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Herbal medicines (HMs) are a major subset of complementary and alternative medicine.

They have been employed for the efficient clinical management of type 2 diabetesmellitus

(T2DM) for centuries. However, the related underlying mechanisms still remain to be

elucidated. It has been found out that microbiota is implicated in the pathogenesis and

treatment of T2DM. An interplay between gut microbiota and host occurs mainly at the

gastrointestinal mucosal barrier. The host movements influence the composition and

abundance of gut microbiota, whereas gut microbiota in turn modulate the metabolic and

immunological activities of the host. Intestinal dysbiosis, endotoxin-induced metabolic

inflammation, immune response disorder, bacterial components and metabolites, and

decreased production of short-chain fatty acids are considered significant pathogenic

mechanisms underlying T2DM. The interaction between gut microbiota and HMs

during T2DM treatment has been investigated in human, animal, and in vitro studies.

HMs regulate the composition of beneficial and harmful bacteria and decrease the

inflammation caused by gut microbiota. Furthermore, the metabolism of gut microbiota

modulates HM biotransformation. In this review, we have summarized such research

findings, with the aim to improve our understanding of the pathogenesis and potential

therapeutic mechanisms of HMs in T2DM and to provide new insights into specific

targeted HM-based therapies and drug discovery.

Keywords: herbal medicines, type 2 diabetes mellitus, gut microbiota, bacterial metabolites, therapeutic

mechanisms

INTRODUCTION

Diabetes mellitus (DM) is a widely prevalent chronic disease associated with significant healthcare
problems worldwide. According to the International Diabetes Federation (IDF), ∼425 million
adults suffered from DM in 2017, and the number is expected to increase to 629 million by 2045
(Cho et al., 2018). The prevalence of DM varies between developing and developed countries
and is estimated to increase in these countries by 69 and 20% from 2010 to 2030, respectively
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(Shaw et al., 2010). Long-term DM can result in multiple
complications and comorbidities, affecting the eyes, kidneys,
cardiovascular system, and nervous system (Inzucchi et al.,
2012). The mortality rates of adult patients with DM are
reportedly two to four times higher than in adults without
diabetes (Gerrits et al., 2015). Type 2 diabetes mellitus (T2DM)
is one of the main types of DM. It is characterized by
hyperglycemia resulting from progressive β-cell dysfunction
in the presence of insulin resistance (American Diabetes
Association, 2019). Furthermore, T2DM accounts for more than
90% of all diabetic patients, leading to a public pandemic
(Chatterjee et al., 2017). The prevalence of T2DM has increased
markedly over the years, causing a significant global burden
of mortality and disability (Zheng et al., 2017). Obesity
is the most prominent risk factor for T2DM. Other risk
factors include a low-fiber diet and an unhealthy lifestyle,
including inactivity, smoking, and alcohol consumption (Wu
et al., 2014; Kautzky-Willer et al., 2016). There are various
therapeutic approaches to T2DM, such as lifestyle management
(Schellenberg et al., 2013) (self-management education and
support, nutrition therapy, physical activity, dietary planning,
and psychosocial care), oral medications (Qaseem et al.,
2017) (metformin, sulfonylureas, thiazolidinediones, α-glucoside
inhibitors, dipeptidyl peptidase-4 inhibitors, and sodium-
dependent glucose transporter 2), injectable medications (Tran
et al., 2015) (insulin and glucagon-like peptide-1), surgery
(Maleckas et al., 2015), and complementary and alternative
medications (Nahas and Moher, 2009).

With the rising importance of complementary and alternative
medicine according to the recommendations of theWorldHealth
Organization (WHO) (Zhang Q. et al., 2019), the application
and research of alternative medications for the treatment of
T2DM have markedly increased in recent years (Al-Eidi et al.,
2016; Pang et al., 2019). As one of the paramount types of
alternative medicine, herbal medicine (HM) has thousand years
of history and includes systematic medical theories based on
long periods of phenotype-based and personalized clinical trials
(Li and Weng, 2017). The WHO estimated that 70–80% of
populations living in developing countries considered HM a
primary healthcare approach, while the studies of HM are
still at the preliminary stage and need further research on
the efficacy mechanisms (Ekor, 2014). During the past two
decades, HM has played an active role in the treatment of
DM and has proved to be valuable for the prevention of
disease progression in both European and Asian countries
(Banjari et al., 2019). According to the world ethnobotanical
information, ∼800 herbs have been applied for the control
of DM (Alarcon-Aguilara et al., 1998). A large amount of
clinical trials and animal tests have demonstrated the effect of
various forms of HM, such as the use of single herbs and their
extracts (Pang et al., 2015; Mirfeizi et al., 2016), herbal medicine
decoctions (Zhang et al., 2011; Ryuk et al., 2017), and Chinese
patent medicines (Pang et al., 2017; Chen et al., 2019). Besides
establishing the efficacy of HMs against T2DM, studies have also
aimed to identify their therapeutic mechanisms using modern
science and technology; however, these mechanisms remain to
be elucidated.

The gut represents the largest digestive and immune organ
of the human body, which harbors trillions of microbes. The
microbes inhabiting the gut, also known as gut microbiota,
compose a complex ecological community and greatly impact
the host health (Lozupone et al., 2012). Nowadays, an increasing
number of researchers have focused on the role of gut microbiota
in disease and drug treatment, including the interaction of
gut microbiota, T2DM, and HM. New perspectives based on
gut microbiota have provided interesting insights into the
mechanism of the action of HMs in T2DM treatment.

Here, we aim to provide an overview of the relationship
among gut microbiota, host, and T2DM from a pathological
perspective, including changes of gut microbiota and how
they interact with the host in T2DM. Next, we describe the
interaction of gutmicrobiota, host, andHMs in T2DM treatment,
which facilitates the understanding of the potential therapeutic
mechanisms of HMs. Finally, we summarize and discuss the
HM therapeutic strategy based on gut microbiota and present
our perspectives.

HOST, GUT MICROBIOTA, AND T2DM:
PATHOGENESIS

Interplay Between Gut Microbiota and Host
The human intestine is a complex ecosystem. The microbiota
and host share an extensive platform for intercellular signaling
and defense against potential pathogens (Sekirov et al., 2010).
In healthy humans, ∼3.8 × 1013 bacteria colonize the intestine,
which together code for over three million genes (Qin et al.,
2010). Classifying bacteria by the phylogenetic diversity of
variable nucleotide sequences of small subunit ribosomal RNA
operons or 16S rRNA genes allows the analysis of the huge
microbial community. A diversity of organismal assemblages can
yield a core unit at the functional level, and deviations from this
core are associated with different physiological states (Turnbaugh
et al., 2009).

Microbiome analysis has revealed that disease progression is
associated with changes in the fecal microbiome. Research on
animal models has indicated that different responses based on
host genotypes may contribute to the development of metabolic
disorder phenotypes linked with gut microbiota alterations
(Miranda-Ribera et al., 2019; Wang J. H. et al., 2019). In healthy
individuals, most intestinal bacteria can be classified under five
phyla, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
and Verrucomicrobia (Tremaroli and Backhed, 2012). All
these microbes express genes for the production short-chain
fatty acids (SCFAs) (Krautkramer et al., 2016), ligands for
G-protein-coupled receptors (GPCRs) (Cohen et al., 2017),
neurotransmitters (Asano et al., 2012), and other metabolites.
In turn, the metabolites genetically and epigenetically influence
the host responses (Sharkey et al., 2018). As for the hosts,
intrinsic and extrinsic factors both influence the gut bacterial
composition. Through delivery at birth, infant feeding, genetics,
infections, medications, and diet, the host internal environment
changes frequently, leading to congruent alterations of the gut
microbiota (Wen and Duffy, 2017). Basically, the host vital
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movements influence the gut microbiota abundance, whereas
the gut microbiota control the metabolic physiological state and
immunological functions of the host through a series of gene-
regulated mechanisms.

Most of the interactions between the host and gut microbiota
occur at the gastrointestinal barrier, which consists of two
parts: bacterial and mucosal barriers. Both are crucial for
the prevention of passage of commensal bacteria, pathogens,
and food antigens from the lumen into the gut tissue and
host systemic circulation (Sorini et al., 2019). The bacterial
barrier is the first line of defense against luminal content
penetration and performs numerous biological functions. The
gut microbiota differs along the longitudinal axis of the gut.
Thus, various bacteria colonize different places in the intestine.
Due to the radial oxygen gradient, microbes residing on the
colonic mucosa harbor higher oxygen tolerance and catalase
expression compared to luminal or stool-associated bacteria
(Albenberg et al., 2014). As for the mucosal barrier, the intestinal
epithelium contains a large surface that is lined by a monolayer
of intestinal epithelial cells (IECs) (Wu et al., 2019). They create
mucosal barriers including both physical and chemical barriers
for the maintenance of a symbiotic relationship between the gut
microbiota and host (Okumura and Takeda, 2017). Once the
intestinal barrier is disrupted, some of the intestinal physiological
functions will be impaired, which may cause circular responses of
intestinal dysbiosis, inflammation, and enzymatic machinery and
immune response disorders.

How the Gut Microbiota Affect T2DM
Intestinal Dysbiosis
Dysbiosis is characterized by a loss of beneficial microorganisms,
an expansion of potentially harmful microbes and/or a loss
of overall microbial diversity (Olesen and Alm, 2016). Obesity
and polymetabolic disorders lead to an imbalance of gut
microbiota, which is considered a characteristic of T2DM.
Intestinal dysbiosis leads to the translocation of bacterial
metabolites, such as trimethylamine (TMA), mediators of
metabolic dysregulation, and pathogen-associated molecular
patterns (PAMPs) (Tilg et al., 2020). Bacteroidetes and Firmicutes
are the two dominant bacterial phyla in T2DM patients gut
microbiota. Interestingly, the ratio of Bacteroidetes to Firmicutes
has been positively and significantly correlated with plasma
glucose concentrations in many previous studies (Turnbaugh
et al., 2009; Larsen et al., 2010; Schwiertz et al., 2010). The
Bacteroidetes content rises with weight loss and low-calorie diet,
which is beneficial to the recovery from T2DM (Ley et al.,
2006). In T2DM patients, the abundance of lipopolysaccharide-
producing Escherichia coli (phylum Proteobacteria) increases.
They contribute to enhanced systemic inflammation of the
intestine (Qin et al., 2012). Contrarily, Akkermansia muciniphila
and Faecalibacterium prausnitzii are highly abundant human
gut microbes in healthy individuals, and their reduced levels
are associated with inflammation and alterations of metabolic
processes involved in the development of T2DM (Verhoog et al.,
2019). The significance of Akkermansia muciniphila for the
maintenance of the gastrointestinal tract integrity has recently
been identified. Its metabolites affect a number of transcription

factors and genes involved in cellular lipid metabolism,
which is crucial for the precession of metabolic syndrome
and T2DM. Akkermansia muciniphila and its metabolite
propionate modulate the expression of Fiaf, GPR43, histone
deacetylases (HDACs), and peroxisome proliferator-activated
receptor gamma (PPAR gamma), and they play an important
role in the regulation of transcription factor function, cell
cycle, lipolysis, and satiety (Lukovac et al., 2014). Intestinal
dysbiosis alters the microbiome to upregulate the membrane
transport of sugars and transport of branched-chain amino
acids and to downregulate butyrate biosynthesis (Luca et al.,
2019). The enriched microbial genes mapped to oxidative stress
signaling suggest a direct link between the altered microbiota
composition and inflammatory state in patients with T2DM
(Tilg et al., 2020). The dysbiosis-provoked rupture of the
gut barrier leads to local and systemic inflammation, which
is relevant to the development of T2DM (Belizario et al.,
2018).

Endotoxin-Promoted Metabolic Inflammation
T2DM is, to a certain degree, an inflammatory disease,
and several inflammatory molecules are indicative of the
development of T2DM (Zhou W. Y. et al., 2019). Microbiota
modulate the expression of PPARs in intestinal epithelial and
immune modulatory cells and alter the host inflammatory
responses (Hasan et al., 2019). Meanwhile, homeostatic
imbalance or disruption facilitates the translocation of
endotoxins like lipopolysaccharide (LPS) into the circulation,
which results in enhanced systemic and intestinal inflammation
and gastrointestinal wall permeability. In diabetes, the gut
microbiota contribute to the pathophysiological regulation of
endotoxemia and increase the intestinal permeability due to
malfunction of tight junction proteins, such as occuludin and
ZO-1 (Cani et al., 2007b, 2008). This increases the plasma levels
of LPS, which causes low-grade inflammation in the circulation
and eventually, insulin resistance (IR) (Cani et al., 2007a). As
a coreceptor for the monocyte differentiation antigen CD14+,
TLR4 mediates various LPS-induced inflammatory cascades and
the development of the innate immune response, which consists
of recognition receptors (PRRs), antimicrobial peptides, and
secreted IgA (Creely et al., 2007; Jialal and Rajamani, 2014).
Chronic low-grade inflammation ensues with the activation
of proinflammatory pathways, contributing to obesity, IR,
pancreatic β-cell decline, and eventually T2DM (Lew et al.,
2019). LPS is one of the PAMPs, which are recognized by the
PRRs, including the Toll-like receptors (TLRs) and Nod-like
receptors (NLRs). The interaction between PRRs and LPS
induces cytokine and interferon production. In turn, they trigger
proinflammatory signaling cascades in human peripheral tissues
(Zhao C. et al., 2019). Inflammation promotes an oxidative
state, which enhances the enrichment of aerotolerant phyla. It
also increases the production of terminal electron acceptors for
facultative anaerobes. This means that the inflammatory state
contributes to the severity of the intestinal dysbiosis, which
promotes the destruction of the bacterial barrier (Winter et al.,
2013).
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Reduced Short-Chain Fatty Acid Production
SCFAs are byproducts of anaerobic microbial fermentation
of undigested food in the large intestine (Wisniewski et al.,
2019). They can modulate the host energy homeostasis through
interactions between chemosensory enteroendocrine cells, which
belong to epithelial cells and can supply energy themselves
(Kuwahara, 2014). There is evidence that SCFAs increase the
pancreatic β-cell mass and insulin secretion, reduce glucagon
secretion, and regulate glucose metabolism (Mandaliya and
Seshadri, 2019b). Intestinal dysbiosis may change the ratio of
anaerobic and aerobic bacteria, which leads directly to SCFA
reduction. SCFAs, including propionate, butyrate, and acetate,
can trigger the local release of peptide YY (PYY) and GLP1.
SCFA receptors are highly expressed on GLP1-producing L cells
in the distal ileum and colon (Mandaliya and Seshadri, 2019a).
Propionate is a substrate for gluconeogenesis that protects the
host from diet-induced obesity and glucose intolerance (Ohira
et al., 2017). Butyrate, a SCFA fermented by microbiota, is an
energy substrate for colonocytes that decreases the permeability
of the intestinal barrier by promoting GLP-2 release and
increasing mucus secretion (Sonnenburg and Backhed, 2016).
Butyrate may suppress the abnormally increased proliferation of
colonic epithelial cells in diabetes by targeting HMGB1 (Wang
S. Y. et al., 2019). Furthermore, as a histone deacetylase (HDAC)
inhibitor, butyrate can promote β-cell differention, proliferation,
function and improve insulin, which has a close link with
diabetes (Khan and Jena, 2015). Researchers also demonstrated
that butyrate and propionate activate intestinal gluconeogenesis
(IGN) via cAMP-dependent mechanism and a gut-brain neural
circuit involving the fatty acid receptor FFARS, which had a
metabolic benefits on glucose control in mice (De Vadder et al.,
2016). As for acetate, it’s found that increased production of this
SCFA promotes increased glucose-stimulated insulin secretion
through activation of the parasympathetic nervous system (Perry
et al., 2016).

In summary, due to the intestinal dysbiosis, the endotoxin-
mediated promotion of metabolic inflammation and reduction
of SCFA levels are the two main mechanisms underlying the
interplay between gut microbiota and host in T2DM (Figure 1).

Metabolic Dysfunction Induced by Bacterial

Components and Metabolites
During food digestion, xenobiotic metabolism and vital
movements of the host activate a series of events via enzymatic
pathways to function in combination with the gut (Tremaroli
and Backhed, 2012). Bacterial components contribute to the
production of many bioactive molecule types like bile acids
and adipokines, which are essential for the interconnected
pathways of glycolysis, tricarboxylic acid/Krebs cycle, oxidative
phosphorylation (OXPHOS), and amino acid and fatty acid
metabolism (Belizario et al., 2018). Bile acids are molecules
generated from cholesterol by microbiota of the lower small
intestine and colon. They reportedly inhibit diet-induced
obesity and prevent the development of IR by activating the
bile acid receptor (farnesoid × receptor, FXR) and membrane
G protein coupled receptor TGR5, indicating their effects on
energy homeostasis (Gastaldelli et al., 2010; Gerard and Vidal,

2019). The ability to metabolize the naturally occurring FXR
antagonist tauro-b-muricholic acid is an essential step toward
impaired tolerance to glucose and insulin (Lazar et al., 2019).
Adipose tissue is commonly recognized as an active organ
presenting key metabolic and endocrine functions by secreting
bioactive peptides and proteins, referred to as adipokines, which
play a critical role in host metabolism. With the impact of
gut microbiota it releases inflammatory adipokines, such as
fatty acid binding protein 4 (FABP-4), acylation-stimulating
protein (ASP), retinol-binding protein 4 (RBP4), lipocalin-2
(LCN2), and chemerin, etc., which are associated with increased
inflammation, obesity, insulin resistance, and eventually T2DM
(Lee et al., 2019) (Figure 2).

HOST-GUT MICROBIOTA-HERBAL
MEDICINE INTERACTION DURING T2DM
TREATMENT

HMs Regulate the Composition of
Beneficial and Maleficent Bacteria
A significant difference between the gut microbiota composition
of T2DM patients and healthy individuals was discovered as
early as in 2010. The ratios of Bacteroidetes to Firmicutes and
the Bacteroides-Prevotella group to C. coccoides-E. rectale group
were closely related to blood glucose concentration; furthermore,
members of Betaproteobacteria were highly enriched in T2DM
patients (Larsen et al., 2010). With the increasing evidence from
research, the imbalance of beneficial and maleficent bacteria is
considered important for the pathogenesis of T2DM. SCFAs,
including butyrate, propionate, and acetate, are associated with
attenuated obesity and T2DM (Ju et al., 2019). The SCFA
butyrate is especially beneficial for the improvement of T2DM
by increasing insulin sensitivity and enhancing mitochondrial
function (Gao et al., 2009). The increase in the abundance
of SCFA-producing, and especially, butyrate-producing bacteria
and the decline of the abundance of opportunistic pathogens are
crucial mechanisms underlying T2DM treatment (Zhang B. et al.,
2019).

Rhubarb is a perennial herb used for the therapy of
inflammatory diseases including acute pancreatitis and
gastroenteritis and of diabetes and its complications in
combination with other herbs (Li et al., 2004; Zhou et al.,
2016; Cao et al., 2017). Anthraquinone, which contains free
anthraquinones and glycosides, is one of its major components
(Arvindekar et al., 2015). A recent animal study found that the
therapeutic mechanism of a purified anthraquinone-glycoside
preparation from rhubarb (RAGP) for T2DM involves an
improvement of gut dysbiosis with an enrichment of probiotic
Lactobacillus and short-chain fatty acid-producing bacteria and
decreased abundance of the Lachnospiraceae NK4A136 group
and LPS-producing bacteria Desulfovibrio (Cui et al., 2019).

Water extract of Caulis Spatholobi (WECS) effectively
maintained blood glucose homeostasis and reduced insulin
resistance in a study using a diet-introduced obesity (DIO)mouse
model. It improved not only laboratory indicators related to
diabetes but also microbiota dysbiosis, mainly by increasing
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FIGURE 1 | T2DM modulates the abundance of specific gut bacteria to decrease mucus-producing species and several short chain fatty acid (SCFA)-producing

bacteria. These bacteria then produce LPS, which can destroy the barrier function of the gut and leak out to the internal environment through occludin and ZO-1,

leading to an inflammatory status. The low circulating levels of SCFAs can foster host satiety disorder and a decrease in insulin sensitivity or secretion through GPRs.

The disturbance of carbohydrate metabolism may cause an intestinal barrier disruption, which leads to a severer intestinal dysbiosis. With LPS stimulation, IECs

secrete the pro-inflammatory cytokines MCP-1, TNF-α, IL-18, and IL-6. Innate immune cells, such as macrophages and DCs, use pattern recognition receptors to

attach to pathogens or toxins, such as LPS, which leads to an activation of the inflammatory cascade.

the abundance of anti-obesity and anti-diabetes-related bacterial
genera, including Parabacteroides, Bacteroidetes, Anaerotruncus,
and Bifidobacterium (Zhang C. et al., 2019).

Xiexin Tang (XXT) is a Chinese herbal formula
commonly applied for the treatment of diabetes. In an
in vivo study, XXT notably shifted the gut microbiota of
T2DM rats. It increased the abundance of SCFA-producing
and anti-inflammatory bacteria, such as Adlercreutzia,
Alloprevotella, Barnesiella, [Eubacterium] Ventriosum
group, Blautia, Lachnospiraceae UCG-001, Papillibacter,
and Prevotellaceae NK3B31 group to different degrees. The
changes of gut microbiota composition were consistent
with the amelioration of T2DM rat hyperglycemia, lipid
metabolism disorder, and inflammatory activities (Wei et al.,
2018).

Huang-Lian-Jie-Du decoction (HLJDD), a famous Chinese
herbal formula originating from the Tang Dynasty, has been
widely applied in T2DM treatment for thousands of years
(Zhang et al., 2014). Despite its clinical hypoglycemic effect,
the underlying mechanism is unclear. Recently, an animal
study found that HLJDD ameliorated blood glucose and
restored the dysregulated microbiota composition. HLJDD-
induced hyperglycemia improvement was mainly related to an
increase in the abundance of SCFA-producing bacteria, such as
Adlercreutzia, Porphyromonadaceae (including Parabacteroides),
Lachnospiraceae (including Blautia), and a decrease of
conditioned pathogenic bacteria, such as Corynebacteriaceae
(including Corynebacterium), Staphylococcaceae (including
Staphylococcus), and Aerococcaceae (including Aerococcus and
Facklamia) (Chen et al., 2018).
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FIGURE 2 | Metabolic dysfunction induced by bacterial components and metabolites a series of enzymatic machinery reactions, leading to insulin resistance.

Besides animal experiments, gradually accumulating
clinical studies exploring and verifying the intestinal microbial
mechanisms behind the hypoglycemic effect of HM in T2DM
treatment have also emerged. They have mainly focused on the
modulation of gut microbiota composition. A clinical trial on
the anti-diabetic effects of a traditional Chinese herbal formula
named Gegen Qinlian decoction (GQD) found a correlation
between the increase in the abundance of beneficial gut
microbiota and its clinical efficacy, including blood glucose levels
and islet β-cell function. Furthermore, the butyrate-producing
bacteria Faecalibacterium prausnitzii were significantly enriched
in the feces of T2DM patients after 12 weeks of intervention
(Xu et al., 2015). A randomized clinical trial on the efficacy of
a specially designed Chinese herbal formula named AMC for
T2DM with hyperlipidemia indicated that AMC significantly
ameliorated blood glucose and lipid levels and improvedHOMA-
IR and triglyceride levels with higher efficacy than metformin.
The study confirmed that these effects were associated with
butyrate-producing bacteria, such as Faecalibacterium spp. and
Blautia (Tong et al., 2018) (Table 1).

HMs Reduce Inflammation Caused by Gut
Microbiota and Host Immunity
The pathogenesis of T2DM is closely associated with a low-
grade inflammatory state and an activation of the host immune
response, also called an ongoing cytokine-induced acute-phase
response (Pickup, 2004; Donath and Shoelson, 2011). In T2DM
pathogenesis, LPS released by gram-negative bacteria enters the
enterohepatic circulation due to an intestinal microecological
disorder, which can initiate the immune response in adipose
tissue. The expression of TLRs is activated and proinflammatory

adipocytokines, such as IL-1, IL-6, and TNF-α are released,
resulting in a low-grade inflammatory state (Creely et al.,
2007). T cells, as a critical effector of cell-mediated immunity,
are crucial for the development of T2DM and the associated
inflammation. T cell metabolism is closely related to insulin
and its downstream signaling through the insulin receptor,
and the lack of insulin receptors on T cells can inhibit
glycolysis (Tsai et al., 2018). Besides, accumulating evidence
links CD4+ T cells to obesity and insulin resistance, which
are major risk factors for T2DM (Xia et al., 2017). Subtypes
of CD4+ T cells, including Th1 and Th2 cells, can produce
large amounts of proinflammatory cytokines after their activation
to regulate inflammatory processes (Kahn et al., 2006; Raphael
et al., 2015). With the accumulating evidence of gut microbiota
playing a significant role in host immunity and subsequent
inflammation, the related mechanisms of HMs in T2DM
treatment are gradually emerging. The therapeutic mechanisms
underlying their efficacy have been associated with intestinal
anti-inflammation and immunomodulation.

Scutellaria Radix (SR) and Coptidis Rhizome (CR) are well-
known herbs applied for diabetes treatment since thousands
of years and have demonstrated hypoglycemic effects in both
clinical trials and basic experiments (Zhang et al., 2018; Ran et al.,
2019). The combination of SR and CR (SC) exerted anti-diabetic
activities through the TLR4 signaling pathway involved in anti-
inflammation and gut microbiota regulation. The administration
of SC in a T2DM KK-Ay mouse model was associated with
significantly decreased LPS, IL-6, TNF-α, TLR4, and MyD88
protein levels and improved blood glucose, insulin, and blood
lipid content; moreover, Lactobacillus intestinalis was considered
a possible targeted probiotic (Zhang C. H. et al., 2019).
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TABLE 1 | HM regulates the composition of gut microbiota.

HM Extract or natural herbs Subject Indexes for therapeutic effects Enriched gut microbiota Reduced gut

microbiota

References

Rhubarb Purified extract

(anthraquinone-glycoside)

Type 2 diabetic rats FBG, GSP, insulin level and sensitivity, GLP-1 Lactobacillus Lachnospiraceae

NK4A136 group,

Desulfovibrio

Cui et al., 2019

Caulis Spatholobi Water extract Diet-introduced

obesity mice

Body weight, fat organ weight, body fat rate,

oxygen consumption, norepinephrine

concentration, glucose tolerance, insulin

sensitivity, lipids profile, TNF-α, IL-6, IL-1β

Parabacteroides, Bacteroidetes,

Anaerotruncus, Bifidobacterium

–b Zhang C. H. et al.,

2019

Xiexin Tang Natural herbsa Type 2 diabetic rats Body weight, FBG, lipids profile, insulin level

and sensitivity, TNF-α, IL-6, CRP, resistin

Adlercreutzia, Alloprevotella,

Barnesiella, [Eubacterium] Ventriosum

group, Blautia, Lachnospiraceae

UCG-001, Papillibacter,

Prevotellaceae NK3B31 group

– Wei et al., 2018

Huang Lian Jie

Du Decoction

Natural herbs Type 2 diabetic rats Body weight, FBG, glucose tolerance, lipids

profile, insulin level and sensitivity, IL-1β, IL-6,

CRP, MDA, SOD, GSH-Px, ALT, AST, TBA,

TBIL, DBIL

Adlercreutzia, Porphyromonadaceae,

Lachnospiraceae

Corynebacteriaceae,

Staphylococcaceae,

Aerococcaceae

Chen et al., 2018

Gegen Qinlian

Decoction

Natural herbs Patients with T2DM HbA1c, FBG, 2h-PBG, insulin level and

sensitivity, BMI, lipids profile, waist and hip

circumferences

Faecalibacterium prausnitzii – Xu et al., 2015

AMC Natural herbs Patients with T2DM HbA1c, FBG, 2h-PBG, insulin level and

sensitivity, lipids profile, BMI, body weight,

waist and hip circumferences

Faecalibacterium spp, Blautia – Tong et al., 2018

aNatural herbs are in a form of formulation, which contains various herbs.
bUndifined.
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Potentilla discolor Bunge (PDB) is a perennial herb usually
utilized as an anti-diabetic agent. In an animal study, its
hypoglycemic effect was closely related with the regulation
of intestinal endotoxemia and inflammation. Compared with
control mice, T2D mice treated with PDB presented a
significant decrease in TNF-α, IL-1β, and IL-6 serum levels
and LPS in feces and serum. Furthermore, the abundance
of the Bacteroidales_S24-7_group was increased after PDB
administration, accompanied by a decreased abundance of
Helicobacteraceae (Han et al., 2019).

Dendrobium is a HM clinically used for the treatment of
T2DM and its complications, and dendrobium polyphenols
are its main constituents that exert diverse pharmacological
effects (Paudel et al., 2018). A study on the effects of a
polyphenol-rich extract of Dendrobium loddigesii (DJP) in
diabetic mice identified anti-inflammatory activities of DJP
for T2DM treatment through a reduction of IL-6 and TNF-
α expression, which was correlated with the modulation of
gut microbiota, including an increase of the Bacteroidetes to
Firmicutes ratio and Prevotella/Akkermansia abundance and a
decrease in the abundance of S24-7/Rikenella/Escherichia coli (Li
et al., 2018) (Table 1).

Gut Microbiota-Mediated Metabolism
Modulates the Biotransformation of HMs
The clinical application of HMs for T2DM treatment has been
widely accepted globally. However, there is still a huge gap in
terms of an approval by the US Food and Drug Administration
and drug discovery due to the low bioavailability and bioactivity
of HMs after oral administration (Kesarwani et al., 2013).
In recent years, scientists have found that gut microbiota
critically modulate the biotransformation of hypoglycemic HMs,
transforming polar and poor lipophilic compounds to less
polar and more lipophilic compounds and improving their
oral absorption rate for T2DM treatment. Specifically, gut
microbiomes encode various enzymes, which can metabolize
HMs, modify the structure of the original chemicals, and produce
new compounds (Koppel et al., 2017). After the metabolism of
gut microbiomes, the bioavailability and bioactivity of newly
produced chemical compounds differ from those of the original
HM chemicals, and compounds with higher bioavailability and
bioactivity can be easily absorbed by the intestine and produce
therapeutic effects in the host. During the process of HM
biotransformation, a gut bacterial strain can transform various
chemical compounds. Meanwhile, a compound can also be
transformed by the synergistic effects of various bacteria.

Berberine (BBR) is a representative constituent of a commonly
used hypoglycemic HM CR (Wang J. et al., 2019). Numerous
studies have demonstrated the hypoglycemic effects of BBR
in T2DM (Zhang et al., 2010; Liang et al., 2019). However,
as an isoquinoline alkaloid with poor water solubility, BBR
is poorly absorbed by intestinal epithelial cells, which leads
to its extremely low bioavailability (Liu et al., 2016). Recent
studies have found that gut microbiota play an important role
in BBR biotransformation and its antidiabetic effects. In the
host intestine, gut microbiota convert BBR to a more easily

absorbable but inactive metabolite, dihydroberberine (dhBBR),
through catalysis of nitroreductases. After dhBBR absorption
into intestinal wall tissue, it is oxidized immediately to BBR and
exerts pharmacological activities in blood circulation (Feng et al.,
2015).

Ginseng is a HM, which has been applied for T2DM treatment
for thousands of years. Ginseng beneficial effects in clinical trials
include improved blood glucose control and insulin sensitivity
in T2DM patients (Gui et al., 2016). Ginsenosides, the main
active components of ginseng, exert hypoglycemic effects in
type 2 diabetic rats, including lowering blood glucose levels,
modulating insulin response, and decreasing body weight (Tian
et al., 2018). The metabolism of gut microbiota has a marked
influence on ginsenoside pharmacological effects. Ginsenoside
Rb1, an anti-diabetic agent belonging to tetracyclic triterpenoid
saponins, has low bioavailability (Yu et al., 2018; Zhou P. et al.,
2019). However, after catalysis of β-glucosidases produced by gut
bacteria, ginsenoside Rb1 can be metabolized to more bioactive
compounds, such as ginsenoside 20(S)-Rg3 and compound K
(Jung et al., 2012; Quan et al., 2012; Kim, 2013). Ginsenosides
Re and Rg1 are also transformed to new metabolites like the rare
ginsenosides Rd, GypXVII, Rg2, and protopanaxatriol, which
exhibit higher biological and pharmacological activities (Yu et al.,
2017).

Curcumin, one of the primary active constituents of the
HM turmeric, possesses a range of pharmacological activities
including anti-diabetic, anti-inflammatory, and antioxidant
effects and is protective against diabetes and its complications
(Nabavi et al., 2015; Parsamanesh et al., 2018). However, as a
polyphenolic compound, curcumin’s poor oral bioavailability
represents a big barrier to its clinical efficacy (Lopresti, 2018).
Gut microbiota have been identified as a key point in the
biotransformation of curcumin. Curcumin can be metabolized
through the metabolism of human intestinal bacterium
Blautia sp. MRG-PMF1 is converted to demethylcurcumin and
bisdemethylcurcumin by a methyl aryl ether cleavage reaction
(Burapan et al., 2017). Besides, in an in vitro human fecal
incubation experiment three metabolites, tetrahydrocurcumin
(THC), dihydroferulic acid (DFA), and a metabolite tentatively
identified as 1-(4-hydroxy-3-methoxyphenyl)-2-propanol, were
detected in the mixture containing curcumin after human fecal
fermentation (Tan et al., 2015). The bacterium Escherichia
coli from human feces was discovered in the microbial
biotransformation of curcumin. Through a two-step reduction
by an unique enzyme purified from Escherichia coli, which
was named “NADPH-dependent curcumin/dihydrocurcumin
reductase”, curcumin could be converted into dihydrocurcumin
as an intermediate metabolite and tetrahydrocurcumin as the
end product (Hassaninasab et al., 2011).

Quercitrin is a bioflavonoid present in various anti-diabetic
HMs, such asMori Folium, BupleurumRadix, and hawthorn that
has a positive effect on carbohydrate metabolism and antioxidant
activities during diabetic treatment (Babujanarthanam et al.,
2010, 2011). However, due to its relatively poor bioavailability,
the key factors mediating its beneficial effects and underlying
mechanism remain elusive. An in vivo experiment incubating
quercetin with human gut bacteria found that metabolites
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with higher bioactivity were produced, including quercetin,
3,4-dihydroxyphenylacetic acid, and 4-hydroxybenzoic acid.
Fusobacterium K-60 was detected as the main bacterium, which
transformed quercitrin to quercetin (Kim et al., 1999).

DISCUSSION AND PERSPECTIVES

In recent years, the mechanisms of T2DM-associated alterations
in gut microbiota are being constantly explored. Intestinal
dysbiosis, endotoxin-induced metabolic inflammation, immune
response disorder, bacterial components and metabolites, and
a decreasing production of SCFAs are closely associated
with the pathogenesis of T2DM and represent a mechanism
of gut microbiota-host interplay. However, research on the
hypoglycemic effects of HMs targeting gut microbiota is only
in its infancy. Our analysis of relevant clinical studies showed
that most merely analyzed the modulation of gut microbiota
composition by HMs, whereas the underlying mechanisms,
including the interaction mode of floras with HMs, the affected
host pathways, and the therapeutic targets were rarely studied.
Therefore, we believe that from the perspective of gut microbiota,
investigating the therapeutic mechanisms of hypoglycemic HMs
has great potential.

HM is the major component of the traditional Chinese
medicine (TCM) system and is considered the “basis of all
other medicines” (An et al., 2019). For thousands of years, it
has not been scientifically recognized, because this system and
its theory are totally different from modern science. The core
of the TCM system is the balance and imbalance of Yin and
Yang, which is difficult to quantify and characterize, whereas
modern science focuses on objective and quantifiable evidence.
Although prescriptions of multiple HM combinations based
on the TCM theory have achieved notable clinical efficacy,
the poor knowledge of their mechanisms has greatly limited
TCM and HM progress. However, research on the interaction
between gut microbiota and HM presents scientific evidence for
TCM and HM utility and rational compatibility, which greatly
increases the optimism for its use in the clinical practice. In
TCM prescriptions, multiple HM combinations exert synergistic
or antagonistic effects to obtain better efficacy or reduce toxicity
and adverse effects. For example, for the treatment of T2DM,
CR, and SR are commonly combined to lower blood glucose,
because according to the TCM theory, they both have a bitter
flavor and can combat high sugar. As obscure as the theory
is, gut microbiota can be a perfect explanation why the main
components of CR and SR, namely berberine and baicalin, can
improve the imbalance of gut microbiome in the host, increase
the abundance of various SCFA-producing bacteria, and decrease
the abundance of harmful bacteria (Zhang et al., 2015; Ju et al.,
2019). However, an antagonism between CR and SR in the
intestine also exists. In an in vitro experiment using rat fecal
suspensions, CR decreased the bioavailability of anthraquinones
by inhibiting the transformation of conjugated anthraquinones
to free anthraquinones mediated by gut microbiota, whereas

SR confronted CR by inhibiting the glucuronidation of
anthraquinones in the intestine (Yan et al., 2015).

The exploration of the interplay of gut microbiota-host-HM
also offers new insights into precision HM therapy and drug
discovery. Metformin is universally acknowledged as a first-line
anti-diabetic agent for the management of T2DM and improves
the intestinal bacterial dysbiosis. It has been confirmed that one
of the therapeutic effects of metformin in T2DM is through
SCFA production as well as a increase of Eschericha abundance
(Forslund et al., 2015).Metformin exert anti-hyperglycemic effect
through an increase in the bile acid gycoursodeoxycholic acid in
the intestine by decreasing the abundance of species of B. fragilis
and its bile salt hydrolase activity (Sun et al., 2018). However, it is
less well-known that the origins of metformin can be traced back
to a traditional European HM, namely Galega officinalis (also
known as goat’s rue) (Bailey, 2017). This classic and successful
example demonstrates that herbs are very valuable for medicine
and contribute significantly to drug discovery. With the recent
increasing interest and accumulating research evidence on HMs
and their pharmacologic effects and related mechanisms, new
drug discovery and development based on HMs are expected to
be an important future trend. As a definite target, gut microbiota
may be a direction for precisely targeted HM therapy and new
drug discovery using extracts from natural HMs.

Furthermore, many herbs in the Chinese Pharmacopeia
enriched in fibers and botanicals are also present in our daily
diet and are named herbal food supplements (Di Giorgi Gerevini
et al., 2005). For example, Momordica charantia and Chinese
yam are common foods in the daily diet and are also used as
HMs to treat diabetes and modulate gut microbiota (Li et al.,
2017; Wang et al., 2017). Diet is intimately associated with
T2DM, and gut microbiota is considered an intersection of
diet and disease (Sonnenburg and Backhed, 2016). Furthermore,
numerous studies have confirmed that the daily structure is
important for the management of diabetes (Nie et al., 2019).
Therefore, the exploration of herbal foods regulating the flora
may aid the development of hypoglycemic dietary supplements
and medications to reach the objective of “Let food be the
medicine and medicine be the food.”
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