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A B S T R A C T   

Background and purpose: Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within 
months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging 
(mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in 
tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy 
to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging 
biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting 
prescriptions derived from mpMRI. 
Materials and methods: TP maps were calculated with a clinically validated model that linearly combined 
apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood 
flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short 
interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting 
prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for 
parametric, TP and DP maps within radiotherapy margins. 
Results: DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps 
showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the 
combination of ADC and rBF were the most stable (median ICC: 0.89). 
Conclusions: Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of 
repeatability and can be used to generate reliable dose-painting plans for GBM patients.   

Abbreviations: ADC, apparent diffusion coefficient; DP, dose prescription; GBM, glioblastoma; ICC, intraclass correlation coefficient; CTV, clinical target volume; 
GTV, gross tumour volume; PTV, planned target volume; VOI, volume of interest; CSF, cerebrospinal fluid; mpMRI, multiparametric MRI; TP, tumour probability; 
rBV, relative cerebral blood volume; rBF, relative cerebral blood flow; DSC, dynamic-susceptibility contrast; T1CE, T1-weighted post-contrast; FLAIR, fluid-attenuated 
inverse recovery; CV, coefficient of variation; RC, repeatability coefficient; σb

2, between-subject variance; σw
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probability between timepoint 2 and timepoint 1; SVZ, subventricular zones; EORTC, European Organisation for Research and Treatment of Cancer. 
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1. Introduction 

Glioblastoma (GBM) is the most aggressive type of brain cancer, with 
5-year survival rate of 5.1% and the majority of recurrences occurring 
locally within months of first-line treatment [1,2]. A major limitation to 
the improvement of treatment for GBM is the lack of a means to predict 
regions with a high risk of local relapse. Local relapse is caused by the 
ability of the tumour to develop mechanisms of treatment resistance as 
occurs via the high level of biological heterogeneity in GBM. Such bio
logical heterogeneity causes variations in tissue sensitivity to chemo
radiation treatment, often via tissue hypoxia, and manifests as chaotic 
tumour growth and migration, variable cellular density and metabolism, 
and irregular and dysfunctional vascular architecture [3,4]. 

An emerging approach to address the high risk of local relapse due to 
biological heterogeneity is the prescription and delivery of a non- 
uniform radiation dose distribution based on physiological informa
tion of the tumour microenvironment – a concept known as dose- 
painting [5]. Dose-painting relies on the hypothesis that there is a pre
dictable relationship between each tumour phenotype and the dose 
prescription that optimises local tumour control. For instance, GBM cells 
infiltration in the brain parenchyma is a treatment resistance mecha
nism responsible for tumour progression but is undetectable with 
anatomical MRI. Using functional information to identify patterns of 
likely tumour infiltration could enable optimisation of dose distribution 
and enable delivery of higher doses to likely region of relapse, thus 
increasing the likelihood of local control [4,5]. 

MRI is the core imaging modality in the management of GBM pa
tients, for diagnosis, target delineation for surgery and radiation treat
ment, assessment of treatment response and disease progression [6,7]. 
However, radiotherapy planning solely relies on anatomical MRI data, 
which are limited in their ability to capture the biological heterogeneity 
of the tumour microenvironment [8]. 

Functional MRI techniques, including diffusion- and perfusion- 
weighted MRI, magnetic resonance spectroscopy (MRS) and blood- 
oxygen level dependent (BOLD) MRI, allow quantification of several 
aspects of the tumour physiology [9]. Combining two or more functional 
MRI techniques – a concept known as multiparametric MRI (mpMRI) – 
provides a means to spatially characterise biological heterogeneity 
within the brain and could be used to guide radiotherapy dose escalation 
in regions of infiltrating tumour [9–13]. 

Recently, a number of mpMRI models developed to predict the 
probability of tumour infiltration at each voxel in the tumour micro
environment have been reviewed by d’Este et al [14]. Only six of the 14 
studies reviewed used histopathology from stereotactic biopsy as refer
ence standard for tumour infiltration and, of these six, the study with the 
greatest accuracy combined multiparametric image intensities in a 
generalized linear mixed model [15]. 

Clinical translation of tumour probability models into radiotherapy 
planning will require validation that the probability maps truly reflect 
the presence of tumour infiltration (biological validation) and are 
repeatable and reproducible (technical validation) [16]. While studies 
focusing on the biological validation of new mpMRI models of tumour 
infiltration are prevalent in the current literature, technical validation 
studies are scarce [17]. However, MRI-derived parameters of diffusion/ 
perfusion were previously shown to be predictive of the site of local 
relapse [15,18]. 

In this study, we aimed to evaluate repeatability of a biologically- 
validated mpMRI model of tumour infiltration combining MRI-derived 
parameters of diffusion and perfusion. 

2. Materials and methods 

2.1. Patient dataset 

Imaging data were obtained from the QIN GBM Treatment Response 
collection publicly available on The Cancer Imaging Archive (TCIA) 

[19–22]. All data from TCIA are anonymised, thus individual institu
tional IRB approval was not required for this study. However, it should 
be noted that all data were originally submitted to TCIA by the 
contributing institutions under IRB-approved protocol. The dataset 
consisted of mpMRI images acquired for 11 newly diagnosed GBM pa
tients in a test–retest study. Scans were acquired 2–6 days apart at 3–7 
days and then 1 day prior to commencement of post-operative chemo
radiation treatment [23]. From the information available, we estimated 
that the imaging was performed 3–5 weeks post-surgery. Imaging se
quences used in our study included structural T1-weighted post-contrast 
(T1CE), fluid-attenuated inverse recovery (FLAIR), apparent diffusion 
coefficient (ADC) maps derived from diffusion-weighted MRI, and 
dynamic-susceptibility contrast (DSC) MRI sequences. An inclusion cri
terion for this study was availability of ADC maps and DSC MRI se
quences at both imaging sessions, and only data from 11 of 54 patients 
from the QIN GBM Treatment Response collection fit this criterion 
(typically diffusion-weighted or DSC imaging was not available at one or 
both timepoints for excluded patients). Imaging data from each exami
nation were analysed following a five-step workflow (Fig. 1). Image 
acquisition parameters and additional details of the workflow (Fig. S1) 
are in Supplementary Material. 

2.2. Image pre-processing 

Images were processed with nordicICE (v4.1.3, NordicNeuroLab, 
Norway) and FSL. The FLAIR, ADC and DSC images were rigidly regis
tered to the T1CE image. Relative cerebral blood volume (rBV) and 
relative cerebral blood flow (rBF) maps were derived from perfusion 
modelling of DSC images following consensus recommendations for DSC 
MRI analysis in high-grade gliomas [22,24]. Images acquired at time
point 2 were rigidly registered to images acquired at timepoint 1 
[25,26]. Binary masks of the brain volume were generated and used to 
mask signal in the field of view of the DSC sequence acquisition. The 
ADC, rBV and rBF images were resampled to 1.2 mm isotropic resolu
tion. DSC brain masks were applied to generate parametric maps only in 
regions of the brain where both diffusion- and perfusion-weighted data 
were acquired. ADC, rBF and rBF maps were normalised to a reference 
volume manually selected in the contralateral normal brain, smoothed 
with an edge-preserving bilateral filter, zeroed, centred and scaled, 
similarly to the method in Verburg et al [15]. Binary masks of the ce
rebrospinal fluid (CSF) volume were obtained from FLAIR images [27]. 
Additional details on image pre-processing steps are included in the 
Supplementary Material. 

2.3. Volume of interest delineation 

The gross tumour volume (GTV) was manually delineated by a ra
diation oncologist (F.A.) and reviewed by a second expert radiation 
oncologist (E-S.K.) on the T1CE image acquired at timepoint 1 in MIM 
(Cleveland, OH). Clinical target volume (CTV) expansions, representing 
the region at risk for microscopic tumour spread, were generated by 
applying a 2 cm expansion to the GTV [8]. The volume of interest (VOI) 
for the repeatability analysis was defined by algebraic subtraction of the 
GTV from the CTV. The VOI was masked sequentially with the DSC brain 
mask and the whole brain mask to ensure the VOI only included areas of 
the brain with a dose prescription value derived from the mpMRI TP. 

2.4. Tumour probability modelling 

After pre-processing, the ADC, rBV and rBF maps were linearly 
combined to generate TP maps as previously described [15]. Two types 
of TP maps were generated. ADC-rBV TP maps obtained from the 
combination of ADC and rBV maps. ADC-rBF TP maps obtained from the 
combination of ADC and rBF maps. The coefficients for optimal imaging 
combinations were determined with logistic regression analysis that 
combines the mean values of intensity in a region of interest surrounding 
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the contrast-enhancing tumour mass to predict the probability of infil
trating tumour presence at each voxel. Methods and results (Table S1) of 
the logistic regression analysis are in Supplementary Material. Voxels 
within the GTV were, by definition, considered tumour and assigned a 
TP of 1. As the TP model was not designed to give accurate predictions in 
areas containing CSF (including cistern and sulci), these areas were 
removed from the final TP map by masking the TP map with the binary 
CSF mask and assigned a zero value. This step mitigated artifacts that 
resulted from intrinsically high values of ADC and perfusion parameters 
in regions containing CSF [15]. 

2.5. Dose prescription mapping 

The TP for each voxel in the brain was translated into a dose pre
scription (DP) using a polynomial dose mapping function that physically 
determines the rate of conferred radio-resistance to cells in each voxel 
for a given TP [28]. Bowen et al. found that prescriptions based on low- 

order (n < 2) polynomial mapping functions result in a planned target 
dose that conforms to a greater percentage of the target volume [28]. 
Greater conformity is achievable because the plan optimisation process 
modulates only the steepness of dose gradients through the choice of a 
single parameter [28]. Hence, we chose a linear dose mapping function: 

DP = Dmin + (Dmax − Dmin) × TP Gy 

where Dmin and Dmax were the minimum and maximum prescribed 
dose, respectively. Dmin was set to 60 Gy, reflecting the standard of care 
adjuvant radiation dose recommended by the EORTC guidelines for 
younger fit GBM patients [8]. Dmax was set to 80 Gy, corresponding to 
the maximum tolerated dose considered safe as determined by the RTOG 
trial 98–03 [29]. RayStation treatment planning system (v.10B, Ray
Search Laboratories) was used to develop dose-painting plans from DP at 
the two timepoints for three GBM patients with tumour near critical 
brain structures. The methods description for dose-painting plan crea
tion is in Supplementary Material. 

Fig. 1. Schematic overview of the image analysis pipeline. The pipeline involves five steps: image pre-processing, including registration of the parametric to the 
anatomical images, perfusion imaging modelling, registration of the parametric images from the two timepoints, image resampling, normalisation and stand
ardisation; tumour probability modelling, according to the linear formula obtained from the regression analysis coefficients; dose prescription mapping, linearly mapping 
TP values to a dose prescription; volume of interest delineation from the gross tumour volume and the clinical target volume; repeatability analysis, with calculation of 
repeatability metrics for the parametric, TP and DP maps within the volume of interest. ADC, apparent diffusion coefficient; Dmax, maximum dose; Dmin, minimum 
dose; DP, dose prescription; rBF, relative blood flow; rBV, relative blood volume; TP, tumour probability. 
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2.6. Repeatability analysis 

Voxel-wise repeatability of the planning pipeline was assessed within 
the VOI for the parametric, TP and DP maps, and within the planning 
tumour volume (PTV) for the dose-painting plans, by means of intraclass 
correlation coefficient (ICC) and within-voxel coefficient of variation 
(CV). ICC was used to quantify the variability between voxels relative to 
the measurement error and was calculated with a two-way random ef
fects, absolute agreement, single rater/measurement model [30,31] 
Poor, moderate, good and excellent repeatability was indicated by ICC 
values < 0.5, 0.5–0.75, 0.75–0.9, and > 0.90, respectively [32]. Within- 
voxel CV was calculated as per recommended statistical methods [33]. 
Patient-wise repeatability of mean values within the VOI was assessed 
for the parametric, TP and DP maps by means of Bland-Altman plots, 
between-subject variance (σb

2), within-subject variance (σw
2 ), ICC, 

within-subject CV and repeatability coefficient (RC), as per recom
mended statistical methods [33]. For patient-wise analysis, ICC repre
sented the variability of two within-subject measurements relative to the 
variation between subjects. RC was determined from σw

2 , and repre
sented the estimated range of variation between the measurements so 
that the difference between two measurements was expected to be be
tween -RC and RC for 95% of patients and reflected the amount of 
change that should occur to be considered significant and not be related 
to intra-method variability [34]. 

2.7. Statistical analysis 

The difference in TP between timepoint 2 and timepoint 1 (ΔTP) was 
calculated for both ADC-rBF and ADC-rBV combinations. The compari
son of the variances between ADC-rBF ΔTP and ADC-rBV ΔTP distri
butions was assessed via a F-test of the equality of two variances. The 
difference in voxel-wise ICC and within-voxel CV between a) ADC and 
rBV maps, b) ADC and rBF maps, and c) ADC-rBV DP and ADC-rBF DP 
maps was assessed via Wilcoxon matched-pairs signed rank test. 

3. Results 

ADC, rBV, rBV, TP and DP maps were similar between the two 
timepoints (Fig. 2). The TP histograms (Fig. 3) showed similar TP dis
tributions between timepoints for both combinations ADC-rBV and ADC- 
rBF. The histograms of ΔTP also showed similar distributions with 
means 0.04 and 0.03 for ADC-rBV and ADC-rBF combinations, respec
tively. However, ADC-rBV TP ΔTP distribution had a larger variance 
than the ADC-rBF TP ΔTP distribution (F = 1.17, p < 0001). F-test re
sults for all the patients are in Table S2 of Supplementary Material. 

ICC values for ADC maps were on average 1.5 and 1.3 times higher 
(p = 0.001) than for rBV and rBF maps, respectively (Fig. 4a). Within- 
voxel CV values for ADC maps were on average 4 and 2.8 times lower 
(p = 0.001) than for rBV and rBF maps, respectively (Fig. 4b). TP maps 
had on average 1.3 times higher (p = 0.001) ICC values and 3 times 
lower (p = 0.001) within-voxel CV values than their respective perfusion 

Fig. 2. Comparison of MRI-derived parametric, tumour probability and dose prescription maps between two imaging sessions. The figure displays left–right, top–bottom 
T1CE images from the two timepoints with overlayed a) volume of interest contours shown in purple, b) ADC maps, c) rBV maps, d) rBF maps, e) ADC-rBV TP maps, 
f) ADC-rBF TP maps, g) ADC-rBV DP maps, h) ADC-rBF DP maps. T1CE, T1-weighted contrast enhanced image; ADC, apparent diffusion coefficient; DP, dose 
prescription; rBF, relative blood flow; rBV, relative blood volume; TP, tumour probability. 
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parametric maps (Fig. 4). DP maps had on average 5.8 times lower (p =
0.001) within-voxel CV values than their respective TP maps (Fig. 4b). 
ADC-rBF DP maps had 1.1 times higher (p = 0.001) values of ICC and 1.2 
times lower (p = 0.001) values of within-voxel CV than ADC-rBV DP 
maps (p = 0.001). 

Bland–Altman plots of the parametric, TP and DP maps (Fig. 5) 
showed good agreement between the two measurements with all values 
within the limits of agreement for each parameter, except for one value 
in rBV and rBF maps. A positive bias of 6⋅10-6 mm2/s, 0.3 and 0.1 was 
observed for ADC, rBV and rBF maps, respectively. A negative bias of 
− 0.01 and − 0.2 was observed for TP and DP maps, respectively. Table 1 
reports metrics of repeatability evaluated at the patient level. These 
results showed similar trends to those observed for the voxel-wise 
analysis, with ICC and within-subject CV values improving throughout 
the image analysis and modelling pipeline. 

ICC values within the PTV were on average higher by 0.05 for the 
dose-painting plans than for their respective ADC-rBF DP (Fig. S2). 

4. Discussion 

Our results demonstrate that dose-painting prescriptions derived 
from a mpMRI model of tumour infiltration have a good level of 
repeatability and can be used to generate reliable dose-painting plans. 

To our knowledge, this is the first study that reports repeatability 
metrics of mpMRI-derived TP and DP maps in GBM. We assessed metrics 
of repeatability in ADC, rBV and rBF parameters, and in TP and DP maps 
in the entire region relevant for radiotherapy planning, finding results 
consistent with previous studies where repeatability metrics were 
evaluated solely for ADC, rBV and rBF parameters in regions of T1- 
weighted contrast enhancement and regions of FLAIR-hyperintensity 
[21,22,35]. We limited the TP repeatability analysis solely to the vol
ume of tissue which extends from the GTV to the CTV as this is the region 
in which the mpMRI model was validated [15]. Additionally, this peri
tumoural region has the highest likelihood of tumour infiltration and, 
thus, is most relevant to the prescription of a heterogeneous radiation 
dose distribution. We applied the model to post-operative images 

Fig. 3. Example of histograms of voxel-wise tumour probability. The figure displays top–bottom, normalised histograms of the distributions of ADC-rBV (top) and ADC- 
rBF (bottom) voxel-wise tumour probability at timepoint 1 (left), at timepoint 2 (centre) and difference of voxel-wise tumour probability between timepoint 2 and 
timepoint 1. ADC, apparent diffusion coefficient; rBF, relative blood flow; rBV, relative blood volume. Bin size: 100. 

Fig. 4. Voxel-wise repeatability metrics. The figure displays in a| ICC values and in b| within-voxel CV values of the parametric, TP and DP maps obtained from the 
voxel-wise repeatability analysis. ADC, apparent diffusion coefficient; CV, coefficient of variation; DP, dose prescription, ICC, intraclass correlation coefficient; rBF, 
relative blood flow; rBV, relative blood volume; TP, tumour probability. Bars represent the median values from the 11 GBM patients. 
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acquired at a timepoint where radiological changes have typically sta
bilised [36]. We note that the TP model is not applicable in the GTV, 
which is, by definition, tumour with a TP of 1. 

Potentially, dose-painting plans for GBM patients could prescribe a 

dose boost within the remaining tumour (GTV) and the surrounding area 
where > 90% GBM recurrences occur with a DP guided by the under
lying probability of tumour infiltration within the CTV. With this 
approach, we found that dose-painting plans can be feasibly generated 

Fig. 5. Bland–Altman plots for analysis of repeatability. The figure displays the Bland-Altman plots of the mean ADC values (top); mean rBV, mean ADC-rBV TP and 
mean ADC-rBV DP (left); mean rBF, mean ADC-rBF TP and mean ADC-rBF DP (right) calculated from the volume of interest-based repeatability analysis. ADC, 
apparent diffusion coefficient; DP, dose prescription; rBF, relative blood flow; rBV, relative blood volume; TP, tumour probability. Coloured dotted lines represent 
limits of agreement. Black dotted lines represent bias. 
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with high repeatability, even in cases of GBM patients where the tumour 
is in a challenging location adjacent to critical brain structures. Addi
tionally, we observed that ICC values within the PTV were higher for the 
dose-painting plans than for their respective DP, likely due to increased 
blurring of dose in treatment plans when compared to DP [37]. 

Clinical evidence shows that GBM patients with tumours adjacent to 
the subventricular zones (SVZ) have inferior outcomes in terms of me
dian overall survival, time to progression, and recurrence, and that 
increasing radiation dose to SVZ adjacent to the tumour correlates with 
better survival outcomes [38–41]. Interestingly, TP maps for the 
example shown in Fig. 2 showed that the highest probability of tumour 
infiltration was in proximity to the GTV edge, which reflects known 
GBM patterns of neural stem cell infiltration, in SVZ adjacent to the 
tumour, and in the cortex [42–45]. The higher radiation dose prescribed 
to these regions with the formulation used in this study might help 
improve local control. High values of TP in the cortex are likely due to 
artifacts created by intrinsically higher values of rBV/rBF in this region 
and could be addressed through modifications to the mpMRI TP model. 

Our work shows that metrics of repeatability in TP and DP derived 
from a mpMRI model of tumour infiltration differ from repeatability 
metrics of the underlying ADC, rBV and rBF maps. Given that DP will 
impact patient treatment directly, testing DP repeatability is crucial to 
the clinical translation of mpMRI-derived models even when underlying 
parametric maps are repeatable. The higher repeatability of ADC maps 
than rBV/rBF maps likely reflects the fact that tumour tissue micro
structural changes associated with cell death occur at a slower timescale 
than tumour tissue microvasculature changes, and ADC values are less 
susceptible than rBV/rBF to factors influencing the vascular bed. 
Further, rBV/rBF maps involve perfusion modelling with several 
operator-influenced variables that result in signal variations. The lower 
repeatability in ADC-rBV DP maps than in ADC-rBF DP maps is likely 
due to microvasculature changes occurring between the two scan ses
sions [46]. The systematic positive bias in the parametric maps reflects a 
slight decrease in values of ADC, rBV and rBF from the first imaging 
session, indicating the presence of biological changes in the VOI be
tween the two imaging sessions. 

The lack of validation of this mpMRI model of tumour infiltration in 
regions of CSF, cortex and SVZ, which reflects the practical challenges of 
obtaining image-guided biopsies from these brain regions, is a limitation 
of this study that must be overcome before this model is used in dose- 
painting clinical trials. Nonetheless, this study represents an important 
steppingstone towards the improvement and translation of this and any 
other mpMRI model for dose-painting, demonstrating that reliable DP 
can be obtained from the combination of functional MRI parameters. An 

additional important future step for technical validation of this and any 
other mpMRI model for dose-painting is evaluating reproducibility of DP 
maps generated from mpMRI images acquired for the same group of 
patients on multiple diagnostic systems. 

Future development of this work will use ADC-rBF DP maps to 
generate dose-painting plans, building a workflow to implement the use 
of the DP map as an objective function for plan optimisation in a com
mercial treatment planning system and evaluating, with a post-hoc 
planning study, whether dose-painting would lead to improvements in 
modelled tumour control probability compared to conventional radio
therapy. While we used a simple linear mapping function to convert TP 
into DP values, it is likely that tumour control probability models 
combining image-derived biological information with tumour-specific 
radiobiological parameters of treatment response will lead to 
improved formulations to derive optimal DP in the future. 

In conclusion, our workflow fills an important gap in the clinical 
translational pathway of image-guided dose-painting radiotherapy in 
GBM, providing a technical validation framework that can be used to 
evaluate the practical application of any emerging mpMRI model. 
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