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Functional connectivity (FC) network based on resting-state functional magnetic
resonance imaging (rs-fMRI) has become an important tool to explore and understand
the brain, which can provide objective basis for the diagnosis of neurodegenerative
diseases, such as autism spectrum disorder (ASD). However, most functional
connectivity (FC) networks only consider the unilateral features of nodes or edges,
and the interaction between them is ignored. In fact, their integration can provide
more comprehensive and crucial information in the diagnosis. To address this issue,
a new multi-view brain network feature enhancement method based on self-attention
mechanism graph convolutional network (SA-GCN) is proposed in this article, which can
enhance node features through the connection relationship among different nodes, and
then extract deep-seated and more discriminative features. Specifically, we first plug the
pooling operation of self-attention mechanism into graph convolutional network (GCN),
which can consider the node features and topology of graph network at the same time
and then capture more discriminative features. In addition, the sample size is augmented
by a “sliding window” strategy, which is beneficial to avoid overfitting and enhance the
generalization ability. Furthermore, to fully explore the complex connection relationship
among brain regions, we constructed the low-order functional graph network (Lo-FGN)
and the high-order functional graph network (Ho-FGN) and enhance the features of the
two functional graph networks (FGNs) based on SA-GCN. The experimental results on
benchmark datasets show that: (1) SA-GCN can play a role in feature enhancement
and can effectively extract more discriminative features, and (2) the integration of Lo-
FGN and Ho-FGN can achieve the best ASD classification accuracy (79.9%), which
reveals the information complementarity between them.

Keywords: resting-state functional magnetic resonance imaging (rs-fMRI), graph convolutional network (GCN),
pooling operation, feature enhancement, autism spectrum disorder (ASD)
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INTRODUCTION

Brain disease is regarded as a public health challenge with an
alarming proportion (Yao et al., 2021). Among them, autism
spectrum disorder (ASD) is a complex genetic heterogeneous
neurological disease with high incidence rate, usually coexisting
with other diseases (Lord et al., 2020; Hiremath et al., 2021).
According to the latest report of the Centers for Disease
Control and Prevention, there is one autistic in every 44
American children (Maenner et al., 2021). So far, there is no
effective method to completely cure autism, and the rehabilitation
treatment of autism is a lifelong training, which causes heavy
economic burden to the families and society (Eslami et al., 2019;
Zhao et al., 2020). Thus, early diagnosis and intervention of
autism is of great clinical and social value (Zhao et al., 2018; Wang
et al., 2019; Hiremath et al., 2021).

Resting-state functional magnetic resonance imaging (rs-
fMRI) based on blood oxygen level dependent (BOLD) signal
imaging is an important tool to explore brain mechanism
and pathology (Chen et al., 2016; Gan et al., 2021). Rs-fMRI
can realize non-invasive study of brain function high spatial
resolution, which cannot only reflect the local spatial function
information of the brain, but also maintain detailed functional
connectivity maps of the brain (Zhi et al., 2018). Rs-fMRI
has been widely used to detect and characterize functional
interconnection among different region of interests (ROIs),
revealing potential patterns to distinguish between patients and
healthy controls (Yao et al., 2021).

Currently, many extracting feature methods based on rs-
fMRI are presented from different angles for disease diagnosis.
Generally, they can be divided into two categories.

The first category focuses on extracting the features from each
brain region without considering their connection relationship
to each other; that is, the time-domain and frequency-domain
features of each brain region of interest (ROI) are directly
extracted based on the original BOLD. For example, Sartipi
et al. (2018) proposed that based on generalized autoregressive
conditional heteroscedasticity, the time-frequency sub-bands
obtained by decomposing the brain ROI of subjects were
extracted to diagnose ASD; Sidhu (2019) proposed the local linear
embedding method, and the information measure of potential
neuronal activity was extracted from BOLD time series for
disease classification; Easson and McIntosh (2019) measured the
variability of resting BOLD based on mean square continuous
difference of time series and evaluated its complexity based on
sample entropy to find predictors of ASD diagnosis. The above
methods rely on brain ROIs, and the pathogenesis of brain
diseases is explored by measuring the activities of various brain
regions to assist the diagnosis of ASD. However, such methods
ignore the connections among brain ROIs. Since the brain is a
complex biological information system, each brain area is not
isolated, but is interconnected on multiple spatial and temporal
scales, working in coordination, the relationship among brain
areas contains rich useful information for disease diagnosis.

The second category is committed to explore the functional
connectivity among ROIs, through constructing functional
connectivity (FC) network and conduct classification according

to the differences in FC patterns among brain ROIs. For example,
Zhang et al. (2020) learned multi-view features with multiatlas-
based FC network to improve MCI diagnosis; Zhou et al. (2018)
enhanced the high-order FC network based on regularization
learning framework to identify the patients with MCI and ASD;
Zhao et al. (2021) extracted the temporal-invariant properties
contained in low-order and high-order dynamic FC networks
based on the central moment method, revealing that different
networks can identify the fingerprint of the autistic brain at
different connection levels; Wang N. et al. (2022) identified ASD
using multi-point clustering and nested feature extraction of rs-
fMRI. Despite the effectiveness of the above methods captures
features, they ignore the features of each brain ROIs and do not
organically integrate the features of nodes (each brain region) and
edges (the connection relationship among brain regions), and
thus, they cannot extract relatively comprehensive and powerful
discriminative features. Therefore, how to enhance the node
features through the connection relationship between nodes
and realize the organic combination of nodes and edges is an
important research topic for ASD diagnosis.

In recent years, graph convolutional network (GCN) has
achieved great success in dealing with non-Euclidean spatial
data in the form of graph data (Xu et al., 2020, 2022; Li L.
et al., 2021; Song et al., 2021; Ghorbani et al., 2022). GCN is
able to automatically extract feature of brain network through
an end-to-end manner, which is used for the recognition and
classification of brain disease (Wang et al., 2021; Zhu et al., 2022).
Specifically, GCN has the capability of transmitting, aggregating,
and updating the node information in the graph, which can use
the connection relationship of the nodes in the graph to enhance
the node features, explicitly capture the node information and
topology of the graph network, and mine useful brain connection
network patterns for disease classification (Ktena et al., 2018).
For example, Cao et al. (2021) used DeepGCN to identify
ASD from multi-site resting-state data; Wang Y. et al. (2022)
conducted diagnosis of ASD based on multi-spectral convolution
network and ensemble learning. However, the existing GCNs
still have some drawbacks listed as following when applied to
brain FC networks.

(1) For high-dimensional small sample, GCN may not work
well. A large number of training samples are often required for
GCN training to avoid overfitting, which is hard to be satisfied
in the single site of medical imaging. For example, the Autism
Brain Imaging Data Exchange (ABIDE) database consists of
17 international imaging sites, of which New York University
site has the most rs-fMRI data, including only 92 subjects (Di
Martino et al., 2014). To solve this problem, previous studies
usually collect data from multiple sites and put multiple data
sources together (Cao et al., 2021). However, the problem of
inconsistent parameters of multiple data sources may affect the
learning performance of GCN.

(2) GCNs generally focus on the node information in the
brain function connectivity network, but ignore the network
topology and lack efficient graph pooling operation. GCN for
graph classification mainly predicts the class labels of the whole
graph by combining the learning methods of graph convolution
layer, graph pooling layer, and readout layer (Pan et al., 2015,
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2017; Ying et al., 2018; Zhang et al., 2018). Among them,
the graph volume layer is responsible for accurate high-level
node representation, whereas the graph pool layer learns the
hierarchical representation of the network and reduces the
parameters (Lee et al., 2019).

(3) In terms of graph network construction, previous studies
usually start from a single level and then to extract features.
They ignored two facts in the setting of node feature matrix and
adjacency matrix of initial graph network. First, in the selection
of node features, the FC network reflecting the connection
relationship between nodes is considered, while ignoring the
original blood oxygen signals in each brain region (Song et al.,
2021); second, in the topological structure of the graph network,
the connection between the two brain regions is considered,
whereas the deep connection among nodes is ignored. For the
ease of understanding, we use social networks as an analogy.
Each brain region is regarded as an individual. In addition to
its own unique features, each individual also has his/her own
friends. Previous studies have focused on the interaction between
individuals and their friends, but ignored individual unique
features and the interaction between the circle of friends.

To handle the above issues, we propose a novel multi-view
brain network feature enhancement method based on self-
attention mechanism graph convolutional network (SA-GCN).
Specifically, we first adopt the “sliding window” strategy to
expand the sample size, i.e., the whole rs-fMRI time series
is divided into multiple overlapping sub-segments by “sliding
window” methods, and each sub-segment constructs a graph
network, so that more samples are generated from one rs-
fMRI time series for improving the overfitting problem caused
by small samples and solved the problem of inconsistent
parameters of multiple data sources in previous studies, making
the experimental performance more stable; Then, we facilitate the
graph pooling operation via self-attention mechanism in GCN,
which considers both node features and network topology, and
can filter useless informatics, leave more advanced, deeper and
more discriminative node features; Furthermore, two different
levels of FGN, i.e., Lo-FGN and Ho-FGN, are constructed from
fMRI data to comprehensively capture the information contained
in the brain network. The Lo-FGN reflects the changes of original
BOLD in each brain region in terms of node features, and
the connection strength between two brain regions in terms of
network structure. The Ho-FGN reflects the interaction among
brain regions in terms of node features and the deeper connection
among multiple brain regions in terms of network structure.
Finally, the multi-level features extracted based on SA-GCN
are fused to realize the information complementarity between
features, which is helpful to identify brain diseases, such as
autism.

The rest of this article is organized as follows. In the
Introduction section, we introduce related works of GCN in
graph-level processing tasks. In the Proposed Methods section,
our approach is described in detail, including data augmentation,
self-attention pooling operations, and network construction. In
the Experiments part, we present the experimental results, discuss
different feature evaluation methods, and compare our strategy
with other state-of-the-arts. Finally, conclusions are given.

INTRODUCTION OF GRAPH
CONVOLUTIONAL NETWORK

At present, GCN is one of the favorites in graph data learning
tasks, which has wide applicability and is suitable for nodes and
graphs with any topological structure (Rubinov and Sporns, 2010;
Zhou et al., 2020; Li X. et al., 2021). Here, we focus on GCN
for graph level tasks. GCN is essentially Laplacian smoothing on
the network, which takes the weighted sum of neighbors and self-
expressions of each node as the feature (Parisot et al., 2018; Shao
et al., 2021).

The typical architecture of graph-level task GCN is shown in
Figure 1. Firstly, the node feature matrix and adjacency matrix
of the initial graph network are input into GCN; Then, the graph
convolution operation is conducted at each layer to characterize
the local structure of the node, and extract high-level node
representation (Gu et al., 2021); After that, the graph pooling
operation is facilitated to learn the hierarchical representation
of the network (Henaff et al., 2015); Finally, with certain loss
functions, gradient back propagation is used to train the network.
All convolution layers share the same adjacency matrix. To
increase non-linearity, the ReLU activation function is added
after each layer. The iterative update operation can be expressed
as:

X(l+1) = ReLu
(

pooling
(

D̂−1/2ÂD̂−1/2X(l)W(l)
))

(1)

where A ∈ Rn×n is an adjacency matrix, which defines the
connection between nodes, and in an undirected graph Ai,j = Aj,i.
InεRn×nis an identity matrix, and Â = A+ In. D is a diagonal
matrix, Di,j represents the degree of the i− th node and D̂ii =∑

j
Âij. W is the trainable weight, X(l) is the l− th node feature

matrix, where X(0) is the original node feature matrix. The
complete GCN can be obtained after L iterations of training
(Parisot et al., 2018; Gu et al., 2021).

Although GCN can do feature extraction and enhancement
by considering both nodes and edges in the graph network, it
cannot be directly applied to our task. Specifically, there are two
limitations: (1) The performance of GCN heavily depends on
training samples, and our sample size is small. To solve this
problem, we must expand the sample size; (2) Previous graph
pooling methods either only consider the topology of graphs, or
have high spatial complexity (Defferrard et al., 2016; Rhee et al.,
2017; Cangea et al., 2018; Ying et al., 2018; Zhang et al., 2018). To
reduce the learning parameters and computational complexity, it
is necessary to improve the graph pooling operation. To tackle
these two problems, we give the corresponding solutions in the
proposed methods.

PROPOSED METHODS

To make GCN adapts to our task and data, we propose a novel
multi-view brain network feature enhancement method based
on GCN with self-attention mechanism (SA-GCN). The overall
framework of our model is illustrated in Figure 2. To be specific,
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FIGURE 1 | GCN with pooling layer and readout layer for graph level tasks.

we first use the “sliding window” strategy to enlarge the sample
size, and the low-order functional graph network (Lo-FGN) and
high-order functional graph network (Ho-FGN) are constructed;
Then, the pooling operation of self-attention mechanism is
added to the GCN architecture to extract more discriminative
features; Finally, the Lo-FGN and Ho-FGN are integrated based
on SA-GCN to capture more comprehensive and discriminative
features. Figure 2 illustrates the overall framework of our model.

Data Augmentation
To solve the small sample size of rs-fMRI data, we adopt a “sliding
window” method for data augmentation, as shown in Figure 3,
where the abscissa represents the acquisition time of the fMRI
time series, and the ordinate represents the blood oxygen signal
in the brain region. For each subject, the average rs-fMRI time
series of all voxels in the i− th brain ROI is defined as follows:

xi = (xi1, xi2, . . . , xiN) (i = 1, 2, . . . , R) (2)

where R is the total number of regions of interest and N
represents the total number of image volumes during rs-fMRI
scanning. The whole rs-fMRI time series is divided into K
overlapping sub-segments. Each sub-rs-fMRI time series can
build a graph network. The value of K is calculated according to
the following:

K = ((M −W) /s)+ 1 (3)

where M is the length of the entire rs-fMRI time series, and W is
the length of the sliding window. To ensure that each sub-window
owns relatively more rs-fMRI time information, W can be set to
a relatively large value, and s is the step length of each slide of the
sliding window. Therefore, the augmentation of the experimental
data can be achieved through the “sliding window” method.

Pooling Operation for Graph
Classification
To better reflect the hierarchical structure of the input data and
reduce the learning parameters for higher computation efficiency,

we add the self-attention pooling operation after the graph
convolution. The network architecture is shown in Figure 4. The
updating formulas of node feature matrix and adjacency matrix
are given by equation (4):(

Â(l+1), X(l+1)
)
= ReLu

(
SAGPool

(
GCN

(
Â(l), X(l)

)))
(4)

To understand the pooling operations in the graph network,
Figure 5 shows the changes in brain connectivity before and after
the pooling, where thickness of lines represents the strength of
connectivity among brain regions, and the fork sign represents
that the pooling operation can discard some less important nodes
and retain the nodes with more discriminative features. From
Figure 5, self-attention graph pooling method cannot only use
relatively few parameters to learn hierarchical representation in
end-to-end manner, but also use self-attention to distinguish
among nodes that should be deleted and retained. SA-GCN not
only considers the node features, but also reflects the topology
of the graph, which is conducive to improve the accuracy of
downstream classification task.

Construction of Multi-Level Graph
Network
Feature extraction based on GCN requires the construction
of function graph network from fMRI data. The complete
function graph network includes two parts: node feature
matrix and adjacency matrix. Conventional methods ignore the
complementarity of features among different levels. Our method
constructs the function graph network from multiple levels, as
shown in Figure 6, where the left part is the construction process
of low-order functional graph network (Lo-FGN), and the right
part illustrates the construction of high-order functional graph
network (Ho-FGN).

Construction of Low-Order Functional Graph Network
Let xi

(
l
)

and xj
(
l
)

represent the subsequences of the i− th and
j− th ROI in the l− th window, respectively. The correlation
between time series is calculated by Pearson correlation to obtain
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FIGURE 2 | Overall frame diagram, where FCN: functional connectivity networks; Lo− FGN: Low-order functional graph network; Ho− FGN:
High− order functional graph network; Aroi represents the adjacency matrix of Lo-FGN; Xroi represents the node feature matrix of Lo-FGN, others are the same as
above.

 

FIGURE 3 | Sliding window method diagram.

FIGURE 4 | Pooling operation. Where xi represents the feature vector of the i − th node, x
′

i represents the feature vector of the i − th new node obtained after the
graph convolution. After the pooling operation, a new graph is obtained, in which the dotted line indicates that the corresponding node should be discarded.
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FIGURE 5 | Self-attention graph pooling method diagram, where (A) represents the connectivity among brain regions before the pooling operation, (B) represents
the connectivity among brain regions after the pooling operation, and thickness of lines represents the strength of connectivity among brain regions, the fork sign
represents that the pooling operation can discard some less important nodes and retain the nodes with more discriminative features.

 

FIGURE 6 | Construction of multi-level function graph network, where À represents get K sub fMRI time series; Á represents the construction of Lo-FGN from fMRI
time series; Â represents the use of Pearson correlation to build a functional connectivity network (FCN); Ã represents the construction of Ho-FGN from FCN. ρi

represents Pearson correlation between the i − th ROI and other ROIs.C− FCNi represents the i − th traditional functional connectivity network.

FC, and the FC is thresholded by adjusting parameters to obtain
the adjacency matrix of Lo-FGN, that is:

ALo = ϕ
(
corr(xi

(
l
)
, xj
(
l
)
)
)
=

(
ρij
(
l
))

1≤l≤K,1≤i,j≤R (5)

where ϕ denotes a thresholding operation.
To capture the temporal changes in the original BOLD in the

brain area and avoid the timing structure of rs-fMRI is being
destructed, we take the mean and variance of the original data
Xroi as the node features XLo of Lo-FGN as:

XLo = (mean (X) , var(X)) (6)

Construction of High-Order Functional Graph
Network
To characterize the organizational features of the brain and reflect
the functional connectivity interaction mode among multiple

ROIs, we explore the connection relationship of edges in the
graph network to enhance discrimination ability of node features.
Based on the “one-time Pearson correlation,” the high-order
function connection (Ho-FC) is obtained based on the idea
of “correlation of correlation,” and the Ho-FC is thresholded
by adjusting parameters to obtain the adjacency matrix of the
Ho-FGN as follows:

AHo = ϕ
(
ρ
(
ρij
(
l
)))

1≤l≤K,1≤i,j≤R (7)

To better capture the deep-seated node features, the functional
connectivity matrix is used as the node feature matrix of Ho-
FGN, that is:

XHo =
(
ρij
(
l
))

1≤l≤K,1≤i,j≤R (8)
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EXPERIMENTS ANALYSIS

Experimental Data
The rs-fMRI dataset used in this article is from the ABIDE
database, which consists of 17 international imaging sites (Di
Martino et al., 2014). To mitigate data heterogeneity, the rs-fMRI
data of NUY site with the largest sample size are selected to verify
the feasibility of our proposed method. Specifically, rs-fMRI
scanning data of 45 patients with ASD and 47 normal control
(NC) subjects were included. The subjects ages are between 7
and 15 years, and there are no excessive head movements in
any three directions, displacement less than 1.5 mm or angular
rotation less than 1.5◦. The detailed demographic information
of these subjects is summarized in Table 1. There are no
significant differences in age, gender, IQ, diagnostic interview,
and diagnostic observation (p > 0.05) between the two groups.

The data acquisition and preprocessing follow a standard
pipeline, including head movement, normalization, denoising,
and other processes and related parameters, which same as some
previous pieces of literature (Murdaugh et al., 2012; Satterthwaite
et al., 2013; Yan et al., 2013; Washington et al., 2014; Leung
et al., 2015; Lin et al., 2015; Ray et al., 2015; Urbain et al.,
2016; Reinhart and Nguyen, 2019). Finally, we use the automatic
anatomical marker (AAL) map to divide the brain into 116 brain
ROIs and calculate the mean value of rs-fMRI time series of
each brain ROI, which is represented by the data matrix X ∈
R170×116 for subsequent experiments. Note that 170 represents
the total volume of time images and 116 is the total number
of all brain ROIs.

Evaluation Methodology
To verify the effectiveness of the method, we conducted eight
experiments based on rs-fMRI data. In the experiment, ASD and
NC are considered as positive and negative classes, respectively.
All experiments were evaluated by 10 times of fivefold cross-
validation. Specifically, we first divide all subjects into 5 subsets
(roughly the same size). Then, we take one subset as the test set
and the other four subsets as the training data. This process is
repeated 10 times to avoid the deviation of random data division
in cross-validation. The classification results of all iterations are
averaged and evaluated by six metrics: classification accuracy

TABLE 1 | Demographic information of the subjects.

Characteristic ASD NC p-values

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1±2.3 11.0±2.3 0.773b

FIQ (mean ± SD) 106.8±17.4 113.3±14.1 0.0510b

ADI-R (mean ± SD) 32.2±14.3c
− −

ADOS (mean ± SD) 13.7±5.0 − −

FD (mean ± SD) 0.14±0.05 0.15±0.07 0.36b

M, male; F, female; FIQ, Full Intelligence Quotient; ADI-R, Autism Diagnostic
Interview-Revised; ADOS, autism diagnostic observation schedule.
aThe p-value was obtained by χ2-test.
bThe p-value was obtained by two-sample two-tailed t-test.
cTwo patients do not have the ADI-R score.

(ACC), sensitivity or true positive rate (TPR), specificity or true
negative rate (TNR), positive predictive value (PPV), negative
predictive value (NPV), and F1 score. In addition, we performed
the statistical significance test (t-test) on the accuracy obtained
by seven comparison methods and SA-GCN, and the p-values
of the test are also listed in Table 2. When the p-value is less
than 0.05, it indicates that there is a significant difference between
the two methods.

Influence of Parameters on Feature Extraction
Since the proposed SA-GCN is a deep learning method, to
avoid overfitting, the “sliding window” strategy is adopted to
increase the sample size. There are two free parameters, namely,
sliding window width (W) and translation step size (s), which
may affect the final classification performance. We set the
range of these parameters to W ∈ [120, 125, 130, 135, 140, 145],
s ∈ [5, 6, 7, 8]. In addition, in the process of constructing
Lo-FGN and Ho-FGN, because the brain network is
considered to have sparse connection structure, the adjacency
matrix is thresholded by adjusting parameters. In the
construction of Lo-FGN, the range of threshold Lcorr is set
as Lcorr ∈ {(−0.4, 0.4) , (−0.45, 0.45) , . . . , (−0.65, 0.65)}. In
the construction of Ho-FGN, the range of threshold Hcorr is set
as Hcorr ∈ {(−0.4, 0.4) , (−0.45, 0.45) , . . . , (−0.65, 0.65)}. To
check the influence of threshold Lcorr and Hcorr on the results,
we make t = Lcorr = Hcorr for comparative experiment, as shown
in Figure 7.

From Figure 7, we have the following conclusions: (1) The
classification performance is quite sensitive to free parameters,
so it is necessary to continuously adjust parameters to obtain
the best performance. We can see that when W = 130, s =
5, Lcorr = Hcorr = 0.6, the maximum value of ACC is 79.9%,
and when W = 125, s = 6, Lcorr = Hcorr = 0.6, the minimum
value of ACC is 63.3%; (2) Different thresholds determine
different network topologies, which can provide different
useful information for ASD identification and obtain different
classification performances.

Comparison for Autism Spectrum Disorder Diagnosis
Using Different Feature Extraction
To verify the effectiveness of the proposed method, we
set W = 130, s = 5, t = Lcorr = Hcorr = 0.6 and conducted
extensive experimental comparison based on the following eight
methods. Table 2 shows the average classification performance of
the above eight methods. Among them, the conventional brain
network (CBN) represents the use of the mean and variance of
the time series of rs-fMRI as the characteristics; GCN(Lo)indicates
that the constructed Lo− FGN is sent into the GCN network
architecture; SA− GCN(Lo) indicates that Lo− FGN is sent
into the GCN network architecture with self-attention pooling
operation; FCN represents the characteristics of traditional FC
network based on Pearson correlation; “ + ” denotes the fusion
operation and the other expressions of similarity.

From Table 2, we can draw three conclusions: (1) The feature
extraction using GCN architecture is superior to the traditional
feature extraction methods, indicating that GCN can enhance
the node features through the connection among nodes, and
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TABLE 2 | ASD classification results with different feature strategies.

Model ACC (%) P-value TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

CBN 65.4 ± 0.01 0.0161498 67.3 ± 0.12 62.7 ± 0.06 59.8 ± 0.01 71.2 ± 0.06 63.0 ± 0.01

GCN(Lo) 68.0 ± 0.01 0.0034533 67.8 ± 0.12 66.5 ± 0.04 67.3 ± 0.01 68.1 ± 0.01 67.0 ± 0.04

SA−GCN(Lo) 73.0 ± 0.03 0.0306230 65.0 ± 0.07 81.0 ± 0.01 79.6 ± 0.08 71.0 ± 0.08 69.4 ± 0.04

FCN 72.6 ± 0.02 0.0301950 88.2 ± 0.02 56.0 ± 0.07 64.3 ± 0.05 87.9 ± 0.05 74.0 ± 0.01

GCN(Ho) 74.5 ± 0.01 0.0462659 74.7 ± 0.02 74.4 ± 0.04 76.5 ± 0.03 75.0 ± 0.01 75.0 ± 0.08

SA−GCN(Ho) 75.0 ± 0.04 0.0453326 70.1 ± 0.12 77.3 ± 0.05 77.9 ± 0.01 74.0 ± 0.01 72.0 ± 0.04

GCN(Lo) +GCN(Ho) 77.0 ± 0.01 0.0421363 71.3 ± 0.08 78.5 ± 0.04 77.9 ± 0.02 74.7 ± 0.07 73.6 ± 0.04

SA−GCN(Lo) + SA−GCN(Ho) 79.9 ± 0.03 / 75.6 ± 0.03 78.6 ± 0.04 78.7 ± 0.01 78.6 ± 0.01 76.1 ± 0.04

The bold values represent the results of our proposed method under different evaluation metrics.

FIGURE 7 | Average classification accuracy (ACC) of SA-GCN with different free parameter combinations (i.e., W, s, and t).

has strong feature extraction ability; (2) the GCN with pooling
operation via self-attention mechanism can take into account
node features and network topology structure and extract more
discriminative features; (3) for Lo-FGN and Ho-FGN, the
performance of feature extraction and feature layer fusion based
on SA-GCN achieves the best performance, indicating that the
effectiveness of feature fusion.

The Most Distinguishing Features in
Autism Spectrum Disorder Diagnosis
To further analyze the pooling operation in GCN with self-
attention mechanism, we fed the test datasets into the SA-GCN
architecture and counted the probability of occurrence of each
node in the remaining nodes after the pooling operation of all
test sets scored based on the self-attention mechanism to rank
the nodes’ importance, as shown in Table 3.

The top 10 nodes (ROIs) of the Lo-FGN screened by the SA-
GCN architecture are VIIB-Cb.R, VIIB-Cb.L, HIP.R, II-Cb.R,
VIII-Cb.R, II-Cb.L, VIII-Cb.L, I-Cb.L, PreCG.L, and THA.R, as
shown in Figure 8. Some studies have shown that all these brain
regions are associated with ASD.

The top 10 nodes (ROIs) of the Ho-FGN filtered by the SA-
GCN architecture are INS.L, PUT.L, SFGmed.R, PAL.L, PAL.R,
PUT.R, THA.L, THA.R, SFGmed.L, and INS.R, as shown in

Figure 9. It has been shown that there are significant differences
between autistic and normal individuals in SFGmed and INS;
SFGmed belongs to the DMN, which is widely believed to
play an important role in higher cognitive functions, and
abnormalities in the DMN can be observed in a range of
neurological disorders (Murdaugh et al., 2012; Washington et al.,
2014); INS is highly associated with communication and affective

TABLE 3 | The 10 most discriminating features and their frequency of occurrence.

SA − GCN(Lo) SA − GCN(Ho)

ROI Probability of
occurrence

ROI Probability of
occurrence

VIIB-Cb.R 0.7717 INS.L 0.7554

VIIB-Cb.L 0.7704 PUT.L 0.7337

HIP.R 0.7663 SFGmed.R 0.73505

II-Cb.R 0.7649 PAL.L 0.7269

VIII-Cb.R 0.7541 PAL.R 0.71875

II-Cb.L 0.7527 PUT.R 0.7174

VIII-Cb.L 0.7412 THA.L 0.7119

I-Cb.L 0.72146 THA.R 0.7119

PreCG.L 0.7269 SFGmed.L 0.70106

THA.R 0.7228 INS.R 0.649
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FIGURE 8 | The top 10 nodes (ROIs) of the Lo-FGN screened by the SA-GCN architecture.

FIGURE 9 | The top 10 nodes (ROIs) of the Ho-FGN screened by the SA-GCN architecture.

deficits in ASD (Leung et al., 2015; Urbain et al., 2016). In
summary, our proposed method can extract deeper and more
discriminative features.

CONCLUSION

In this article, we propose a novel multi-view feature
enhancement method based on SA-GCN. Multi-view
discriminative features are extracted from the constructed
Lo-FGN and Ho-FGN based on SA-GCN, respectively,
and feature layer fusion enables the model to achieve the
best classification results. The experimental results show
that (1) with the “sliding window” strategy, the sample
size can be effectively expanded to avoid the overfitting
problem; (2) compared with the other methods, the pooling
operation in GCN with self-attention mechanism can extract
deeper and more discriminative features, which can help to
explore disease-related information for ASD diagnosis; (3)
complementary information among features can be achieved
from multiple perspectives to improve the disease identification
rate.

Finally, SA-GCN can be easily extended for diagnosis of other
highly heterogeneous neurodevelopmental disorders, such as
Alzheimer’s disease, and depressive illness. Of course, the findings
of this study are still preliminary and require further study in the
future. As for future work, we plan to extend SA-GCN to other
modalities in brain connectomics.
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