may not be feasible to apply the same statistical standards from digital systems to 
molecular data representations.

Interleaving.  Data written directly as liquid handling instructions will introduce identifiable spatial cor-
relations into the chemical profiles. For example, encoding an image with regions of low and high contrast will 
encode stretches of low [0, 0, 0...] and high [1, 1,…] concentration. A simple way to solve this problem is to 
randomize the data using interleaving before restructuring it as liquid handling instructions. The data [0, 0, 0, 
1, 1, 1] can be interleaved by the indices [4, 3, 6, 1, 2, 5] to mitigate correlations, producing [1, 0, 1, 0, 0 ,1]. The 
appropriate de-interleaving indices after data recovery is the argument sort of the interleaving indices, which 
are [4, 5, 2, 1, 6, 3]. The interleaving indices can be regenerated by the reader using a single integer as the seed.

Code availability
The software used in this study is based on code available from the Metabolomics Workbench data repository 
(study ST001173). Software and data are available from the authors on reasonable request.
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