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Abstract

Lutzomyia longipalpis is the main vector of Leishmania infantum, the causative agent of vis-

ceral leishmaniasis in the Neotropical realm. Its taxonomic status has been widely dis-

cussed once it encompasses a complex of species. The knowledge about the genetic

structure of insect vector populations helps the elucidation of components and interactions

of the disease ecoepidemiology. Thus, the objective of this study was to genotypically ana-

lyze populations of the Lu. longipalpis complex from a macrogeographic perspective using

Next Generation Sequencing. Polymorphism analysis of three molecular markers was used

to access the levels of population genetic structure among nine different populations of sand

flies. Illumina Amplicon Sequencing Protocol® was used to identify possible polymorphic

sites. The library was sequenced on paired-end Illumina MiSeq platform. Significant macro-

geographical population differentiation was observed among Lu. longipalpis populations via

PCA and DAPC analyses. Our results revealed that populations of Lu. longipalpis from the

nine municipalities were grouped into three clusters. In addition, it was observed that the lev-

els of Lu. longipalpis population structure could be associated with distance isolation. This

new sequencing method allowed us to study different molecular markers after a single

sequencing run, and to evaluate population and inter-species differences on a macrogeo-

graphic scale.

Introduction

The history of visceral leishmaniasis (VL) in the Americas is closely related to the Lutzomyia
longipalpis species, which was described by Lutz and Neiva [1] and identified as a Leishmania
infantum vector based on consistent evidence from various studies on sand fly vector compe-

tence [2, 3, 4, 5, 6].
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Brazil has a high prevalence of VL among the Neotropical countries [7] probably due to the

adaptability of the vector, which presents a wide geographic distribution and occurs in all

regions of the country [8, 9, 10].

The taxonomic status of Lu. longipalpis has been discussed since the late 1960s, when Man-

gabeira [11] observed that males collected in the States of Ceará and Pará differed in the num-

ber of spots present in the abdominal tergites. Subsequent studies showed that different

Brazilian populations of Lu. longipalpis produced different pheromones among themselves

and presented reproductive isolation [12, 13, 14, 15, 16]. These findings support the hypothesis

that Lu. longipalpis represents a complex of species, which could reflect into the different epi-

demiological profiles of the disease, once sand flies present specific habits, behaviors and

capacity of infection.

The advent of high-throughput genotyping, referred to as Next Generation Sequencing,

made it possible to analyze molecular markers on a large scale and on a huge number of indi-

viduals, revealing this technique as an excellent tool for population genetics studies. Among

the numerous molecular markers used for entomological studies, the simultaneous sequencing

of the nuclear and mitochondrial genomes is shown to be more reliable because it reveals dif-

ferent evolutionary events [17, 18, 19, 20, 21, 22].

In this study, we used Next Generation Sequencing (Illumina MiSeq platform) to analyze

populations of the Lu. longipalpis complex from different Brazilian locations, based on the

polymorphisms detected in two nuclear regions (period gene, IVS6 of cacophony gene) and in

the mitochondrial 12SrDNA ribosomal region.

Materials and methods

Ethics statement

A permanent license for collecting and transporting zoological material (Protocol 25592–1)

was obtained on the behalf of PhD. Alessandra Gutierrez de Oliveira, issued by the System of

Authorization and Information on Biodiversity of the Brazilian Institute of Environment and

Renewable Natural Resources (Sisbio/IBAMA).

Study area and period

Sand flies were captured between August 2014 and December 2016 from nine municipalities

described in Fig 1. Collections were performed using light traps (Falcão modified). All sand-

flies were identified based on morphological characteristics of the genitalia, head, and thorax,

as described by Galati [23]. We observed the expected pattern of tergite spots in Lu. longipalpis
individuals (Table 1).

Extraction of DNA

After morphological identification, five male insects from each study locality were preserved

in 70% alcohol and subsequently crushed using a plastic pestle and portable mixer in 1.5 mL

tubes containing 300 μL of 5% Chelex1Molecular Biology Grade Resin (Bio-Rad Laborato-

ries, Hercules, USA) according to the manufacturer’s recommendations. The solution was vor-

tex-mixed for 15s and subsequently centrifuged for 20 s at 11,000 g. Next, the solution was

placed in a water bath at 80˚C for 30 min, and then the procedure was repeated. The superna-

tant was removed, transferred to another sterile Eppendorf tube and frozen at -20˚C.
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Polymerase Chain Reaction—PCR

Illumina Amplicon Sequencing Protocol was used to amplify possible polymorphic sites pres-

ent on the Lu. longipalpis from each locality, totaling 45 specimens. PCR was performed using

three pairs of oligonucleotides to which we added the sequences 5’ TCGTCGGCAGCGTCAG

Fig 1. Geographic distribution of Lutzomyia longipalpis lato sensu specimens collected, Brazil, 2017.

https://doi.org/10.1371/journal.pone.0223277.g001

Table 1. Collection sites and number of spots in the abdominal tergites in Lutzomyia longipalpis from different Brazilian regions and biomes, Brazil (n = 45).

Species Municipality State Spot Brazilian Region Biome N

Lu. longipalpis Belém PA 1S North Amazonia 5

Lu. longipalpis Campo Grande MS 1S e 2S Central-West Savanna-like Cerrado 5

Lu. longipalpis Fortaleza CE 2S Northeast Caatinga 5

Lu. longipalpis Governador Valadares MG 1S Southeast Atlantic Rainforest 5

Lu. longipalpis Jequié BA 1S Northeast Caatinga and Atlantic Rainforest 5

Lu. longipalpis Miranda MS 1S Central-West Pantanal wetland 5

Lu. longipalpis Palmas TO 1S North Savanna-like cerrado 5

Lu. longipalpis Recife PE 2S Northeast Atlantic Rainforest 5

Lu. longipalpis São Borja RS 1S South Pampa 5

TOTAL 45

N: number of specimen; PA: Pará; MS: Mato Grosso do Sul; CE: Ceará; MG: Minas Gerais; BA: Bahia; TO: Tocantins; PE: Pernambuco; RS: Rio Grande do Sul.

https://doi.org/10.1371/journal.pone.0223277.t001
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ATGTGTATAAGAGACAG before the forward oligonucleotide, and 5’ GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAG before reverse oligonucleotide (Table 2). These sequences are

required for the hybridization of each amplicon in the Illumina flowcell.

Sand fly mitochondrial 12S rDNA amplification and sequencing. PCR amplification of

Lutzomyia sp. 12S rDNA mitochondrial region was performed with the primers T1B and T2A,

according to Beati et al. [24].

Sand fly nuclear DNA amplification and sequencing. To analyze the polymorphisms in

nuclear DNA, we used: Llcac and 5LIcac for the region IV6S cacophony [25] and 5L1per1 and

3L1per1 for the period region [18].

Twenty-five μL of PCR reactions were prepared as follows: 14.1 μl of ultrapure water, 2.5 μl

of Buffer 10x, 0.4 μl of dNTPs (0.1 mM), 0.75 μl of MgCl2 (50 mM), 1 μl of each oligonucleo-

tide (10 pm/μL), 0.25 μL of TaqDNA polymerase (Ludwig Biotec1 PCR kit) and 5 μl The

design of the oligonucleotides and the conditions of each amplification are shown in Table 2.

DNA sequencing

Five specimens from nine different municipalities were analyzed (5x9 = 45 specimens). Each

specimen was amplified to the period gene, IVS6 from cacophony gene and 12SrDNA

(45x3 = 135 PCR amplicon). The product of the 3 amplified from each individual was pooled

in a single tube, totaling 45 pools. These samples containing the amplicons were purified with

AMPure XP beads at 1.80x total volume. An index pair (P5 and P7) Nextera1 Index Primers

(Illumina, San Diego USA) was added for each sample through a PCR with limited cycles. The

conditions for Nextera1 PCR indexing were: initial denaturation at 95˚C for 3 minutes, fol-

lowed by 12 cycles of denaturation at 95˚C for 30 seconds, annealing at 55˚C for 30 seconds

and extension at 72˚C for 30 seconds, with a final extension at 72˚C for 5 minutes. A new puri-

fication with AMPure XP beads at 1.80X was performed. Then, the amplicons were quantified

using Qubit 2.0 fluorometer following the manufacturer’s recommendations for Qubit dsDNA

HS (High Sensitivity, Invitrogen) kit.

Samples with distinct multiplexing indices were combined in equimolar ratios to compose

a final library for sequencing. The library quantification was made with KAPA library quantifi-

cation kit1 in a qPCR reaction. The reaction was carried out in a thermal cycler as follows:

Table 2. Sequences of oligonucleotides and conditions for sand fly DNA amplification.

Region Primer sequence (5’-3’) Amplification conditions References

12SrDNA T1B/T2A

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAACTAGGATTAGATACCCT
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATGAGAGCGACGGGCGATGT

94˚C for 5 min

35 cycles of

94˚C for 20 sec

54˚C for 30 sec

72˚C for 25 sec

72˚C for 5 min

Adapted from

Beati et al. [24]

IVS6 –cacophony 3Llcac/5LIcac

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTG GCCGAACATAATGTTAG

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCACGAACAAGTTCAACATC

94˚C for 12 min

35 cycles

94˚C for 30 sec

55˚C for 30 sec

72 ˚C for 30 sec

72˚C for 10 min

Adapted from

Lins et al.[25]

Period 5L1per1/3L1per1

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAATGGCTTCTACATCACTC
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTGCTGCTTCACTGTATC

95˚C for 3 min

95˚C for 30 sec

55˚C for 30 sec

72˚C for 1 min

72˚C for 5 min

Adapted from

Bauzer et al. [18]

https://doi.org/10.1371/journal.pone.0223277.t002
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initial denaturation at 95˚C for 5 minutes followed by 35 cycles of denaturation at 95˚C for 30

seconds and annealing/extension at 60˚C for 45 seconds.

The samples were pooled, normalized and denatured, and finally loaded on the Illumina

reagent cartridge. One library was paired-end sequenced in 150-cycles in a Miseq Illumina1

(Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita

Filho”).

Statistical and structural analyses

Briefly, all sequence reads were quality filtered using the default parameters. Then, each indi-

vidual’s sequence reads were aligned to the Lu. longipalpis reference genome using Bowtie

with default parameters [26].

Genetic differentiation among subpopulations was estimated by the Wright fixation index

(FST pairwise) [27], using Genepop software version 4.2.

The two matrices (AB) of genetic diversity mean (FST pairwise) and geographic distance

(Km) were tested for a linear correlation using the Mantel test [28, 29, 30, 31, 32]. P values

were calculated using the correlation coefficient r (AB), estimated for 9,999 permutations. The

Mantel test was performed using the Ade4 package of software R v.3.5.1. Geographic distances

between locations were determined using the Google Earth Pro program.

In order to infer the number of subpopulations that best explains the analyzed dataset, we

performed two approaches. These tools focus on the minimization of sources within the varia-

tion of the group. Therefore, we used Principal Component Analysis (PCA) and Discriminant

Analysis of Principal Component (DAPC).

PCA is a statistical method used to simplify a multivariable dataset, with minimal loss of

information. This technique uses Euclidean distance as a measure of dissimilarity and can be

used to emphasize variation and bring out strong patterns in a dataset [33].

DAPC uses a k-means clustering algorithm and a Bayesian Inference Criterion (BIC) to

determine the number of population groups (K), optimizing variation between groups and

minimizing variation within groups [34].

Adegenet package in R software was used to perform PCA and DAPC.

Results

Forty-five DNA samples extracted from sand flies specimens representing all Brazilian

regions were PCR amplified for three gene fragments (period gene, IVS6 from cacophony

gene and 12SrDNA). In total, 103 loci of nine populations were evaluated (BioProject ID:

PRJNA555630). After processing the sequencing data, we observed that in 3 specimens (1

from São Borja, 1 from Fortaleza and 1 from Palmas) we obtained very few sequences for at

least one of the amplified fragments (period gene, IVS6 from cacophony gene and 12SrDNA),

for this reason we decided to exclude them for further analysis.

Estimates of FST pairwise were not significant. However, these values revealed that the

mean of genetic differentiation among populations ranged from 0 (0.000) to 5% (0.0500)

(Table 3). Although the values do not indicate significant genetic differentiation, populations

of Lu. longipalpis from Belém (PA) and Jequié (BA) were genetically closer, whereas popula-

tions from São Borja (RS) and Fortaleza (CE) were most genetically distinct.

Statistically significant correlations were detected between genetic differentiation and geo-

graphic distances based on the Mantel test [r(AB) = 0.9381417; p < 0.00001 e alpha = 0.05].

The results suggested that geographic distance significantly contributes to the genetic differen-

tiation observed in the Lu. longipalpis populations.
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We obtained similar results depending on the approaches used to estimate the clusters, con-

sidering that PCA and DAPC revealed three clusters (Figs 2 and 3).

Discussion

Studies about the genetic structure of natural populations of vector insects have many applica-

tions in evolutionary biology and conservation, an essential aspect to understand the ecoepide-

miology of the diseases [35]. Due to the importance of Lu. longipalpis in the epidemiological

chain of visceral leishmaniasis, the knowledge about the taxonomic status of this species has

increased considerably in recent years, producing several studies in Latin American countries

[36].

Over the past 30 years, more than 100 articles have been published using molecular markers

to relate or separate sand flies populations, species, groups or genera [36]. Different methodol-

ogies have been used, isolated or integrated, such as biochemical, morphological and molecu-

lar studies [37, 38, 39, 40]. Some molecular approaches have been used in order to investigate

these intra and interspecific variations: Restriction Fragment Length Polymorphism (RFLP),

DNA hybridization, Random Amplification of Polymorphic DNA (RAPD-PCR), Single

Strand Conformation Polymorphism (SSCP), microsatellites, sequencing of the mitochondrial

and nuclear genome [17, 36, 37, 41, 42, 43, 44, 45].

The increase of the molecular studies has encouraged the enhancement of DNA sequencing

technologies. One of the most relevant approaches within ecological and population genetics

was the development of high-throughput genotyping (Next Generation Sequencing—NGS).

This technique allows the analysis of large-scale molecular markers, as well as improving infer-

ences about the genetic variability of populations [46], kinship attributions [47] and under-

standing of historical demographic patterns and introgression events [48].

There is much interest in applying NGS for sequencing directed to specific genes and in

large numbers of individuals [49]. Considering the decreasing sequencing costs and increased

molecular markers studies, Golczer and Arrivillaga [36] suggested that researchers should use

more than one molecular marker to understand genetic and evolutionary issues greater

robustness of the result. Therefore, we investigated genetic diversity in nine Lu. longipalpis
populations, using the sequencing with the Illumina MiSeq platform, in three markers,

simultaneously.

It is noteworthy that our sequences generated by the Illumina MiSeq platform of each indi-

vidual are the product of more than a thousand direct and reverse sequences per fragment.

Table 3. Estimates of FST pairwise of Lu. longipalpis populations from nine municipalities of Brazil.

Campo

Grande

Miranda São

Borja

Governador

Valadares

Jequié Palmas Belém Recife Fortaleza

Campo

Grande

- - - - - - - - -

Miranda 0.0076 - - - - - - -

São

Borja

0.0104 0.0095 - - - - - - -

Governador

Valadares

0.0192 0.0303 0.0327 - - - - - -

Jequié 0.0277 0.0330 0.0418 0.0101 - - - - -

Palmas 0.0139 0.0256 0.0283 0.0113 0.0095 - - - -

Belém 0.0186 0.0238 0.0337 0.0103 -0.0000 0.0044 - - -

Recife 0.0205 0.0289 0.0364 0.0231 0.0225 0.0192 0.0194 - -

Fortaleza 0.0336 0.0440 0.0500 0.0377 0.0327 0.0282 0.0297 0.0005 -

https://doi.org/10.1371/journal.pone.0223277.t003
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Thus, possible sequence interpretation errors could be detected and filtered, since thousands

of sequences are considered. It was different if we used Sanger’s sequencing when only a single

sequence is present. Shokralla et al. [50] compared the investment cost and total time spent

between the Sanger and Illumina Miseq processes. They observed a 27% reduction in total

time and 79% reduction in labor costs using NGS. This cost reduction enables the develop-

ment of a larger number of projects with the same value in a single survey.

Estimating genetic differentiation among populations (FST) is fundamental in genetic stud-

ies to understand population demographic history [51]. Our results demonstrate low FST pair-

wise values (Table 3) indicating a low level of genetic differentiation among Lu. longipalpis
subpopulations, according to the classification proposed by Wright [52], Hart and Clark [53].

Genetic differentiation results from several evolutionary processes, such as gene flow, natu-

ral selection, and isolation by geographic distance. The last one is a vicarious process capable

Fig 2. Principal Components Analysis (PCA) of Lu. longipalpis specimens from all regions of Brazil using data of 103 loci,

obtained from three markers. REC: Recife; GVA: Governador Valadares; BEL: Belém; SOB: São Borja; PAL: Palmas; JEQ: Jequié;

FOR: Fortaleza; CGR: Campo Grande; MIR: Miranda.

https://doi.org/10.1371/journal.pone.0223277.g002
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of causing speciation in different populations of the same species. This event occurs because

geographic space leads to environmental variation [54, 55, 56] and, with increasing distance,

gene flow attenuates and tends to cease [57, 58].

We used the Mantel test in order to evaluate the hypothesis that the levels of population

structure of Lu. longipalpis could be associated with distance isolation. This test showed a

Fig 3. Principal Component Discriminant Analysis (DAPC) of Lu. longipalpis populations from all regions of Brazil using data

of 103 loci, obtained from three markers. (A) Pie charts of the clusters assignment distribution in nine municipalities of Brazil

plotted in a map. (B) Ordination of the clusters in two axes. Colors represent genetic clusters (blue, red, green). (C) Rows correspond

to actual groups (n = 9), while columns correspond to inferred groups (n = 3). Square sizes represent numbers of individuals in each

inferred cluster for the nine populations as depicted in the scale down below the figure.

https://doi.org/10.1371/journal.pone.0223277.g003
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significant (p<0.00001) positive correlation (r(AB) = 0.9381417) between the genetic distances

(FST) and geographic (Km). This result shows that, although there was little genetic differenti-

ation between the individuals, there is a strong isolation by distance between the nine analyzed

populations that covered a distance variation of up to 3,334 km.

Our results confirm a study of genotyping based on microsatellites, which showed Brazilian

populations of Lu. longipalpis genetically divergent, consistent with geographic distance [37].

Based on the mitochondrial gene ND4, Soto et al. [31] also observed a strong correlation

between the geographic distances in the genetic differentiation among the Honduran popula-

tions of Lu. longipalpis, suggesting that this fact is due to the limited capacity of locomotion of

the sandflies and caused by the innumerable geographic and climatic barriers that could limit

or even prevent gene flow among populations. This hypothesis may explain the distance isola-

tion found in our results, considering that the specimens were collected at geographic dis-

tances higher than the study by Soto et al. [31]. Furthermore, Brazil is a country with

continental dimensions and the specimens were collected in different biomes and, conse-

quently, in different ecological conditions.

Evaluating the isolation by geographic distance is fundamental. This phenomenon causes,

through the time, a new characteristic in one of the populations like, for example, a new sound

of courtship, causing the break of the gene flow [59]. This event can lead to important epidemi-

ological and ecological consequences, such as changes in vector capacity and competence,

resistance to insecticides and limit/prevent/retard the speciation process [60].

Lutzomyia longipalpis populations analyzed in this study were submitted to PCA to verify

possible clusters by similarity of frequencies of the examined alleles. Jombart, Devillard and

Balloux [61] argue that this method does not have some essential characteristics to investigate

the genetic structure of biological populations because it does not provide a group assessment

and does not require an a priori definition of clusters to study population structures. However,

PCA has been widely used for genetic analysis as an alternative to Bayesian clustering algo-

rithms. In addition, PCA (Fig 2) provided a clear separation between the different Lu. longipal-
pis populations.

Due to the possibility of bias introduced by the absence of a priori cluster determination

using PCA, we still use another approach to confirm possible clustering. Observing DAPC

(Fig 3A, 3B and 3C), Lu. longipalpis populations were also grouped into three distinct clusters

(k = 3). This analysis confirmed the clusters demonstrated by the PCA, validating its results.

The use of different approaches to analyzing clusters in population genetics is extremely

important, providing less biased data evaluation. An advantage of DAPC in relation to other

clustering approaches is the possibility of generating a graphical representation of the relation-

ship between inferred clusters [61], as observed in Fig 3C.

Brazilian populations of Lu. longipalpis present morphological variation and differ in the

number of spots present in the abdominal tergites, a characteristic observed by Mangabeira

[11], when he was studying specimens collected in the States of Ceará and Pará. The specimens

from the state of Pará (PA) had a pair of pale spots on the IV abdominal tergite (phenotype

called one spot—’1S’), while those from the state of Ceará (CE) had two pairs of spots (the phe-

notype two spot—’2S’), one in the IV tergite and one in the tergite III. Mangabeira also men-

tioned that the two forms were found in different ecological conditions, speculating that they

could represent different species or a variety of them. Subsequently, intermediate phenotypes

(a pair of pale spots with a minor point on tergite III) were observed, indicating an intraspe-

cific polymorphism [38, 39].

In the DAPC (Fig 3), the populations analyzed in this study formed clusters similar to the

phenotypes (morphotypes 1S and 2S). In the red cluster, Lu. longipalpis populations were

grouped morphotype 1S of the North and Northeast of the country: Palmas (TO), Belém (PA),
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Jequié (BA) and Governador Valadares (MG). In the green cluster, Lu. longipalpis populations

were grouped of the Northeast morphotype 2S of Recife and Fortaleza. Finally, in the blue clus-

ter, Lu. longipalpis specimens were grouped of the Midwest and South of the country—Campo

Grande (MS), Miranda (MS) and São Borja (RS). Lutzomyia longipalpis populations of

Miranda (MS) and São Borja (RS) present morphotype 1S, while the population of Campo

Grande was composed by specimens morphotypes 1S and 2S.

Molecular studies presuppose that Lu. longipalpis populations 1S (one spot) and 2S (two

spot) are in recent process of speciation (0.22 to 1.02 million years ago) [62, 63]. This period is

believed that was sufficient to generate morphological diversity and to create the new species,

Lu. pseudolongipalpis [64], which is possibly occurring among the different Lu. longipalpis
populations.

In addition to phenotypic differences, a behavioral aspect studied is the production of “love-
songs” by Lu. longipalpis males during mating [65, 66, 67]. The reproductive isolation observed

among Brazilian Lu. longipalpis populations are caused by failures during intercourse between

specimens that produce different types of copulatory lovesongs. This acoustic signal may play

an important role in species recognition, acting as a reproductive barrier and reducing gene

flow [40, 65, 66]. These lovesongs are controlled by genes such as period (per) and cacophony
(cac). These genic regions are analyzed in the present study, since they play an important role

in species recognition.

Beyond the phenotypic and behavioral differences found in the Brazilian populations of Lu.

longipalpis, there are also differences considering the main component of sex pheromones. In

Brazil, the populations of Lu. longipalpis produce four different chemotypes (9-methylgerma-

crene-B, 3-methyl-α-himachalene, cembrene-1 and cembrene-2)[39, 68]. This fact is relevant

since there is evidence that members of the same species that produce different sex phero-

mones are reproductively isolated [68]. In Fig 3, we can observe that the distribution of the

clusters in our results coincides with the location of the different sex pheromone chemotypes

of Lutzomyia longipalpis in Brazil presented in the Spiegel et al. [39] research. Lu. longipalpis
populations of Recife (PE) and Fortaleza (CE) produce cembrene-1, whereas the populations

of São Borja (RS), Campo Grande (MS) and Miranda (MS) produce 9-methylgermacrene-B.

This fact could justify these clusters found in our results and be the factor responsible for the

reproductive isolation of the species.

Studying complex of species, such as Lu. longipalpis, we used genetic markers directly

involved in the speciation process. Therefore, we chose to amplify and analyze two nuclear

regions: the IVS6 region of the cacophony gene and the period gene. The IVS6 region of the

cacophony gene encodes the α-1 subunit of a voltage-dependent calcium channel. While the

gene period is involved in the circadian rhythm and controls the species-specific differences in

locomotor and mating activities [18, 19, 21].

The results obtained in studies of Lu. longipalpis complex using the per gene are consistent

with those obtained in studies of pheromones and copulatory lovesongs [12]. Bauzer et al. [18]

identified results that pointed to the existence of a species complex, since polymorphisms of

the per gene may result in reproductive isolation.

Lins et al. [25] demonstrated that the IVS6 region of the cac gene can be used as an excellent

molecular marker in population genetics studies, because this genomic region presents an

intron with high variability and divergence between species. Bottechia et al. [19] observed that

this region shows greater variability of gene flow than the per gene, suggesting that the IVS6

region may be more affected by introgression.

Another target of studies has been the mtDNa, as the 12S region, to evaluate the differentia-

tion of populations of the Lu. longipalpis complex. The mtDNA presents maternal origin,

evolves rapidly and does not recombine, being an adequate target to trace genealogy and
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evolutionary history. The 12S region of mtDNA was used by Beati et al. [24] when analyzing

genetically different species of the genus Lutzomyia of Colombia and Peru, and identified dif-

ferent species of the genus in those countries.

In our conception and according to our results, the claim of Souza, Brazil and Araki [38] is

correct when they affirm that there is no more doubt that the different populations of Lu. long-
ipalpis belong to a complex of species. This premise can be carry out after analyzing morpho-

logical and sexual pheromone studies [15, 16, 39, 68, 69], copulatory lovesongs [12, 40, 44, 65,

66, 70] and molecular analyzes [36, 37, 41, 42, 44, 45, 71].

Conclusions

Lutzomyia longipalpis genetic structure showed similar patterns according to the approach

used, since both PCA and DAPC identified three populations. Thus, the use of different

approaches to analyze clusters in population genetics was useful to provide a less biased data

evaluation.

Studies about the Lu. longipalpis complex genetic structures can provide details on popula-

tion differentiation and contribute to understand the processes of divergence and speciation,

mechanisms responsible for the heterogeneity of vector capacity and competence, as well as

vector susceptibility to infectious agents or insecticides. Thus, the evaluation of the population

genetics of this vector can help to plan control measures appropriate to the real conditions of

each transmission area of this important endemic in public health.
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Rio Grande do Sul, Brazil. Memórias do Instituto Oswaldo Cruz. 2009; 104: 1181–1182. https://doi.org/

10.1590/s0074-02762009000800017 PMID: 20140381
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