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Interferons (IFNs) are a family of cytokines with the unique ability to induce cell intrinsic
programs that enhance resistance to viral infection. Induction of an antiviral state at the
cell, tissue, organ, and organismal level is performed by three distinct IFN families,
designated as Type-I, Type-II, and Type-III IFNs. Overall, there are 21 human IFNs, (16
type-I, 12 IFNas, IFNb, IFNϵ, IFNk, and IFNw; 1 type-II, IFNg; and 4 type-III, IFNl1, IFNl2,
IFNl3, and IFNl4), that induce pleotropic cellular activities essential for innate and
adaptive immune responses against virus and other pathogens. IFN signaling is initiated
by binding to distinct heterodimeric receptor complexes. The three-dimensional
structures of the type-I (IFNa/IFNAR1/IFNAR2), type-II (IFNg/IFNGR1/IFNGR2), and
type-III (IFNl3/IFNlR1/IL10R2) signaling complexes have been determined. Here, we
highlight similar and unique features of the IFNs, their cell surface complexes and discuss
their role in inducing downstream IFN signaling responses.
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INTRODUCTION

IFNs were discovered more than 60 years ago (1957) as substances that protect cells from viral
infection (1, 2). Based on their sensitivity to pH, IFNs were designated as either type-I (pH stable) or
type-II (pH sensitive) (2, 3). Characterization of their distinct amino acid sequences and crystal
structures (4, 5) (6–8) further validated the classification of IFNa/b and IFNg as type-I and type-II
IFNs, respectively. The type-I family expanded (9) to include 12 IFNas (10–13) encoded by 13 genes
(IFNa1/13 encode the same protein), IFNb, IFNϵ (14), IFNk (15), and IFNw (16). Genome analysis
in 2003 identified a new type-III IFN family (IFNls) (17, 18), which by sequence and subsequent
structure analysis (19) were similar to IL10 family cytokines (12, 20–22), in particular IL-22 (23, 24).
With the discovery of IFNl4 in 2013 (25), a total of 21 IFNs (Table 1) exhibit not only antiviral
activity, but anti-tumor actions, and the ability to modulate the adaptive immune response.

The pleotropic biological activities of the three IFN families are initiated by binding and
subsequent assembly of heterodimeric receptor complexes on the cell membrane (Table 1). The 16
type-I IFNs bind and signal through the IFNAR1 and IFNAR2 receptor complex, type-II IFNg binds
to IFNGR1 and IFNGR2 chains, and the type-III IFNs signal through IFNlR1 and IL-10R2 receptor
chains. Each receptor heterodimer consists of a high affinity receptor chain (e.g., IFNAR2, IFNGR1,
IFNlR1) and a low IFN affinity receptor chain (IFNAR1, IFNGR2, IL10R2). The high and low
affinity receptors exhibit nM and µM/mM affinity, respectively, for their cognate IFNs (26–30).
Despite variable affinities, the high and low affinity type-I and type-II receptors are specific for their
cognate IFN family members. In contrast, IFNlR1 is specific for type-III IFNl family members, but
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Walter Structural Biology of IFN Receptor Complexes
the low affinity IL-10R2 chain is a shared receptor that also
participates in IL10, IL22, and IL26 signaling complexes (12,
31–33).

IFN receptor complex formation activates Janus kinases
(JAKs) that initiate IFN-mediated intracellular signaling
cascades (34–38). The JAKs constitutively associate with the
intracellular domains (ICDs) of the IFN receptors through non-
covalent interactions (Table 1). Type-I and type-III IFN
receptors use the same JAKs for signal transduction. The high
affinity IFNAR2 and IFNlR1 receptors associate with JAK1,
while low affinity IFNAR1 and IL10R2 associate with TYK2. In
contrast, type-II IFNGR1 and IFNGR2 associate with JAK1 and
JAK2, respectively (39, 40). The ICDs of the low affinity receptors
are 69–100 amino acids long and their main purpose appears to
be to bind their respective kinases for activation upon receptor
complex formation. The high affinity receptor ICDs range from
223 to 271 amino acids in length and contain multiple tyrosine
residues that upon phosphorylation by the JAKs, recruit STATs
that become phosphorylated themselves, and translocate to the
nucleus where they activate interferon-stimulated genes (ISGs)
(40, 41). In addition to using the same JAKs, type-I and type-III
IFNs induce the same STAT1/STAT2/IRF9, ISGF3 transcription
complex (40–42). IFNg activates phospho-STAT1 homodimers,
but not ISGF3, which is reflected in the ~1,000-fold lower anti-
viral activity of IFNg compared to the type-I and type-III IFNs
(43, 44). In addition to activating distinct intracellular signaling
pathways, type-I/III IFNs are produced in cells upon viral
infection, or infection by other pathogens, through pattern
recognition receptor pathways, including RIGI, MDA7, PKR,
TLR3, TLR7, TLR9, and STING (40, 45–48). In contrast, type-II
IFNg is produced predominantly by antigen-activated T
lymphocytes (39). Thus, type-I/III IFNs are products of innate
immune system, designed to establish direct and immediate
antiviral states in cells, yet can also modulate adaptive immune
responses. Type-II IFNg is itself a product of adaptive immunity
that acts on cells of innate immunity, notably macrophages. As a
potent macrophage activator, IFNg is essential for combating
mycobacteria and other intracellular pathogens (49, 50). IFNGR1
deficiencies in individuals are associated with mycobacterial
infections, while individuals with IFNAR2, or IFNAR1,
deficiencies have had life threatening illness following
vaccination with mumps, measles, and rubella (MMR) vaccines
(51, 52). Together, these data highlight the distinct roles of these
IFNs in controlling different pathogens.
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While there is only one IFNg, it is remarkable that humans
encode 16 different type-I and 4 type-III IFNs that induce the
same fundamental ISGF3-mediated anti-viral program in cells
(17, 18, 53, 54). The necessity of this remarkable arsenal of IFNs
to combat virus, and other pathogens (55–58), remains an area of
intense investigation. Given the complexity of IFN signaling, this
review describes the fundamental structural organization of each
IFN receptor complex in generating IFN signaling responses.
The main emphasis is to define how structure impacts IFN-IFN
receptor affinity, specificity, and the role of the overall
architecture of the complex to position receptor ICDs for
intracel lular JAK/STAT act ivat ion and subsequent
cellular activity.

Structures of the Type-I, Type-II,
and Type-III IFNs
All IFNs adopt a-helical structures with unique up-up-down-
down topology (21), relative to other a-helix bundle proteins
(Figure 1). Each IFN consists of six secondary structural
elements, denoted A-F, of which helices A, C, D, and F form
an anti-parallel four helix bundle. Loop elements B and E exhibit
more variable secondary structures, ranging from additional
helices to extended segments that pack against the edge of the
four-helix bundle (helices A, C, D, and F). The a-helices of the
Type-I IFNs are long, straight, and essentially parallel to one
another (Figure 1A). Despite considerable sequence diversity
(35%–95%), all 16 IFNs adopt the same a-helical structure (4, 5,
59–63). In contrast to type-I IFNs, type-III IFNs are comprised of
shorter helices that contain several kinks, which form a more
compact bundle (Figure 1B). As a result, type-III IFNs adopt
structures that are more similar to the IL-10 family cytokine IL-
22 than to type-I IFNs (12, 19, 23, 24, 64). This is interesting
from a functional perspective since IL-22 induces anti-bacterial
activity in the gut and skin through a tissue-restricted receptor
complex of IL22R1 and IL10R2 (22, 32, 65–70). Thus, IFNls and
IL-22 control viral and bacterial challenges, respectively, at
barrier surfaces (22, 64, 71). As a “mucosal IFN”, IFNls have
been promoted as an optimal drug to treat respiratory viruses,
such as Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), which causes COVID-19 (72). However, IFNl
signaling in mice prevents lung epithelial repair, leading to
bacterial superinfections (73, 74). Other studies suggest type-I
IFNs, not IFNls, might be most efficacious and safe in treating
SARS-CoV-2 (75). Overall, these studies highlight the
TABLE 1 | IFN families and their receptor complexes.

High Affinity Receptor Low Affinity Receptor IFNs

Type-I IFNs IFNAR2 IFNAR1 IFNa1/13*, IFNa2, IFNa4, IFNa5, IFNa6, IFNa7, IFNa8,
IFNa10, IFNa14, IFNa16, IFNa17, IFNa21, IFNb, IFNϵ,
IFNk, IFNw

JAK1 TYK2
Type-II IFNs IFNGR1 IFNGR2 IFNg

JAK1 JAK2
Type-III IFNs IFNLR1 IFNl1, IFNl2, IFNl3, IFNl4

IL10R2 IFNl1, IFNl2, IFNl3, IFNl4, IL10, IL22, IL26
JAK1 TYK2
N
ovember 202
0 | Volume 1
1 | Article 6
*IFNa1/13 encode the same amino acid sequence [(see 9)].
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Walter Structural Biology of IFN Receptor Complexes
complexity of IFN signaling at barrier surfaces and differences in
IFN signaling outcomes in mice vs. humans.

In contrast to the monomeric type- I and type-III IFNs, IFNg
adopts an intercalated dimer structure, where helices E and F
from one chain are “swapped” with the other subunit of the
dimer (Figure 1C). Like the IFNls, the structure of IFNg is most
similar to IL10, which is the founding member of the IL-10
cytokine family (12, 21, 32, 76–78). These data confirm that each
IFN family adopts a distinct a-helical scaffold, which must
“handle” various amounts of sequence variation to regulate
engagement of their cellular receptors. For example, there is
one highly conserved type-II IFNg dimer, whereas there are 16
monomeric type-I IFNs (35%–95% sequence identity) and 4
type-III IFNs (28%–96% sequence identity) that exhibit variable
amino acid sequence identities. This highlights the distinct
mechanisms used by each IFN family to regulate biological
Frontiers in Immunology | www.frontiersin.org 3
activity. Receptor homodimerization by IFNg, versus variable
IFN/IFN-receptor contacts by monomeric type-I and type-III
IFNs. These mechanisms will be reviewed in more detail below.

The Type-III IFNl/IFNlR1/IL10R2 Complex
The type-III IFNl receptor complex (79) exhibits the simplest
architecture of the three IFN families. Monomeric IFNls
assemble 1:1:1 signaling complexes with high affinity IFNlR1
and low affinity IL10R2 receptors (Figure 2A). IFNlR1 and
IL10R2 both consist of two b-sandwich domains (D1, D2), where
the D2 domains are positioned closest to the membrane. IFNlR1
binds to the IFNls using five receptor loops (L2-L6) that are
located at the junction of the D1 and D2 domains. The IFNlR1
binding loops contact IFNl residues located on helix A, the AB
loop, and helix F. Although differing in detail, the high affinity
IFNl/IFNlR1 site-1 binding site is conserved with type-I and
A B C

FIGURE 2 | Structures of the IFN Receptor Complexes. Ribbon diagrams of the type-III (A), pdbid = 5T5W, type-II (B), pdbid = 6E3K, and type-I (C), pdbid =
3SE4, receptor complexes. IFNs are rainbow colored as described in Figure 1. The b-strands of the high affinity receptor chains are colored green and low affinity
chains are colored magenta. For the type-II IFNg receptor complex, only one IFNg subunit is shown to emphasize the similarity of “half” of the complex with the type-
III IFN receptor complex. The separation of the C-termini of the type-III IFNlR1/IL-10R2 and type-II IFNGR1/IFNGR2 receptor chains, where they enter the
membrane are 30Å and 22Å, respectively. A D2-D4 interaction was not observed in structures of the IFN/IFNAR1/IFNAR2 complex.
A B

C

FIGURE 1 | Structures of IFN family members. Schematic, and ribbon diagrams, show the six secondary structural elements of the type-I (A), pdbid = 1AU, type-III
(B), pdbid = 3HHC, and type-II (C), pdbid = 6E3K IFNs. IFN structures are rainbow colored from the N-terminus helix A (blue) to the C-terminal helix F (red).
November 2020 | Volume 11 | Article 606489
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type-II high affinity receptor complexes (Figure 2). The low
affinity IL10R2 binding site-2 consists of N-terminal IFNl
residues, prior to the start of helix A (e.g., the pre-A region
(80), also see Figure 3A), residues on helix C, and on the segment
of helix D that runs parallel to the pre-A region. IL10R2 uses a
subset of the same loops used by IFNlR1 (loops L2, L3, and L5)
to contact IFNl. Thus, the IFNl-IL10R2 site-2 interface is
discontinuous, making a smaller L2/helix D contact (site-2a)
and a larger interaction between L3/L5 and IFNl pre-A and helix
D (Site 2b).

In addition to IFNl-IL10R2 site-2 contacts, IL10R2 forms an
additional D2-D2 site-3 interface with IFNlR1. Thus, the
complete IL10R2 binding site is only formed once IFNl binds
to IFNlR1. This structural organization ensures IFNl receptor
complex formation is cooperative, where the IFNl/IFNlR1
complex forms first, followed by binding of IL10R2 to site-2
and site-3. Once formed, the assembled IFNl complex positions
the C-terminal ends of IFNlR1 and IL10R2 30Å apart from one
another, prior to entering the membrane. The combined site-2
and site-3 interfaces bury over 1,500Å (2) of surface area, which
is more than twice the surface area buried in the high affinity
IFNl3/IFNlR1 site-1 interaction. However, despite this
extensive interface, there are few energetically critical
interactions. Thus, the affinity of IL-10R2 for the IFNl3/
IFNlR1 complex (e.g., site-2 + site-3) is 15 µM (79), which is
~15× lower than the affinity of IFNAR1 for most IFN subtypes
(26, 27). While IFNl3/IFNlR1 represents the “high affinity”
interaction in the complex, the measured KD of 850nM (79) is ~1
log lower than the affinity of the weakest type-I IFN for IFNAR2
(e.g., IFNa1, KD ~100nM).

Due to the low affinity of the IFNls for their receptors, the
IFNls are sensitive to the expression levels of their receptors on
cells. In fact, a major distinction between type-I and type-III
IFNs is the unique distribution of their receptors on different cell
types (81, 82). Type-I IFNAR1 and IFNAR2 receptors are
present on all nucleated cells, while IFNlR1 expression is
Frontiers in Immunology | www.frontiersin.org 4
predominantly limited to epithelial cells, as mentioned for
IL22R1 earlier (22, 70). Thus, IFNl signaling appears to be
specialized for combating viral infections at epithelial barrier
surfaces such as the lung, gut, and liver (83). This has most
impressively been shown by demonstrating IFNl, but not type-I
IFN, is essential for controlling norovirus infection (84).
Although gut epithelial cells in this study express type-I
IFNARs, their expression is limited to the apical surface of the
cells, and no IFNAR expression is observed on the basolateral
surface. Thus, the selective signaling of IFNl in gut epithelial
cells was only fully appreciated within the organization of the
intact gut in animals. While IFNl activity appears “weak” in
many cell-based assays, in vivo data suggests potent IFNl
signaling in the context of tissues and organs. It should be
noted that type-I IFNs, IFNϵ and IFNk, protect the female
reproductive track (85–87) and skin (15, 88), respectively.
Notably, like the IFNls, IFNϵ and IFNk exhibit “low” affinity
for the type-I receptors, relative to most type-I IFNs (89).

Insights From IFNl1/IFNlR1 and IFNl3/
IFNlR1 Binary Structures
Both IFNl1/IFNlR1 and IFNl3/IFNlR1 binary complex
structures have been solved (79, 90). IFNl1 and IFNl3 adopt
very similar structures, with a root-mean-square deviation
(r.m.s.d.) of 0.6Å. Similarly, IFNlR1 binding to either IFNl1
or IFNl3 exhibits an r.m.s.d. of 0.68Å. Finally, the structure of
unbound IL10R2 (91) and IL10R2 bound to IFNl3 exhibit an
r.m.s.d. of 1.3Å. The larger r.m.s.d. is due to changes in the
conformation of the IL10R2 L5 binding loop upon contacting
IFNl3. Despite this difference, the overall structures of bound
and unbound IL10R2 are the same. These structural comparisons
suggest all IFNls assemble a signaling complex with the same
overall architecture. Thus, IFNl biological potency is not
regulated by the structure of the ternary complex, but by the
affinity of each IFNl for the IFNlR1 and IL10R2 chains, and
ultimately the stability of the complex.
A B

FIGURE 3 | Subtle structural changes between IFNl1/IFNl3 alter IFNlR1 Contacts. (A) Alpha carbon diagram of the superposition of IFNl1 and IFNl3. The
location of structural differences in the B loop regions of IFNl1 and IFNl3, as discussed in the text, are circled. (B) Enlargement of the B loop “proline flip” observed
in IFNl1 and IFNl3 structures and its influence on the conformation of Arg-180IFNl3 (green), where it makes a salt bridge with IFNlR1 Asp-91. In contrast, IFNl1
Arg-175 (magenta) extends away from IFNlR1 Asp-91 towards the B loop.
November 2020 | Volume 11 | Article 606489
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In vitro cell-based assays demonstrate IFNl3 exhibits twofold
greater antiviral potency than IFNl1 (92). Although a detailed
analysis of IFNl receptor binding affinity has not been
completed, we expect the IFNl3/IFNlR1 complex should
exhibit differences from the IFNl1/IFNlR1 complex,
consistent with a higher affinity interaction. Comparison of
IFNl1 and IFNl3 structures (Figure 3A) reveals the B loop
regions of IFNl1 and IFNl3 exhibit different conformations,
particularly Pro-74IFNl1/Pro-77IFNl3 (Figure 3B). In IFNl3,
Pro-77 moves in toward helix F, while in IFNl1 Pro-74 moves
away from helix F. This “proline flip” alters the position of the
conserved Arg-175IFNl1/Arg-180IFNl3, located on helix F (Figure
3B). In IFNl3, the guanidino group of Arg-180 packs against
Pro-77, which positions it for a bivalent salt bridge with IFNlR1
residue Asp-91. A series of IFNl3 alanine mutants were tested
for antiviral activity and identified Phe-179 as the most
important IFNl3 residue for inducing antiviral activity (19).
Since IFNl3 Phe-179 is adjacent to Arg-180, it is likely that
mutation of Phe-179 to an alanine disrupts the Arg-180IFNl3/
Asp-91IFNlR1 salt bridge, which reduces IFNlR1 binding affinity
and antiviral activity.

The “proline flip” observed between IFNl1 and IFNl3
(Figure 3B) may also provide mechanistic insight into the
reduced biological activity of the IFNl4 single nucleotide
polymorphism (SNP), rs117648444. Rs11768444 corresponds
to IFNl4-Pro70Ser, which exhibits reduced antiviral activity,
relative to wildtype IFNl4 (25, 93). Understanding IFNl4 SNPs
is important since several groups have mapped the major genetic
determinant of hepatitis C virus (HCV) clearance, in response to
treatment with IFN-a plus ribavirin, to the type-III IFN loci (94–
96). Ultimately, IFNl4 activity has been implicated as the
causative agent of HCV clearance failure in patients that
encode “active” IFNl4 protein, as opposed to inactive IFNl4
protein (25). Despite sharing ~28% sequence identity with
IFNl3, IFNl4 adopts the same a-helical fold as other IFNls
and binds to IFNlR1 and IL10R2 (97). Amino acid sequence
alignments show IFNl4 Pro-70 is identical to IFNl3 Pro-77,
suggesting the IFNl4 Pro70Ser mutation impacts IFNl4-
IFNlR1 interactions by altering the structure of IFNl4 Arg-
163, as described for Arg-180 in IFNl3 (Figure 3B).

IFNl2 has not been studied to the same extent as the other
IFNls, presumably because it was shown to exhibit ~5–10×
lower antiviral activity (53, 98). The IFNl2 amino acid sequence
differs from IFNl3 by only 6 amino acids. Modeling the structure
of IFNl2 based on the structure of IFNl3 suggests, R28H occurs
in a non-structured region at the N-terminus of the molecule,
where it is not predicted to alter receptor binding. K70R and
R72H are located in the AB loop of IFNl2, but do not contact
IFNlR1. Furthermore, an IFNl3 R72A mutant reduced IFNl3
anti-viral activity by only 30%, suggesting these residue changes
cannot explain the lower activity of IFNl2. Residues V92M and
H156Y are located on exposed surfaces of IFNl2 helices C and E,
respectively, which are located opposite the IFNlR1 and IL10R2
binding sites. Thus, if these amino acids were responsible for the
lower activity of IFNl2, this would support the hypothesis of
some groups that IFNl may bind to another, unidentified,
Frontiers in Immunology | www.frontiersin.org 5
receptor chain (83). Finally, L133F is located on helix D,
where the sidechain is buried in the hydrophobic core of
IFNl2. The L-to-F amino acid change cannot be incorporated
into the hydrophobic core of the IFNl3 structure without
distorting helices A, D, or F. This suggests L133F may be the
main residue responsible for the reduced biological activity of
IFNl2, relative to IFNl3.

The Type-II IFNg/IFNGR1/IFNGR2 Complex
The type-II IFNg receptor complex provides an important
structure to further understand the type-I and type-III
complexes (99). The unique intercalated dimer structure (6) of
IFNg distinguishes it from the disulfide-linked monomeric type-I
and type-III IFNs (4, 19, 100). The IFNg dimer assembles a
symmetric 1:2:2 IFNGR1/IFNGR2 heterodimeric complex (99,
101) (Figure 4), compared to the 1:1:1 heterodimeric complexes
of the type-I and type-III IFNs (Figure 2). In the dimeric
complex, the twofold-related C-termini of the IFNGR1/
IFNGR2 heterodimers are positioned 85Å apart from one
another. As suggested from the analysis of the structurally
related IL10 dimer (102), the dimeric IFNg positions IFNGR1
and IFNGR2 (Figure 4), and their respective ICDs, in an optimal
dimeric arrangement to recruit inactive STAT1 dimers (103) for
subsequent phosphorylation and activation of STAT1
homodimers (104). Disruption of the dimeric IFNg receptor
complex architecture, using engineered monomeric IFNgs,
which assembles ½ of the dimeric IFNg/IFNG1/IFNGR2 (see
Figure 2 vs. Figure 4), drastically reduced some IFNg-induced
biological activities (7, 8, 99, 102, 105). Additional IFNg mutants
confirmed the dimeric arrangement of IFNGR1, not IFNGR2,
was essential for full STAT1 phosphorylation (99). In contrast to
A

B

FIGURE 4 | Dimeric IFNg/IFNGR1/IFNGR2 Complex. Ribbon diagram of the
1:2:2 IFNg dimer/IFNGR1/IFNGR2 complex (pdbid = 6E3K). Two views of the
complex are shown. The first is approximately perpendicular to the IFNg
twofold axis (A) and the second is parallel to the twofold axis (B).
November 2020 | Volume 11 | Article 606489
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STAT1, many additional pathways activated by IFNg, including
MAP kinase, PI3K, and CaMKII (106), appear not to be equally
sensitive to IFNg-mediated IFNGR1/IFNGR2 dimerization.
Thus, at least on some cells, engineered IFNg monomers can
induce the same levels of cell surface HLA-A as the WT IFNg
dimer (99). Interestingly, it should be noted that neurons appear
to naturally manipulate IFNg signaling outcomes by maintaining
low STAT1 levels, which results in potent IFNg-mediated
activation of ERK1/2 (107). Overall, the dimeric architecture of
the IFNg/IFNGR1/IFNGR2 complex is critical for inducing the
full spectrum of IFNg-mediated pleotropic activities (108), which
includes macrophage activation (109, 110), tumor surveillance
(111, 112), and protection from intracellular pathogens,
including mycobacteria (50, 113).

Despite the larger dimeric assembly, within one IFNg subunit,
IFNGR1 and IFNGR2 form similar site-1, site-2, and D2-D2 site-
3 interfaces, as previously described for the IFNl/IFNlR1/
IL10R2 complex (Figure 2B). Compared to IFNl/IFNlR1, the
IFNg site-1 interface is more extensive with major contacts
between the AB loop and helix F of IFNg and IFNGR1 L2-L6
loops. The site-2 IFNg/IFNGR2 interface is comprised almost
exclusively of contacts with IFNg helix D and no contacts with
helix A, the main contact region in the IFNl complex. Despite
these differences, IFNGR2 still forms a D2-D2 site 3 interface
with the IFNGR1, which positions the C-termini of the receptors
22Å apart at the cell surface prior to their entry into the
membrane. Thus, assembly of the IFNg signaling complex is
cooperative, requiring the formation of the IFNg/IFNGR1 binary
complex first, followed by IFNGR2 binding to induce
cell signaling.

The Type-I IFN/IFNAR1/IFNAR2 Complex
The type-I IFN receptor complex is distinct from both the type-II
and type-III receptor complexes (Figure 2). The high affinity
IFNAR2 chain adopts a two-domain D1/D2 receptor structure,
as observed for IFNlR1 and IFNGR1 chains (Figure 2) (114).
NMR and X-ray structures confirm IFNAR2 binds to an IFN
site-1 epitope that is comprised of residues on helix A, the AB
loop, and helix F, similar to the type-II and type-III IFNs (100,
115, 116). IFNAR2 makes extensive interactions with Arg-33
(IFNa2 numbering) in the AB loop of the IFNs. Arg-33, and the
structurally adjacent Leu-30, account for approximately two
thirds of the IFNa2/IFNAR2 binding energy (29, 100, 117).
Additional critical contacts occur with the IFNAR2 L3 and L4
binding loops, which contact helix F residues Met-148 and Arg-
149 (IFNa2 numbers) (117). Although we know that all 16 IFNs
exhibit a variety of affinities for IFNAR2 (26–28, 89), the
mechanisms that control IFNAR2 affinity for each IFN subtype
remains incomplete. In general, it appears that subtle changes to
residues around these energetically critical residues modulate
IFN-subtype IFNAR2 affinity.

The type-I IFN low affinity receptor chain, IFNAR1, is
completely unique relative to the other IFN and IL10 family
cytokine receptors (Figure 2). IFNAR1 consists of four b-
sandwich domains (D1-D4), similar to tandem D1/D2
receptors, where the D4 domain is the membrane proximal
Frontiers in Immunology | www.frontiersin.org 6
domain. The D2 and D3 domains of the receptor form an
extensive interface with one another, while the D1 domain can
undergo rigid body movements. Overall, IFNAR1 D1-D3
domains form an IFN-binding module, while the D4 domain is
attached to D3 by a flexible linker that allows the D4 domain to
adopt multiple conformations, even when bound to IFN (100,
118). Despite a unique structure, IFNAR1 loops at the ends of
D1, D2 and D3 domains contact IFN helices C, D, and E, with
the D1 domain “closing down” on helix E, like a hand grabbing
a glass.

Based on the features described above, the binding of type-I
IFNs by IFNAR1 represents a novel protein recognition
paradigm. First, the IFNAR1-IFN contact surface, consisting of
IFN helices C, D, and E, is larger than for the other IFN
complexes. Second, the membrane proximal D4 domain of
IFNAR1 does not form a site 3 interface, at least not a stable
interface, with the D2 domain of IFNAR2. This suggests that by
increasing the size of the IFNAR1-IFN site-2 interface (see
Figure 2C), using novel D1/helix E interactions, the type-I IFN
complex no longer requires a site-3 interface. Thus, for the type-I
IFN complex, there is no structure-based cooperativity enforced
by a D2-D4 site-3 interaction. Rather, receptor complex
assembly and stability is controlled completely by IFN-IFNAR2
and IFN-IFNAR1 affinities. While it is possible that free IFNs,
and IFNs bound to IFNAR2, could exhibit different affinities for
IFNAR1, resulting in an affinity-based cooperative binding
mechanism, this has not been demonstrated experimentally.

The mechanistic role of the IFNAR1 D4 domain in type-I IFN
receptor activation remains unclear since the D4 domain was not
observed in crystal structures of the IFN/IFNAR1/IFNAR2
complex (Figure 5A). To identify possible location/s of the
IFNAR1 D4 domain, the IFNl3/IFNlR1/IL10R2 complex was
superimposed onto the IFNw/IFNAR1/IFNAR2 complex
(Figure 5B). In this model, the D1 domain of IL10R2 overlaps
with the IFNAR1 D3 domain and the putative location of the
IFNAR1 D4 domain, represented by the IL10R2 D2 domain, is
adjacent to the IFNAR2 D2 domain creating a D2-D4 site-3
interface, as observed in type-II and type-III complexes (Figure
2). A second possible position of the D4 domain is provided by
the structure of the murine IFNb/IFNAR1 binary complex (119),
where all four domains of IFNAR1 were observed. Superposition
of the murine IFNb/IFNAR1 complex on the IFN/IFNAR1/
IFNAR2 human complex places the C-terminal ends of
IFNAR2 D2 and IFNAR1 D4 51Å apart (Figure 5C), in
contrast to 30Å and 22Å for the IFNl and IFNg complexes,
respectively. These models lead to two possible conclusions.
First, type-I IFNs assemble a novel “open” complex with the
C-terminal ends of IFNAR1 and IFNAR2 separated by ~50Å.
Second, the “open” conformation is an inactive complex, which
must “close” to form a D2/D4 site-3 interface to induce IFN
activity. Our analysis suggests that IFN binding to IFNAR2 and
IFNAR1 promotes transient IFNAR2-D2/IFNAR1-D4
interactions. Thus, the stability of the IFN/IFNAR1/IFNAR2
interaction would control the number of transient “open”/
”closed” D2-D4 site-3 binding events, which could influence
signaling strength. Thus, the stability of the IFN/IFNAR2 and
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IFN/IFNAR1 interactions would regulate signaling, as has been
previously described (120).

Despite structures that reveal extracellular IFN-receptor
recognition and assembly mechanisms, there remain questions
about IFN-mediated signal transducing events that initiate and
sustain cellular activation. For example, it remains unclear how
all 16 IFNs, that exhibit a spectrum of affinities for the IFNARs
(weak/strong), can all activate a subset of genes associated with
antiviral activity on all cells, while additional cellular functions of
the IFNs, one such readout being anti-proliferative activity,
correlates with IFN-IFNAR affinity (121). These two distinct
cellular readouts, labeled as robust and tunable activation (121),
might be explained by an IFNAR1/2 pre-association model (122)
and an IFN-mediated IFNAR1/2 heterodimerization model
(123), respectively. The IFNAR pre-association could account
for rapid IFN-mediated activation of antiviral gene expression,
while IFN-mediated IFNAR dimerization could account for
tunable gene expression. The implication of the pre-association
model is that the IFNs induce a structural change in the IFNARs
that activate JAK1/TYK2 and induce rapid anti-viral gene
expression, while the dimerization model relies solely on IFN-
mediated dimerization of the IFNARs to activate JAK1/TYK2
and subsequently induce IFN-mediated gene expression.
Technical issues, specifically analysis of artificially high IFNAR
expression levels, have been suggested to be responsible for the
observation of pre-associated IFNARs (123). Unfortunately, the
investigators criticizing the pre-association model did not
confirm that overexpression of the IFNARs leads to IFNAR1/2
interactions. Nonetheless, the cortical actin cellular meshwork
and/or lipid rafts could provide a suitable mechanism to
“concentrate” IFNARs for rapid induction of robust antiviral
genes by all IFNs, while still allowing tunable activities that are
dependent on IFN-IFNAR affinities (124). Overall, the data
suggest that the major mechanism regulating IFN activation is
IFN-mediated IFNAR1/2 heterodimerization, although some
Frontiers in Immunology | www.frontiersin.org 7
recent data suggests IFN-induced IFNAR conformational
changes may also regulate IFN activity (125).

The Murine Type-I IFN Family Is Distinct
From Human Type-I IFNs
The murine IFNb/IFNAR1 binary complex structure provides an
important datapoint in the proposed model of human type-I IFN
signaling. However, my lab and others have previously noted the
“uniqueness” of type-I IFN families in different animals (10, 126–
129). For example, the murine IFN system consists of 14 IFNas
(note that murine and human IFNa subtype designations have
no bearing on their interspecies sequence and/or functional
similarities), as well as IFNb, IFNϵ, IFNk, limitin (130), but do
not encode an IFNw (126). Thus, it is necessary to ask if the
murine IFNs and receptor proteins, as well as their biological
outcomes, can be extrapolated to humans. From a structural
biology perspective, the overall folds of murine (62) and human
(5) IFNb, which share 47% sequence identity, are almost
identical (Figure 6A). The extracellular regions of human and
murine IFNAR1 share 49% amino acid sequence identity and the
structures of D1-D3 domains of murine and human IFNAR1s
are also almost identical (119). These findings suggest the overall
model proposed for the missing D4 domain in the human IFN/
IFNAR2/IFNAR1 complex is plausible (Figure 5).

Despite similar overall receptor complex structures, the
receptor binding properties of murine and human IFNb are
distinct. Human IFNb binds to IFNAR1 and IFNAR2 with
~30nM and ~0.1nM KD values, respectively (28). However, in
the mouse, IFNb receptor affinities are “flipped” such that the
IFNb-IFNAR1 forms the high affinity interaction (KD ~10nM)
and the IFNb-IFNAR2 forms the low affinity interaction (KD
~1.7µM) (86). Structural comparisons of human and murine
IFNb reveal the AB loop of murine IFNb, which forms a major
part of the IFNAR2 site-1 binding site, exhibits a distinct
structure compared to human IFNb (Figure 6). In human
A B C

FIGURE 5 | Structural Models of the IFNAR1 D4 Domain. (A) Ribbon diagram of the type-I IFN (IFNw, blue)/IFNAR1 (orange)/IFNAR2 (yellow) complex structure
(pdbid = 3SE4), which lacks the IFNAR1 D4 domain. (B) Superposition of the IFNl3 (rainbow)/IFNlR1 (green)/IL10R2 (magenta) ternary complex on the IFN/IFNAR1/
IFNAR2 structure positions the IL10R2 D2 domain (magenta), such that it could represent the transient location of the IFNAR1 D4 domain forming an IFNAR2 D2-
IFNAR1 D4 stem interaction. (C) A second possible location of the human IFNAR1 D4 domain is shown by superimposing the murine IFNb/IFNAR1 complex (pdbid
= 3WCY) on the IFN/IFNAR1/IFNAR2 complex. The position of the modeled D4 domain (green), derived from the murine IFNb/IFNAR1 structure is shown in green,
and the location of the IFNAR1 D4 domain obtained from superimposing the IFNl receptor complex is shown in magenta. Since the human IFNAR1 D4 domain
does not form a stable D2-D4 interaction with IFNAR2, D4 may transition between green and magenta conformations to induce biological activity. The exact role of
the D4 domain in IFN signal transduction remains unknown.
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IFNb, the AB-loop arches toward the N-terminal end of helix-F,
“over” helix F itself, where the loop connects to helix F by a
disulfide bond. In contrast, the murine IFNb AB-loop wraps
“across” helix F where it would disrupt high affinity IFNAR2
interactions, as observed in the human IFNa/IFNAR2 crystal
structure (Figure 6B). Interestingly, sequence alignments reveal
the murine IFNAR2 receptor binding loops that contact the AB
loop region of murine IFNb are the same length as human
IFNAR2. In addition, murine IFNas bind with high affinity (KD
~1nM) to murine IFNAR2 (86). Thus, it is likely murine IFNAR2
receptor binding loops do not change their lengths, or grossly
change their conformations, to accommodate the distinct murine
IFNb AB loop structure. Together, these structural observations
provide an explanation for the low affinity of the murine IFNb/
IFNAR2 interaction, compared to the human IFNb-IFNAR2
interaction. While this structural analysis is satisfying with
respect to murine and human IFNb, it highlights the many
distinct properties of the murine IFNs, from structure to
mechanism to in vivo outcomes, remain uncharacterized.

Moving Forward
This review has focused on fundamental structural features of the
three human IFN families, highlighting similar and unique features
of each receptor complex. The ultimate goal of structural studies is
to define mechanisms that can be used to discover optimal IFN
therapeutics that harness the antiviral activity of the IFNs to
improve human health (131). The importance of this goal is
highlighted by the SARS-CoV-2 pandemic that is ravaging our
society (72, 132–134). Based on the critical role that IFN – IFN
receptor affinity plays in varying IFN activity (26, 120, 135), type-I
and type-III IFNs with increased receptor affinity have been
designed, yet they have not advanced into the clinic (79, 136,
137). Presumably because we still do not know the optimal design
principles to create an optimal IFN therapeutic. Given that humans
produce 20 different type-I/III IFNs in response to pathogens, the
Frontiers in Immunology | www.frontiersin.org 8
design may not be simple and might require the synergistic actions
of both type-I and type-III IFNs. For example, type-I IFNb and
type-III IFNl3 induced distinct anti-viral gene expression profiles
with distinct kinetics on human hepatocytes (138). Specifically, high
affinity IFNb induced potent antiviral protection almost
immediately (~2 h) after addition to cells that waned after ~48 h.
In contrast, IFNl3 antiviral activity was not observed until ~12 h
after treatment, but was sustained for at least 72 h post-treatment
(138). These data highlight the interplay of distinct receptor
affinities and negative feedback mechanisms (139, 140), which
synergistically control IFN-mediated antiviral signaling. Notably,
type-III IFN signaling has been shown to be resistant to USP18-
mediated negative feedback regulation, which potently regulates
type-I IFN signaling (141). USP18 is induced by type-I and type-III
IFNs, but specifically binds to the ICD of IFNAR2 and disrupts
IFNa-mediated IFNAR1/IFNAR2 complex formation. These
studies demonstrate that the anti-viral signaling cascade induced
by type-I and type-III IFNs is very similar, yet multiple mechanisms
can tailor the response for optimal functional outcomes, which
include eliminating the virus and protecting the host. These studies,
and more like them, are providing new design principles to further
our quest for safe and efficacious IFNs with broad-spectrum
antiviral activity.
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FIGURE 6 | Structural Comparison of human and murine IFNb. (A) Structural superposition of human IFNb (colored as in Figure 1, pdbid = 1AU1) and murine IFNb (wheat,
pdbid = 1WU3), highlighting their distinct AB loop structures. (B) Structural superposition of murine and human IFNb onto IFNa2 from the human IFNa2/IFNAR2 crystal
structure. The resulting structural model results in steric clashes between the murine IFNb AB loop and IFNAR2 binding loops, but not for the human IFNb/IFNAR2 model. This
structural analysis provides an explanation for the low affinity of the murine IFNb/IFNAR2 interaction, compared to the high affinity human IFNb/IFNAR2 interaction.
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