
TYPE Original Research

PUBLISHED 15 September 2022

DOI 10.3389/fmicb.2022.942179

OPEN ACCESS

EDITED BY

Min-Chi Lu,

China Medical University, Taiwan

REVIEWED BY

Jan Zrimec,

National Institute of Biology (NIB),

Slovenia

Yu-Wei Wu,

Taipei Medical University, Taiwan

*CORRESPONDENCE

Marketa Nykrynova

nykrynova@vut.cz

SPECIALTY SECTION

This article was submitted to

Evolutionary and Genomic

Microbiology,

a section of the journal

Frontiers in Microbiology

RECEIVED 12 May 2022

ACCEPTED 24 August 2022

PUBLISHED 15 September 2022

CITATION

Nykrynova M, Jakubicek R, Barton V,

Bezdicek M, Lengerova M and

Skutkova H (2022) Using deep learning

for gene detection and classification in

raw nanopore signals.

Front. Microbiol. 13:942179.

doi: 10.3389/fmicb.2022.942179

COPYRIGHT

© 2022 Nykrynova, Jakubicek, Barton,

Bezdicek, Lengerova and Skutkova.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Using deep learning for gene
detection and classification in
raw nanopore signals

Marketa Nykrynova1*, Roman Jakubicek1, Vojtech Barton1,

Matej Bezdicek2, Martina Lengerova2 and Helena Skutkova1

1Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication,

Brno University of Technology, Brno, Czechia, 2Department of Internal Medicine - Hematology and

Oncology, University Hospital Brno, Brno, Czechia

Recently, nanopore sequencing has come to the fore as library preparation is

rapid and simple, sequencing can be done almost anywhere, and longer reads

are obtained than with next-generation sequencing. The main bottleneck

still lies in data postprocessing which consists of basecalling, genome

assembly, and localizing significant sequences, which is time consuming

and computationally demanding, thus prolonging delivery of crucial results

for clinical practice. Here, we present a neural network-based method

capable of detecting and classifying specific genomic regions already in

raw nanopore signals—squiggles. Therefore, the basecalling process can be

omitted entirely as the raw signals of significant genes, or intergenic regions

can be directly analyzed, or if the nucleotide sequences are required, the

identified squiggles can be basecalled, preferably to others. The proposed

neural network could be included directly in the sequencing run, allowing

real-time squiggle processing.

KEYWORDS

nanopore sequencing, squiggles, neural network, MLST, bacterial typing

1. Introduction

DNA sequencing technologies revolutionized our ability to study genetic variations

at the molecular level, which is necessary for a broad spectrum of applications

from bacterial typing to cancer research. The introduction of the latest technology—

nanopore sequencing—was a major breakthrough (Kono and Arakawa, 2019). Nanopore

sequencing, unlike other methods, does not require DNA synthesis or amplification.

Library preparation is significantly more straightforward, and sequencing can be

performed practically anywhere (Hoenen et al., 2016; Castro-Wallace et al., 2017;

Johnson et al., 2017). The technology uses small pores located in a membrane to which a

voltage is applied. When the DNA strand passes through the pore, the electric current’s

changes are measured, and as a result, the current signal of the read called a “squiggle”

is obtained. Each base in the squiggle is described by a different number of samples

(measured values in time) as the speed of the strain passing through the pore is not

constant. An example of a squiggle is shown in Figure 1A.

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.942179
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.942179&domain=pdf&date_stamp=2022-09-15
mailto:nykrynova@vut.cz
https://doi.org/10.3389/fmicb.2022.942179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

FIGURE 1

Example of multiple gene prediction, (A) squiggle with labeled positions of gene (red) and random match (black), (B) graph of predicted gene in

squiggle, gene occurrence function is black, annotated position is red, (C) multiple sequence alignment of gapA template, gapA hit and

random match.

Besides the advantages of easy preparation and simple use,

nanopore sequencing also provides reads with lengths from tens

to hundreds of kilobase pairs (kbp), with a record of more

than 2 Mbp (Amarasinghe et al., 2020). However, the main

bottleneck in this technology lies in the low read accuracy,

which is improving with each chemistry update, yet still does

not compare with second-generation sequencers. Inaccuracies

also emerged during the basecalling process, where the squiggles

are converted to nucleotide sequences. The basecallers achieve

an average read accuracy of 85–95% (Wang et al., 2021),

which is insufficient for analyses such as single nucleotide

variant detection. Although using high genome coverage in post-

sequencing analysis, the consensus accuracy can be improved to

99.9% (Rang et al., 2018). If the basecalling process was bypassed

and an analysis of the raw squiggles was performed, the results

would be more precise and delivered in a shorter time as the

Oxford Nanopore Technologies MinION sequencing platform

allows real-time access to the sequencing run (Loose et al., 2016).

Thus, waiting for the whole run to finish would not be necessary,

and the crucial information could be analyzed almost in real-

time. As the squiggle analysis can be performed during the

sequencing itself, and the sequencing process can be stopped

based on the real-time outputs from the analytical software,

there is no need to use a flowcell’s whole sequencing capacity.

As mentioned above, the basecalling process has lower read

accuracy caused by several problems. Firstly, the change in

current deviation does not correspond to one nucleotide passing

through the nanopore, but approximately five nucleotides,

leading to 45 = 1,024 current levels (Lu et al., 2016). Moreover,

the number of possible current levels can be higher because

the 5-nucleotide step and the speed of the nucleotide strand

passing through the nanopore are not constant. Secondly, the

same bases can be chemically or epigenetically modified (e.g.,

5-methylcytosine) (Wick et al., 2019), and the whole signal

is also affected by noise. These complications mean that only

neural networks (NNs) are used for basecalling nowadays

(Wick et al., 2019). NNs have also found applications in other

parts of nanopore sequencing, such as selective sequencing.

An example of a tool used to determine whether to eject

the sequenced molecule or continue sequencing could be

SquiggleNet (Bao et al., 2021), which uses a convolutional neural

network learned from the reference organism’s sequencing data.

The classifier then decides the sequenced segment’s location

and whether to continue sequencing or eject the molecule.

Recently, NNs were also employed to distinguish mitochondrial

DNA from genomic DNA in squiggles during a sequencing

run (Danilevsky et al., 2022).

With NNs, it would be possible to identify specific genomic

regions in raw nanopore data without the need for basecalling,

as shown in the presented article. In particular, convolution

layers are very useful for automatic extraction of relevant

features in contrast to former approaches requiring manual

feature extraction, selection or reduction, and subsequent

classification. However, CNN-based features are indeed relevant

for the intended purpose, but their abstractness is high,

especially at higher network depths. In general, this is

a problem for the possibility of correctly interpreting or

understanding features related to the original input sequence.

Such feature analysis is a long-standing problem and has

been the research subject by some groups worldwide (like

Bastidas et al., 2021). Nevertheless, for the purpose of simple

gene detection and classification using a neural network, it

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

is useless to understand intermediate features in the part of

the network.

Using the proposed network, it is possible to find even

more genes or gene fragments once the neural network can

recognize and classify them. Unlike selective sequencing, the

whole genomes could be sequenced, but crucial epidemiological

information such as sequence type or presence of resistance

genes can be obtained during the run. The rest of the

sequencing data can then be processed for further analysis,

such as core genome MLST. The proposed NN was used to

predict and classify seven multilocus sequence typing (MLST)

loci (gapA, infB, mdh, pgi, phoE, rpoB, tonB) in 29 Klebsiella

pneumoniae genome squiggles. Raw squiggle analysis can bring

more precise information, as the epidemiological and chemical

modification can also be studied. In the future, distinguishing

bacterial strains could be done using only the signals with no

basecalling, providing crucial epidemiological information for

early outbreak identification.

2. Materials and methods

2.1. Analyzed bacterium

K. pneumoniae is a Gram-negative opportunistic

pathogen from the Enterobacteriaceae family. Usually, it

affects immunocompromised patients, and the majority

of K. pneumoniae infections are hospital-acquired. The

gastrointestinal tract colonization generally occurs before

nosocomial infections develop, which usually affect the urinary

tract, respiratory tract or result in septicemia or soft tissue

infection (Martin and Bachman, 2018; Choby et al., 2020).

The genome size of K. pneumoniae is about 5.5 Mbp and

incorporates about 5,000 to 6,000 genes from which 2,000 genes

form the core genome, and almost 30,000 genes are parts of the

pangenome (Wyres and Holt, 2016).

2.2. Genome sequencing

In this article, 29 K. pneumoniae isolates collected between

09/2014 and 07/2019, mainly at the Department of Internal

Medicine, Hematology and Oncology at the University Hospital

Brno, were analyzed. The high molecular weight DNA was

extracted using the MagAttract HMW DNAKit (Qiagen, Venlo,

NL), and the NanoDrop (Thermo Fisher Scientific, Waltham,

MA, USA) was employed to measure the purity of the

extracted DNA. The DNA concentration was checked by Qubit

3.0 Fluorometer (Thermo Fisher Scientific, Wilmington, DE,

United States) and using Agilent 4200 TapeStation (Agilent

Technologies, Santa Clara, CA, USA) the proper length of

the isolated DNA was checked. The Rapid Barcoding Kit

(Oxford Nanopore Technologies, Oxford, UK) was used to

prepare the sequencing library for 27 K. pneumoniae isolates.

For the remaining two isolates, the Ligation Sequencing 1D

Kit (Oxford Nanopore Technologies, Oxford, UK) was used

to prepare the library for Oxford Nanopore sequencing. The

sequencing was performed using the MinION sequencing

platform (Oxford Nanopore Technologies, Oxford, UK) with

R9.4.1 flowcells.

The sequenced genomes were basecalled and, in the

case of the pooled library, separated according to barcodes

using Guppy software (3.4.4+a296acb). The data quality was

checked using PycoQC (v2.2.3, Leger and Leonardi, 2019).

See Supplementary Table 1 for detailed information about each

sequencing run. The analyzed datasets can be found in

the National Center for Biotechnology Information Sequence

Read Archive database under a BioProject with accession

number PRJNA786743.

2.3. Neural network architecture

To sort out the task of enabling gene localization and

classification, some challenges had to be overcome. The main

problem was squiggles that were too long, moreover with

uneven sampling time. This distinctly increases computational

complexity and memory demands, and first and foremost,

causes a significant vanishing gradient (VG) effect during

training, especially for the recurrent nets. Further, conventional

neural networks cannot be applied to signals of different lengths,

and they require strictly the same input length.

The proposed NanoGeneNet can be divided into three basic

parts: feature extraction, gene localization (so-called a sequence-

to-sequence regime) and finally, gene classification with another

feature extraction (a sequence-to-vector regime). Using the

combination of convolution and recurrent networks turned out

to be a great solution for long and uneven signal lengths. For

more details on architecture design, see Figure 2.

The network was realized in Python 3.9 with the PyTorch

library. The source code for training, validation, and especially

feedforward for NanoGeneNet is available on GitHub along with

a demo and an example squiggle.

2.3.1. Local feature extraction with
downsampling

The encoder part of the net allows local features to be

extracted from the raw signal using a recursive repeating block.

As shown in Figure 2, the one block contains two convolution

layers (Conv) with a kernel size of 3 and depth of 16, doubled

in each recursion. The Conv layer is always followed by a

ReLU activation function, and the block ends with a batch

normalization layer and non-linear spatial reduction layer—

MaxPooling [2x2;2]. In the encoder part, the repeating blocks

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://github.com/JakubicekRoman/NanoGeneNet
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

FIGURE 2

Architecture of NanoGeneNet. Each encoder block contains two convolution layers (Conv) with a kernel size equal to 3, followed by ReLU

activation function and finally a Batch Normalization (BN) and a Maxpooling layer with size kernel and stride of 2. Network also includes two

Long Short-Term Memory (LSTM) recurrent networks and classification blocks composed of Fully Connected layers (FC), SoftMax activation

layers and a DropOut layer used only in the training phase. For each block, tensor size shown in the form of squiggle length x feature number,

where N is original squiggle length, M is its downsampled version length after first encoder and K is length after second one.

are connected in series. This encoder part occurs twice in

NanoGeneNet; the first time with four blocks and the second

time with three blocks.

The network part designed in this way provides a new

local feature signal reflecting the occurring or non-occurring

gene from an input signal (squiggle) with length N. Due to

the MaxPooling layer, there is a spatial reduction in the signal

length of M with a sub-sampling factor of 24 to decrease

computational complexity, while the only relevant features for

gene detection are retained during net feedforward. Since this

part of the network only views a very local part of the signal, the

following LSTM (Long Short-Term Memory) (Hochreiter and

Schmidhuber, 1997) network has the task of viewing the whole

signal globally and determining the local features for each signal

sample, considering all previous samples (long memory). The

output is then the tensor of local feature signals sized M × 256,

whereM is the length of the downsampled feature signals.

Due to a recurrent LSTM net, the input can be different

length signals and sub-sampling mildly suppresses the VG

effect and significantly decreases GPU memory demands.

The complete suppression of VG problem is performed by

multistage training.

2.3.2. Gene occurrence prediction

From the previous LSTM block (LSTM1), each sample of

the output tensor of length M (corresponding to downsampled

squiggle) is now encoded with a vector of 256 features. Its depth

is only one, thus it uses only one LSTM network containing

256 hidden neurons. The output tensor subsequently inputs

the two-class classification part. Here, two fully connected

(FC) networks with ReLU and Softmax activation function

can be used, respectively. The first FC layer (FC1) contains

512 neurons and the second layer FC2 contains only two

neurons. This part of the proposed NanoGeneNet classifies

each downsampled signal sample into two classes; gene or

non-gene. The output is tensor M × 2 defining probability

assignment to all classes. Since there are two classes, we can

use the probabilities of only the first class as an output gene

occurrence function. Examples of such functions are shown in

Figure 3.

2.3.3. Gene classification

In this part, the local feature tensor from the previous

encoder and LSTM is concatenated with the obtained likelihood

function and the resulting tensor is M × 257 in size. The

tensor is encoded into a new feature tensor of length K

corresponding with the feature import to classify gene types

via a second encoder block with a sub-sampling factor of

23 (second encoder). Then using another LSTM network

(LSTM2) with depth one and containing 512 neurons, the

new local feature tensor is transformed into another new

tensor (1 × 512) reflecting only the whole signal’s global

features to enable classification of the whole signal into

gene class. This task is performed via the last part of

NanoGeneNet—the multiclass classification network. It has

the same architecture as the previous 2-class net, except

that the last FC layer (FC4) has eight neurons followed by

SoftMax, enabling a one-hot coding of output class probabilities.

The final decision is based on the choice of class with the

maximal value.

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

FIGURE 3

Examples of gene detection, annotated positions are blue, gene occurrence functions are black and detected gene positions are red, (A) gene

was found correctly, (B) gene was not found, (C) gene was outside annotated borders, (D) gene was inside annotated borders, (E) gene was

shifted to right, (F) gene was shifted to left.

2.4. Network training details

2.4.1. Training and validation dataset

The available signal dataset was divided on the genome level

by hand to ensure data distribution consistency for training

and validation. For the validation dataset of each gene, all

randomly selected genome signals were selected to make up

something between 20 and 30% of the entire database. It cannot

be done exactly because each file contains a different number of

signals for specific genes within each genome. As the genome

includes the same gene sequence, all signals always within the

genome were used for training/testing; ignoring the uneven time

sampling, i.e., a non-linear scaling, which is taken as a kind of

augmentation useful for training.

2.4.2. Multistage approach

Generally, the VG problem is related to the signal length,

the longer the signal, the greater the effect of this problem.

Therefore, multistage training was proposed. In the first phase,

the first encoder with sub-sampling was pre-trained on shorter

signals. In each iteration, the current signal was randomly cut

with random termination and random length in a range of 20-80

thousand samples. In the case of gene signal occurrence, this cut

training signal always contained the whole gene. In this way, the

encoder and LSTM1 training were achieved with a minimal VG

problem. To derive a loss function during training, the two-class

classification was trained concurrently based on cut annotations

in this way.

In the second phase, the first encoder was additionally

retrained on the database containing the non-gene signals.

Finally, in this way, the pre-trained net (encoder, LSTM1 and

FC two-class net) was fine-tuned for signals with genuine length.

The same training strategy was also used for the second part of

NanoGeneNet, but in this case for an eight-class whole-signal

classification task and with its first part frozen.

2.4.3. Training parameters

All training dataset signals were randomly shuffled within

each new iteration, and all nets were trained from scratch.

As both tasks were defined as a classification with a class

probability estimation, a weighted cross-entropy was chosen as a

loss function. Further, an ADAM algorithm (Adaptive Moment

Estimation) (Kingma and Ba, 2014) was used as an optimization

algorithm, and the initialization Learning Rate (LR) was set

to 0.001, and the weight decay to 0.0001. During all stages of

training, the LR was manually changed (decreased) based on the

designer’s experiences. A batch size greater than one could only

be used in the first training stage, where the net worked with cut

signals; here, the batch size was 8, and a larger batch size resulted

in too much regularization. In the training phase, the Dropout

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

layer (Srivastava et al., 2014) worked with a probability of 50%.

Other hyperparameters were set by default in PyTorch, which

can be found in the shared source code on GitHub.

2.4.4. Hardware requirements

NanoGeneNet training was performed on a computational

device with Intel Xeon E5-2603v4, 16 GB RAM and nVidia Titan

Xp, 12 GB GDDR5 graphics card. The network was realized in

Python 3.9 with the PyTorch library. One stage of training took

around 2 h, and required up to 10 epochs for a sufficient training

determined by an already non-decreasing loss function of the

training and validation set under expert control.

The minimal hardware requirements depended on the

input squiggle length, where the above-mentioned device had

sufficient parameters to process our database. The prediction

and classification of a squiggle with median of length (143

thousand samples) took around 0.2 s in total. There is a linear

dependence between the signal length and computational time,

where the longest squiggle from our database (almost 4.5 million

samples) took around 4 s.

2.5. Gene coordinates detection in
predicted signals

The outputs from the first part were gene occurrence

functions determining the probability for each sample in the

downsampling signal being part of the gene. The positions of

the predicted gene were detected to evaluate the prediction

accuracy. In each gene occurrence curve, the peaks exceeding

a threshold of 0.9 were found and further analyzed as possible

target genes. The shortest possible distance between two peaks

was set to 100 samples; otherwise, the peaks were merged into

one. Boundaries where the gene occurrence curve exceeded 0.5

were located around possible gene peaks in the next step. Then

the gene boundaries were extended sample by sample to find a

precise prediction beginning and end. The samples were added

to the gene until the difference between the two adjacent samples

was higher than 0.1.

For each calculated gene’s coordinates, the dice coefficient

was calculated as

DSC =
2TP

(2TP + FP + FN)
, (1)

where TP was the number of samples correctly classified as gene,

the FP was the number of samples falsely labeled as gene, and

FN was the number of samples falsely labeled as not-gene. For

examples of dice calculation, including determination of TP, FP,

and FN samples, see Supplementary Figure 1. If just one peak

was observed in the signal, the dice was calculated for it. In

cases where more peaks were detected in the gene occurrence

function, the coefficient was calculated for each of them. For

gene prediction and detection evaluation, the detected gene

positions with the highest dice were selected.

3. Results

3.1. Analyzed genes

The seven MLST loci (gapA, infB, mdh, pgi, phoE, rpoB,

tonB) from BIGSdb (Jolley and Maiden, 2010) were chosen for

showing the proposed neural network’s performance. The first

allele from eachMLST gene was searched for in basecalled reads.

The median lengths of the locatedMLST genes were, on average,

4 bp shorter than the queries. Thus, most of the identified

genes contained almost the whole allele sequence. The analyzed

sequence variability was about 6.31% (Table 1). This variability is

caused mainly by the presence of other alleles from a given gene

in the dataset, as only one allele for each gene was searched for.

Based on these values, it can be said that the dataset is variable

enough to train the network to be able to recognize different

gene’s alleles.

3.2. Dataset preparation

Gene signals that could be used to train the neural network

and later validate its performance were obtained by the following

described process. BLAST (2.9.0+, Camacho et al., 2009) was

employed to localize sequences of interest. The fast5 files

containing basecalled fastq sequences were used to prepare the

signal database. Then, the gene templates were examined in

basecalled data, and results (hits) were saved in CSV format.

In addition, the whole squiggles containing the gene sequences

were extracted and saved in an internal h5 format, so they could

be swiftly accessible and easily modified.

If more genomes were sequenced in one run, the BLAST

results contained hits for all genomes from a particular run.

To assign barcodes to the hits, demultiplexing tables were

created for sequencing runs where barcoding kits were used. The

outputs from the Guppy barcoder were used for this purpose.

Each created table contained all reads ID from the sequencing

run and their corresponding barcodes; so, it was possible to add

sample identification to the hits in the BLAST table.

The BLAST results were filtered to remove random and

partial hits. For further processing, only the hits with a

percentage of identical matchesmore significant or equal to 90%,

the length at least 90% of query length, and the e-value lower or

equal to 1e-50 were chosen. The searched sequences were found

on both the leading and complementary strands.

In the last signal extraction step, the gene sequences’ BLAST

coordinates were recalculated to signal coordinates. Thus, a

dataset containing squiggles with desired genes was created.

To each squiggle, the gene signal coordinates were added. The

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://github.com/JakubicekRoman/NanoGeneNet
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

TABLE 1 Statistics about seven analyzed MLST loci.

Query allele
length [bp]

Number of alelles
in dataset

Identified gene
median length [bp]

Variability
of identified gene [%]

gapA 450 4 446 6.35

infB 318 6 314 5.57

mdh 477 5 471 6.14

pgi 432 7 428 6.32

phoE 420 11 415 6.59

rpoB 501 7 499 5.81

tonB 414 14 409 7.40

TABLE 2 Percentages of identified or non-identified MLST loci.

[%] gapA infB mdh pgi phoE rpoB tonB

Gene found 99.04 98.41 97.51 96.08 98.88 98.98 98.61

Gene not found 0.96 1.59 2.49 3.92 1.12 1.02 1.39

neural network should also recognize squiggles without genes;

therefore, datasets with no genes were created.

For preprocessing the raw sequencing fast5 files and dataset

preparation, the internally developed MANASIG (Barton et al.,

2021) package was used and is available on GitHub.

3.3. Signals for training/validating neural
network

In total, 48,860 squiggles from which 38,867 contained

one of the seven housekeeping genes fragments were analyzed.

The length of squiggles with genes ranged from 4,362 to

4,477,607 samples with a median of about 142,869 samples.

The median gene fragment lengths were 4,815 (gapA), 3,417

(infB), 5,197 (mdh), 4,643 (pgi), 4,586 (phoE), 5,387 (rpoB), and

4,565 (tonB) samples. The number of signals with no genes was

9,993 and their lengths varied from 2,008 to 1,411,573 samples

with a median value of 24,408 samples. These squiggles were

randomly generated from the seven sequencing runs. For a

detailed number of squiggles from each analyzed genome, see

Supplementary Table 2.

For neural network training, about 75% of all squiggles were

used, and the rest were used to validate NN performance.

3.4. Gene detection in squiggles

From the validation dataset, 41 squiggles with corrupted

gene coordinates, where the metadata and raw data did

not match, were removed. In total, 11,887 squiggles were

used for validation, of which 2,000 had no gene sequences.

The representation of individual genes in the dataset was

as follows: gapA—1,671, infB—1,570, mdh—1,644, pgi—1,659,

phoE—1,160, rpoB—1,179, and tonB—1,004.

The gene predictions in the downsampled squiggles

containing any genes of interest were classified into two

categories—a gene found, and a gene not found. To evaluate,

the calculated dice coefficients were used. On average, the

detection success rate was about 98%; see Table 2 for specific

values. The gene found category was further split into the other

two subgroups—the gene was found correctly (dice ≥ 0.9),

or the gene was shifted. If the predicted gene was labeled as

shifted, four variants could be observed—the detected part was

inside/outside the annotated borders or shifted before/beyond

the start/end of the gene. Examples of all possible gene detection

cases are shown in Figure 3, and squiggle percentages in the

given categories can be seen in Table 3. The prediction with dice

greater than or equal to 0.9 differed from the annotation position

by, on average, about ten samples. Predictions with lower

dice consisted mainly of genes shifted beyond the annotated

gene start and end, and from predictions inside annotated

gene boundaries.

In the case of squiggles with no genes, predictions with dice

equal to one were marked as correct. In total, 96.6% of squiggles

without any genes were successfully recognized, and no gene was

detected in them.

3.5. Gene squiggles classification

The squiggles from the validation dataset were classified via

the proposed neural network into eight categories, where seven

categories were for analyzed genes, and the last one was for the

squiggles with no gene. For each squiggle, the probabilities that

the gene belongs to a given category were established. From

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://github.com/VojtechBarton/Manasig
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

TABLE 3 Percentages of identified MLST loci included shifted genes.

[%] gapA infB mdh pgi phoE rpoB tonB

Gene was found correctly 95.75 93.50 94.71 90.84 93.71 95.17 94.62

Gene was shifted 3.29 4.90 2.80 5.24 5.18 3.82 3.99

- Outside annotated borders 0.06 0.25 0.18 0.48 0.09 0.17 0.60

- Inside annotated borders 1.38 1.34 1.58 2.29 1.81 1.27 1.20

- Shifted beyond gene start/end 1.68 3.31 0.97 2.35 3.10 2.29 2.19

- Shifted before gene start/end 0.18 0.00 0.06 0.12 0.17 0.08 0.00

FIGURE 4

Confusion matrix for MLST loci classification results with calculated true positive rates (TPR), false negative rates (FNR), positive predictive values

(PPV), and false discovery rates (FDR).

these values, the maximum was chosen, and the squiggles were

assigned to a given category.

The squiggles with no MLST genes were correctly classified

in 99.80% of cases and only four squiggles were misclassified.

The true positive rate (TPR) of gene classification was about

94.67% for five out of seven MLST loci. In the case of pgi, the

TPR dropped to 87.64% and in the case of mdh to 83.33%. See

the detailed results in Figure 4.

The confusion matrix shows the true positive rate, which is

the highest for the squiggles with no detectable gene and in the

case of MLST genes, the highest value of 95.76% is for rpoB gene.

In general, the normalized true positive value for all MLST genes

was 92.04%; if squiggles without genes are included, the average

true positive rate is even higher, at 93.01%.

On the other hand, the false discovery rate (FDR) was the

highest for the squiggles without genes. The difference between

the average false discovery rate for the squiggles with and

without genes is 13.65%. It can be concluded that there is a

much higher rate of not identifying the gene than identifying

it incorrectly.

4. Discussion

A comparison of detected and annotated gene coordinates

(see Figure 5) and their overlaps was conducted. The results

showed that they came from the same statistical distribution.

The neural network tended to identify the genes a bit longer

than annotated. This phenomenon can be caused by the signal

length irregularity in the same sequence. Also, the signals

were downsampled for the neural network. This pre-processing

and the need to recompute the positions of genes to the

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

FIGURE 5

Comparison of annotated gene signal length and gene signal length identified by the neural network, graph is shown without flyers for clearness.

original space signal can cause some variations in the genes’

signals lengths.

The sequencing data are stored in the fast5 format,

which is based on hdf5 format. However, hdf5 is not fully

backwards compatible; the hierarchical structure can change

with every new nanopore chemistry or software upgrade, and

no complex descriptions about the fast5 nanopore format

and its modification exist. For this reason, our proposed

package for fast5 file processing can be used with R9.4.1

flowcells, two sequencing kits (SQK-RBK004, SQK-LSK109) and

nanopore MinKNOW v19 and v20 sequencing software; with

other versions, it might be necessary to modify the package.

Completely new chemistry can also influence signal properties

such as squiggle lengths, and in that case, new neural network

training would be needed. Also, the neural network may not

work correctly if the squiggle lengths in the training/validating

dataset contain outliers such as extremely long ones.

During the gene coordinates’ detection in predicted signals,

it was found that gene occurrence functions sometimes

contained more than just one peak exceeding a specified

threshold, as shown in Figures 1A,B. Multiple predictions were

observed in 3.81% squiggles from the validation dataset, and

in the majority of cases (more than 90%), two peaks were

predicted. After detecting peak coordinates, the corresponding

basecalled nucleotide sequences were analyzed. It was found out

that the false positive predictions contained sequences with a

partial match to the desired gene, see Figure 1C. Nevertheless,

the partial matches were significantly shorter than the examined

sequences; therefore, they could be filtered in postprocessing.

However, there could be a problem with setting the filter

parameters because the partial matches may have a different

numbers of samples in the squiggles as the speed of DNA passing

through the pore is not constant and the sampling is non-

equidistant. This mentioned multiple detection problem could

be solved if the genes or other specific sequences we wanted

to search for are unique and non-repetitive in the analyzed

bacterial species. On the other hand, from multiple detection

results, it can also be said that the neural network could find

even short signals that corresponded to several dozen base pair

long sequences, such as parts of genes. In addition, it could

recognize the squiggles even if there were many mutations; thus,

the network can be used to predict and classify even highly

variable genomic regions.

If more than one gene is located in the analyzed squiggle,

it could cause a problem for proper neural network function.

Multiple gene presence may occur if long squiggles are produced

during the sequencing process. To avoid this problem, genomic

regions we wanted to detect should be carefully selected. The

first option is to choose genes that have sufficient distance from

each other in the analyzed species. The second option is to pre-

process the squiggles before sending them into a neural network.

Signals longer than a given threshold can be divided into several

shorter signals, ensuring that only one targeted region will be

present in each signal.

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

In a future project phase, it will be desirable to perform

a more detailed analysis of the proposed model’s behavior

on newly acquired real squiggles. Using time-consuming

experiments, it will be possible to observe which parts of the

squiggles are crucial for gene localization or classification related

to the biological nature of these signal parts. In addition,

other more sophisticated tools for analyzing machine learning

models, e.g., (Ancona et al., 2018), can be used. Based on the

initial insights gained during the model design and learning

with augmentation, it can be concluded that, for example, for

gene localization, the unidirectional LSTM network is strongly

dependent on the presence of the initial part of the gene

sequence being searched. Experimentally, it has been found that

after replacing the entire gene part with a randomly selected

non-gene signal, the network is still able to localize the gene

successfully but, naturally, does not classify it correctly. Thus,

the network uses complex information, especially from the part

immediately before the gene segment, and the information in the

region of the searched gene is irrelevant. On the other hand, the

information in the localized gene part is crucial for classification

due to the proposed architecture.

5. Conclusion

This paper presented a deep learning method to identify and

classify specific genomic regions in raw nanopore sequencing

data. The proposed neural network can be used to find whole

genes, their parts or intergenic regions. We showed one of the

possible neural network uses—detecting and classifying seven

MLST loci in K. pneumoniae genomes in squiggles.

The percentage of correctly predicted genes was 98.2%, and

they were successfully classified in 92.9% cases. The squiggles

with no MLST loci were correctly predicted in 96.6% and

classified in 99.8% cases. The NN achieved the same accuracy

as basecalling tools, and if postprocessing was employed, the

accuracy could be even higher.

The main requirement of the proposed approach for gene

prediction and classification is a large amount of data to train the

neural network. Without sufficient data, the network would not

be adequately trained, and precise results could not be obtained.

From the study, it can also be said that the genomic regions

detected via the neural network should be unique, non-repetitive

sequences of any length and should be located in the analyzed

genomes with sufficient distances between them.

Nanopore sequencing has huge potential in routine clinical

practice. It can be used instead of time consuming NGS to

deliver crucial epidemiology information earlier. For example,

if there is a need to analyse samples from one hospital

department to find out if there is an outbreak or not, if an

infection is spreading via instruments, patients or medical

staff, nanopore sequencing can be employed. NGS analysis

would consist of library preparation, sequencing, and in silico

sequence type determination from post-processed sequencing

data, which can take 2–3 days while the potential epidemic

spreads uncontrollably. The results could be delivered the same

morning if nanopore sequencing combined with the proposed

NN is employed. The squiggles containing MLST loci can be

recognized during a run or immediately after it and analyzed. If

more genomes are sequenced in one run, the barcodes attached

to MLST squiggles can be used to find out which, e.g., gapA loci

belongs to which genome.

The network can be trained to recognize different significant

sequences. Hence, the proposed approach can be used for

other purposes, such as direct clinical sample sequencing.

Thus, cultivation is not needed, which significantly shortens

the time for obtaining the results. The network can be

trained for various analyses such as filtering out the human

sequences, identifying MLST loci and determining infectious

agents’ sequence types, spa-typing of Staphylococcus aureus or

K typing of K. pneumoniae strains, and other bacterial strain

typing schemes. Moreover, phenotype prediction and, therefore,

targeted administration of antimicrobials can be made in a very

short time due to the absence of the basecalling step. Microbial

species identification is also possible using the network with an

appropriate squiggle database.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found below: https://www.ncbi.

nlm.nih.gov/, PRJNA786743.

Author contributions

MN, VB, and HS contributed to the conception and

design of the study. MN and VB created and implemented

the algorithm for fast5 processing and evaluated the results.

RJ designed and implemented the neural network. ML and

MB ensured the biological aspects of the project. MN and

RJ wrote the manuscript. All authors read and approved the

final manuscript.

Funding

This work has been supported by grant FEKT-K-21-6912

realized within the project Quality Internal Grants of BUT

(KInG BUT), Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016948,

which is financed from the OP RDE. Collecting, processing,

storing and sequencing of all bacterial isolates used in this study

was supported by the Ministry of Health of the Czech Republic,

Grant No. NV19-09-00430, all rights reserved.

Frontiers inMicrobiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nykrynova et al. 10.3389/fmicb.2022.942179

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.

2022.942179/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Examples of dice coe�cient calculation.

SUPPLEMENTARY TABLE 1

Sequencing runs information.

SUPPLEMENTARY TABLE 2

Number of squiggles containing given MLST locus for each analyzed

genome and number of squiggles with no MLST genes for given

sequencing run.

References

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil,
Q. (2020). Opportunities and challenges in long-read sequencing data analysis.
Genome Biol. 21, 30. doi: 10.1186/s13059-020-1935-5

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. (2018). “Towards better
understanding of gradient-based attribution methods for deep neural networks,” in
6th International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings (Vancouver, BC), 1–16.

Bao, Y., Wadden, J., Erb-Downward, J. R., Ranjan, P., Zhou, W., McDonald, T.
L., et al. (2021). SquiggleNet: real-time, direct classification of nanopore signals.
Genome Biol. 22, 298. doi: 10.1186/s13059-021-02511-y

Barton, V., Nykrynova, M., and Skutkova, H. (2021). “MANASIG: Python
package to manipulate nanopore signals from sequencing files,” in 2021 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM) (Houston, TX:
IEEE), 1941–1947. doi: 10.1109/BIBM52615.2021.9669821

Bastidas, O. J., Garcia-Zapirain, B., Totoricaguena, A. L., Zahia, S., and
Carpio, J. U. (2021). “Feature analysis and prediction of complications in
ostomy patients based on laboratory analytical data using a machine learning
approach,” in 2021 International Conference BIOMDLORE (Vilnius: IEEE), 1–8.
doi: 10.1109/BIOMDLORE49470.2021.9594427

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.,
et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
doi: 10.1186/1471-2105-10-421

Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H.,
McIntyre, A. B. R., et al. (2017). Nanopore DNA sequencing and genome assembly
on the international space station. Sci. Rep. 7, 18022. doi: 10.1101/077651

Choby, J. E., Howard-Anderson, J., and Weiss, D. S. (2020). Hypervirulent
Klebsiella pneumoniae–clinical and molecular perspectives. J. Internal Med. 287,
283–300. doi: 10.1111/joim.13007

Danilevsky, A., Polsky, A. L., and Shomron, N. (2022). Adaptive sequencing
using nanopores and deep learning of mitochondrial DNA. Brief Bioinform. 23.
doi: 10.1093/bib/bbac251

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hoenen, T., Groseth, A., Rosenke, K., Fischer, R. J., Hoenen, A., Judson, S. D.,
et al. (2016). Nanopore sequencing as a rapidly deployable ebola outbreak tool.
Emerg. Infect. Dis. 22, 331–334. doi: 10.3201/eid2202.151796

Johnson, S. S., Zaikova, E., Goerlitz, D. S., Bai, Y., and Tighe, S. W.
(2017). Real-time DNA sequencing in the Antarctic dry valleys using the

Oxford nanopore sequencer. J. Biomol. Tech. 28, 2–7. doi: 10.7171/jbt.17-28
01-009

Jolley, K. A., and Maiden, M. C. (2010). BIGSdb: scalable analysis of
bacterial genome variation at the population level. BMC Bioinformatics 11, 595.
doi: 10.1186/1471-2105-11-595

Kingma, D. P., and Ba, J. (2014). “ADAM: amethod for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings (San Diego, CA), 1–15.

Kono, N., and Arakawa, K. (2019). Nanopore sequencing: review of
potential applications in functional genomics. Dev. Growth Diff. 61, 316–326.
doi: 10.1111/dgd.12608

Leger, A., and Leonardi, T. (2019). pycoQC, interactive quality
control for Oxford nanopore sequencing. J. Open Source Softw. 4, 1236.
doi: 10.21105/joss.01236

Loose, M., Malla, S., and Stout, M. (2016). Real-time selective sequencing using
nanopore technology. Nat. Methods 13, 751–754. doi: 10.1038/nmeth.3930

Lu, H., Giordano, F., and Ning, Z. (2016). Oxford nanopore MinION
sequencing and genome assembly. Genomics Proteomics Bioinform. 14, 265–279.
doi: 10.1016/j.gpb.2016.05.004

Martin, R. M., and Bachman, M. A. (2018). Colonization, infection, and the
accessory genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 8, 4.
doi: 10.3389/fcimb.2018.00004

Rang, F. J., Kloosterman, W. P., and de Ridder, J. (2018). From squiggle to
basepair: computational approaches for improving nanopore sequencing read
accuracy. Genome Biol. 19, 90. doi: 10.1186/s13059-018-1462-9

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958. doi: 10.5555/2627435.2670313

Wang, Y., Zhao, Y., Bollas, A., Wang, Y., and Au, K. F. (2021). Nanopore
sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39,
1348–1365. doi: 10.1038/s41587-021-01108-x

Wick, R. R., Judd, L. M., and Holt, K. E. (2019). Performance of neural
network basecalling tools for Oxford nanopore sequencing. Genome Biol. 20, 129.
doi: 10.1186/s13059-019-1727-y

Wyres, K. L., and Holt, K. E. (2016). Klebsiella pneumoniae population
genomics and antimicrobial-resistant clones. Trends Microbiol. 24, 944–956.
doi: 10.1016/j.tim.2016.09.007

Frontiers inMicrobiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2022.942179
https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full#supplementary-material
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1186/s13059-021-02511-y
https://doi.org/10.1109/BIBM52615.2021.9669821
https://doi.org/10.1109/BIOMDLORE49470.2021.9594427
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1101/077651
https://doi.org/10.1111/joim.13007
https://doi.org/10.1093/bib/bbac251
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3201/eid2202.151796
https://doi.org/10.7171/jbt.17-2801-009
https://doi.org/10.1186/1471-2105-11-595
https://doi.org/10.1111/dgd.12608
https://doi.org/10.21105/joss.01236
https://doi.org/10.1038/nmeth.3930
https://doi.org/10.1016/j.gpb.2016.05.004
https://doi.org/10.3389/fcimb.2018.00004
https://doi.org/10.1186/s13059-018-1462-9
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1038/s41587-021-01108-x
https://doi.org/10.1186/s13059-019-1727-y
https://doi.org/10.1016/j.tim.2016.09.007
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	Using deep learning for gene detection and classification in raw nanopore signals
	1. Introduction
	2. Materials and methods
	2.1. Analyzed bacterium
	2.2. Genome sequencing
	2.3. Neural network architecture
	2.3.1. Local feature extraction with downsampling
	2.3.2. Gene occurrence prediction
	2.3.3. Gene classification

	2.4. Network training details
	2.4.1. Training and validation dataset
	2.4.2. Multistage approach
	2.4.3. Training parameters
	2.4.4. Hardware requirements

	2.5. Gene coordinates detection in predicted signals

	3. Results
	3.1. Analyzed genes
	3.2. Dataset preparation
	3.3. Signals for training/validating neural network
	3.4. Gene detection in squiggles
	3.5. Gene squiggles classification

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


